CN109293374B - “红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法 - Google Patents

“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法 Download PDF

Info

Publication number
CN109293374B
CN109293374B CN201811036565.XA CN201811036565A CN109293374B CN 109293374 B CN109293374 B CN 109293374B CN 201811036565 A CN201811036565 A CN 201811036565A CN 109293374 B CN109293374 B CN 109293374B
Authority
CN
China
Prior art keywords
powder
silicon
andalusite
carbide
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811036565.XA
Other languages
English (en)
Other versions
CN109293374A (zh
Inventor
杨自春
赵爽
陈国兵
孙文彩
陈俊
袁硕伟
杨飞跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naval University of Engineering PLA
Original Assignee
Naval University of Engineering PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval University of Engineering PLA filed Critical Naval University of Engineering PLA
Priority to CN201811036565.XA priority Critical patent/CN109293374B/zh
Publication of CN109293374A publication Critical patent/CN109293374A/zh
Application granted granted Critical
Publication of CN109293374B publication Critical patent/CN109293374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及耐火材料生产技术领域,具体涉及一种“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷的制备方法。本发明的制备方法,包括以下步骤:1)浆料的制备:将硅粉、碳化硅粉、红柱石粉、碳化硼粉、结合剂、分散剂置于容器中干混搅拌,再加入水混合搅拌均匀,得到浆料;2)采用真空振动浇注成型的坯体的制备;3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理,最后随炉冷却到室温,即可。本发明添加碳化硅粉、硅粉、红柱石和碳化硼原料并结合真空振动浇注成型的生产工艺得到的“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷的抗热震性能和耐氧化侵蚀性能明显优于传统的氮化硅结合碳化硅耐火陶瓷。

Description

“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法
技术领域
本发明涉及耐火材料生产技术领域,具体涉及一种“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷的制备方法。
背景技术
特种船舶用增压锅炉内衬耐火材料作为高温结构材料,是船舶正常运行的关键基础材料,研究开发高效高抗热震长寿命内衬材料具有重要意义。增压锅炉作为船舶动力的心脏,工作时频繁的启、停及变负荷工作,导致炉膛温度和压力处于急速升降和不断变化的状态,炉体内衬不但要承受很高的温度,还要抵抗温度变化造成的热应力冲击、高温重油烟气的侵蚀、高温氧化变质等多重损毁作用。目前,增压锅炉内衬主要使用氮化硅结合碳化硅耐火陶瓷,应用于风口砖、观火孔砖和墙砖等炉膛热负荷、热冲击最强的部位,如申请号为201710729145.9,发明名称为氮化硅结合碳化硅耐火陶瓷的真空振动浇注成型方法的专利申请文件,该发明申请文件中的利用硅粉、碳化硅粉制得的氮化硅结合碳化硅耐火陶瓷,然而,氮化硅结合碳化硅耐火陶瓷的抗热震性能和耐氧化侵蚀性能差,使用寿命短,存在严重的安全隐患。因此,采用先进配方和工艺,制备具有高抗热震和耐氧化侵蚀性的新型耐火陶瓷对提高增压锅炉的服役寿命和运行安全性意义重大。
发明内容
为解决以上问题,本发明的目的是提供一种具有较好的抗热震性能和耐氧化侵蚀性能的“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷的制备方法。
为实现上述目的,本发明所设计的“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷的制备方法,包括以下步骤:
1)浆料的制备:将硅粉、碳化硅粉、红柱石粉、碳化硼粉、结合剂、分散剂置于容器中干混搅拌,再加入水混合搅拌均匀,得到浆料;
2)坯体的制备:将步骤1)所得的浆料放入真空振动浇注成型装置的漏斗内,在振动条件下,浆料由漏斗向下流入模具,待浆料完全流进模具后再振动处理,最后空气中养护干燥后得到成型的坯体;
3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理,最后随炉冷却到室温,即可。
其中,真空振动浇注成型装置的具体结构参见申请号为 201710729144.4,发明名称为“用于碳化硅耐火陶瓷材料的真空振动浇注成型装置”中公开的真空振动浇注成型装置。
与现有技术相比,本发明在传统的氮化硅结合碳化硅耐火陶瓷的基础上通过增加红柱石和碳化硼制得“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷,红柱石相在高温下煅烧会发生莫来石化,形成针状互穿的结构,为材料提供坚固的骨架,可起到原位自增强的作用,从而提高耐火陶瓷的抗热震性能;碳化硼相在高温氧化气氛中反应生成氧化硼,能够填充到连通的孔隙中,起到阻断氧继续侵入以及裂纹封填的作用,从而提高耐火陶瓷的耐氧化侵蚀性能。
作为优选方案,所述步骤1)中碳化硅粉、硅粉、红柱石粉、碳化硼粉、结合剂、分散剂的质量比为50~55:20~25:10~15:5~10:2~5:2~5。
其中,碳化硅为增强相,在耐火陶瓷中起到承载的作用,较高的质量比有利于提高整体的强度。硅粉在氮化烧结后反应生成基体氮化硅相,将增强体结合起来,故需要一定的质量比满足结合强度要求,此外氮化硅本身具备高韧性和高热导率,有利于提高整体的抗热震性能。碳化硅和氮化硅两相是耐火陶瓷的主要相,但两者在高温氧化环境下会受到氧化腐蚀,需引入抗氧化组分。红柱石本身为氧化物,抗氧化性能优异,同时其在高温下的莫来石化可起到原位自增强的作用,有利于提高耐火陶瓷的抗热震性能。碳化硼为自愈合组分,在高温下生成玻璃相氧化硼能够封填裂纹,进一步阻断氧扩散,提高整体的抗氧化性能。红柱石和碳化硼在耐火陶瓷中均匀弥散分布,质量比相对较低。结合剂和分散剂为辅助材料,用量较少。
作为优选方案,所述步骤1)中,碳化硅粉由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比10~14:1:1混合而成,其中,所述黑碳化硅颗粒的粒径为0.3~1.0mm,所述碳化硅细粉的粒径为200~240 目,所述碳化硅微粉的粒径为1.0~3.0μm,纯度均大于98%;硅粉为纯度98%以上的金属硅粉,其粒径为200~240目。
作为优选方案,所述步骤1)中,红柱石粉为纯度98%以上的红柱石粉,其粒径为0.3~1.0mm。
作为优选方案,所述步骤1)中,碳化硼粉为纯度98%以上的碳化硼粉,其粒径为200~240目。
作为优选方案,所述步骤1)中,结合剂为水合氧化铝、铝酸钙水泥、酚醛树脂中的一种或多种;分散剂为聚乙烯亚胺、聚乙烯醇、聚丙烯酸铵中的一种或多种。
作为优选方案,所述步骤1)中,水的加入质量为原料总质量的 6~10%,所述原料总质量为硅粉、碳化硅粉、红柱石粉、碳化硼粉、结合剂、分散剂的质量之和。
作为优选方案,所述步骤1)中,干混搅拌的时间为5~30分钟,混合搅拌的时间为2~10分钟。
作为优选方案,所述步骤2)中,振动频率为40~60Hz;所述浆料完全流进模具后再振动处理的时间为1~2分钟;所述空气中养护的时间为12~36小时。
作为优选方案,所述步骤3)中,氮化处理的升温程序为25℃~1000℃范围内升温速率为10℃/min;1000℃~1450℃升温速率为1℃/min, 1450℃保温0.5h,最后随炉冷却到室温。
作为优选方案,所述碳化硅粉、硅粉、红柱石粉、碳化硼粉、结合剂、分散剂的质量比为53~54:21~23:11~12:7~8:2~5:2,所述碳化硅粉由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比12~14:1:1 混合而成,黑碳化硅颗粒的粒径为0.8~1.0mm,所述碳化硅细粉的粒径为210~230目,所述碳化硅微粉的粒径为2.5~3.0μm;所述硅粉粒径为210~230目;所述红柱石粉粒径为0.8mm;所述碳化硼粉粒径为 210~230目;所述结合剂为水合氧化铝和铝酸钙水泥的混合物,所述分散剂为聚乙烯亚胺和聚乙烯醇的混合物。
本发明的优点在于:与传统的氮化硅结合碳化硅耐火陶瓷的制备方法相比,本发明添加碳化硅粉、硅粉、红柱石和碳化硼原料并结合真空振动浇注成型的生产工艺得到的“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷的抗热震性能和耐氧化侵蚀性能明显优于传统的氮化硅结合碳化硅耐火陶瓷。
附图说明
图1为实施例1所制备的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷A的扫描电镜微观形貌图。
图2为实施例1所制备的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷A在热震实验后的断口微观形貌,
具体实施方式
为更好地理解本发明,以下将结合附图和具体实例对发明进行详细的说明。
为解决现有氮化硅结合碳化硅耐火陶瓷中存在抗热震性能和耐氧化侵蚀性能差的问题,本发明提供一种“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷的制备方法,其通过添加红柱石和碳化硼提高耐火陶瓷的抗热震性能和耐氧化侵蚀性能。以下将通过具体的实施例来对本发明“红柱石‐碳化硼‐氮化硅‐碳化硅”四元耐火陶瓷的制备方法的优选方式进行详细地说明。
实施例1
“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法包括步骤:
1)浆料的制备:称取质量百分比为50%的碳化硅粉(由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比10:1:1混合而成,黑碳化硅颗粒的粒径为1.0mm,碳化硅细粉的粒径为240目,碳化硅微粉的粒径为3.0μm),质量百分比为25%的硅粉(粒径为240目)、质量百分比为15%的红柱石粉(粒径为1.0mm)、质量百分比为5%的碳化硼粉(粒径为240目)、质量百分比为3%的水合氧化铝、质量百分比为2%的聚乙烯亚胺,以上原料的纯度均大于98%,将上述原料放入搅拌式混料机,干混10分钟,然后以均匀的速度加入原料总质量8%的水,搅拌2分钟出料,得到浆料。
2)坯体的制备:将步骤1)所得的浆料放入真空振动浇注成型装置的漏斗内,在振动频率为60Hz的振动条件下,浆料由漏斗向下流入模具,待浆料完全流进模具后再振动1分钟,最后空气中养护12 小时干燥后得到成型的坯体。
3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理, 25℃~1000℃范围内升温速率为10℃/min;1000℃~1450℃升温速率为 1℃/min,1450℃保温0.5h最后随炉冷却到室温,即可获得“红柱石‐碳化硼-氮化硅-碳化硅”四元耐火陶瓷A。
图1为“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷A的断口的微观形貌,可以看出,增强体碳化硅颗粒与基体结合紧密,样品呈现穿晶断裂模式,说明碳化硅颗粒的增强作用得到了充分发挥。
图2为“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷A在热震实验后的断口微观形貌,可以看出,耐火陶瓷经高温氧化后材料内部玻璃相增多,断口粗糙度下降,大量孔隙被填充,局部可以观察到裂纹被锚固的迹象。说明高温下红柱石和碳化硼发生相变,生成的玻璃相具有适中的粘度,且对主要相氮化硅和碳化硅有良好的润湿性。氧化膜覆盖材料孔隙和裂纹,使得氧气由通过孔隙向材料内部的快速扩散转变为通过氧化膜向材料内部的扩散过程,扩散速率大大降低,材料从而获得良好的自愈合功能,抗氧化性也明显提高。
实施例2
“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法包括步骤:
1)浆料的制备:称取质量百分比为55%的碳化硅粉(由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比14:1:1混合而成,黑碳化硅颗粒的粒径为0.3mm,碳化硅细粉的粒径为200目,碳化硅微粉的粒径为1.0μm),质量百分比为20%的硅粉(粒径为200目)、质量百分比为10%的红柱石粉(粒径为0.3mm)、质量百分比为10%的碳化硼粉(粒径为200目)、质量百分比为2%的铝酸钙水泥、质量百分比为3%的聚乙烯醇,以上原料的纯度均大于98%,将上述原料放入搅拌式混料机,干混5分钟,然后以均匀的速度加入原料总质量6%的水,搅拌10分钟出料,得到浆料。
2)坯体的制备:将步骤1)所得的浆料放入真空振动浇注成型装置的漏斗内,在振动频率为40Hz的振动条件下,浆料由漏斗向下流入模具,待浆料完全流进模具后再振动2分钟,最后空气中养护36 小时干燥后得到成型的坯体;
3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理, 25℃~1000℃范围内升温速率为10℃/min;1000℃~1450℃升温速率为 1℃/min,1450℃保温0.5h最后随炉冷却到室温,即可获得“红柱石‐碳化硼-氮化硅-碳化硅”四元耐火陶瓷B。
实施例3
“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法包括步骤:
1)浆料的制备:称取质量百分比为51%的碳化硅粉(由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比12:1:1混合而成,黑碳化硅颗粒的粒径为0.5mm,碳化硅细粉的粒径为220目,碳化硅微粉的粒径为2.0μm),质量百分比为22%的硅粉(粒径为220目)、质量百分比为11%的红柱石粉(粒径为0.5mm)、质量百分比为6%的碳化硼粉(粒径为220目)、质量百分比为5%的酚醛树脂、质量百分比为 5%的聚丙烯酸铵,以上原料的纯度均大于98%,将上述原料放入搅拌式混料机,干混30分钟,然后以均匀的速度加入原料总质量10%的水,搅拌10分钟出料,得到浆料。
2)坯体的制备:将步骤1)所得的浆料放入真空振动浇注成型装置的漏斗内,在振动频率为50Hz的振动条件下,浆料由漏斗向下流入模具,待浆料完全流进模具后再振动2分钟,最后空气中养护24 小时干燥后得到成型的坯体;
3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理, 25℃~1000℃范围内升温速率为10℃/min;1000℃~1450℃升温速率为 1℃/min,1450℃保温0.5h最后随炉冷却到室温,即可获得“红柱石‐碳化硼-氮化硅-碳化硅”四元耐火陶瓷C。
实施例4
“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法包括步骤:
1)浆料的制备:称取质量百分比为53%的碳化硅粉(由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比12:1:1混合而成,黑碳化硅颗粒的粒径为0.8mm,碳化硅细粉的粒径为230目,碳化硅微粉的粒径为2.5μm),质量百分比为23%的硅粉(粒径为230目)、质量百分比为12%的红柱石粉(粒径为0.8mm)、质量百分比为8%的碳化硼粉(粒径为230目)、质量百分比为1%的水合氧化铝和1%的铝酸钙水泥、质量百分比为1%的聚乙烯亚胺和1%的聚乙烯醇,以上原料的纯度均大于98%,将上述原料放入搅拌式混料机,干混20分钟,然后以均匀的速度加入原料总质量7%的水,搅拌8分钟出料,得到浆料。
2)坯体的制备:将步骤1)所得的浆料放入真空振动浇注成型装置的漏斗内,在振动频率为60Hz的振动条件下,浆料由漏斗向下流入模具,待浆料完全流进模具后再振动2分钟,最后空气中养护30 小时干燥后得到成型的坯体;
3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理, 25℃~1000℃范围内升温速率为10℃/min;1000℃~1450℃升温速率为1℃/min,1450℃保温0.5h最后随炉冷却到室温,即可获得“红柱石‐碳化硼-氮化硅-碳化硅”四元耐火陶瓷D。
实施例5
“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法包括步骤:
1)浆料的制备:称取质量百分比为54%的碳化硅粉(由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比14:1:1混合而成,黑碳化硅颗粒的粒径为1.0mm,碳化硅细粉的粒径为210目,碳化硅微粉的粒径为3.0μm),质量百分比为21%的硅粉(粒径为210目)、质量百分比为11%的红柱石粉(粒径为0.8mm)、质量百分比为7%的碳化硼粉(粒径为210目)、质量百分比为3%的水合氧化铝和2%的铝酸钙水泥、质量百分比为1%的聚乙烯亚胺和1%的聚乙烯醇,以上原料的纯度均大于98%,将上述原料放入搅拌式混料机,干混10分钟,然后以均匀的速度加入原料总质量8%的水,搅拌2分钟出料,得到浆料。
2)坯体的制备:将步骤1)所得的浆料放入真空振动浇注成型装置的漏斗内,在振动频率为40Hz的振动条件下,浆料由漏斗向下流入模具,待浆料完全流进模具后再振动2分钟,最后空气中养护12 小时干燥后得到成型的坯体;
3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理, 25℃~1000℃范围内升温速率为10℃/min;1000℃~1450℃升温速率为 1℃/min,1450℃保温0.5h最后随炉冷却到室温,即可获得“红柱石‐碳化硼-氮化硅-碳化硅”四元耐火陶瓷E。
实施例6
“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法包括步骤:
1)浆料的制备:称取质量百分比为55%的碳化硅粉(由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比10:1:1混合而成,黑碳化硅颗粒的粒径为0.3mm,碳化硅细粉的粒径为200目,碳化硅微粉的粒径为1.0μm),质量百分比为20%的硅粉(粒径为200目)、质量百分比为10%的红柱石粉(粒径为0.3mm)、质量百分比为10%的碳化硼粉(粒径为200目)、质量百分比为2%的酚醛树脂、质量百分比为2%的聚乙烯亚胺和1%的聚丙烯酸铵,以上原料的纯度均大于98%,将上述原料放入搅拌式混料机,干混30分钟,然后以均匀的速度加入原料总质量6%的水,搅拌10分钟出料,得到浆料。
2)坯体的制备:将步骤1)所得的浆料放入真空振动浇注成型装置的漏斗内,在振动频率为60Hz的振动条件下,浆料由漏斗向下流入模具,待浆料完全流进模具后再振动1分钟,最后空气中养护20 小时干燥后得到成型的坯体;
3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理, 25℃~1000℃范围内升温速率为10℃/min;1000℃~1450℃升温速率为 1℃/min,1450℃保温0.5h最后随炉冷却到室温,即可获得“红柱石‐碳化硼-氮化硅-碳化硅”四元耐火陶瓷F。
实施例1~6得到的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷 A~F的性能如表1。
表1
检测项目 抗热震性能 抗氧化性能
单位 %(质量增加率)
测试方法 1100℃水冷 1000℃,500小时干燥空气
样品A >50 1.0%
样品B >50 1.1%
样品C >50 1.2%
样品D >50 0.9%
样品E >50 0.8%
样品F >50 1.1%
Sicatec75 25 2.7%
表1中样品A~F分别为实施例1~6得到的“红柱石-碳化硼-氮化硅 -碳化硅”四元耐火陶瓷A~F;对比例Sicatec75为市售氮化硅结合碳化硅耐火陶瓷。从表1中可以看出,本发明制得的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷与传统的氮化硅结合碳化硅耐火陶瓷相比,抗热震性能和抗氧化性能均明显改善。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法,其特征在于:包括以下步骤:
1)浆料的制备:将硅粉、碳化硅、红柱石粉、碳化硼粉、结合剂、分散剂置于容器中干混搅拌,再加入水混合搅拌均匀,得到浆料;
2)坯体的制备:将步骤1)所得的浆料放入真空振动浇注成型装置的漏斗内,在振动条件下,浆料由漏斗向下流入模具,待浆料完全流进模具后再振动处理,最后在空气中养护干燥后得到成型的坯体;
3)氮化处理:将步骤2)所得的坯体放入氮化炉中进行氮化处理,最后随炉冷却到室温,即得“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷;
所述步骤1)中碳化硅、硅粉、红柱石粉、碳化硼粉、结合剂、分散剂的质量比为50~55:20~25:10~15:5~10:2~5:2~5;
所述步骤1)中,碳化硅由黑碳化硅颗粒、碳化硅细粉、碳化硅微粉按照质量比10~14:1:1混合而成,其中,所述黑碳化硅颗粒的粒径为0.3~1.0mm,所述碳化硅细粉的粒径为200~240目,所述碳化硅微粉的粒径为1.0~3.0μm,纯度均大于98%;硅粉为纯度98%以上的金属硅粉,其粒径为200~240目;
所述步骤1)中,红柱石粉为纯度98%以上的红柱石粉,其粒径为0.3~1.0mm;
所述步骤1)中,碳化硼粉为纯度98%以上的碳化硼粉,其粒径为200~240目。
2.根据权利要求1所述的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法,其特征在于:所述步骤1)中,结合剂为水合氧化铝、铝酸钙水泥、酚醛树脂中的一种或多种;分散剂为聚乙烯亚胺、聚乙烯醇、聚丙烯酸铵中的一种或多种。
3.根据权利要求1所述的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法,其特征在于:所述步骤1)中,水的加入质量为原料总质量的6~10%,所述原料总质量为硅粉、碳化硅、红柱石粉、碳化硼粉、结合剂、分散剂的质量之和。
4.根据权利要求1所述的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法,其特征在于:所述步骤1)中,干混搅拌的时间为5~30分钟,混合搅拌的时间为2~10分钟。
5.根据权利要求1所述的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法,其特征在于:所述步骤2)中,振动频率为40~60Hz;所述浆料完全流进模具后再振动处理的时间为1~2分钟;所述在空气中养护的时间为12~36小时。
6.根据权利要求1所述的“红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法,其特征在于:所述步骤3)中,氮化处理的升温程序为25℃~1000℃范围内升温速率为10℃/min;1000℃~1450℃升温速率为1℃/min,1450℃保温0.5h,最后随炉冷却到室温。
CN201811036565.XA 2018-09-06 2018-09-06 “红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法 Active CN109293374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811036565.XA CN109293374B (zh) 2018-09-06 2018-09-06 “红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811036565.XA CN109293374B (zh) 2018-09-06 2018-09-06 “红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN109293374A CN109293374A (zh) 2019-02-01
CN109293374B true CN109293374B (zh) 2019-11-08

Family

ID=65166323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811036565.XA Active CN109293374B (zh) 2018-09-06 2018-09-06 “红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN109293374B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354427B (zh) * 2021-07-13 2022-02-22 中国人民解放军海军工程大学 一种耐火材料的热修补料
CN115073156B (zh) * 2022-07-13 2023-09-01 中钢集团洛阳耐火材料研究院有限公司 一种Catofin丙烷脱氢反应器用自修复耐火材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482981A1 (fr) * 1990-10-24 1992-04-29 Savoie Refractaires Nouveaux matériaux réfractaires constitués de grains liés par une phase liante à base de nitrure d'aluminium contenant des particules de nitrure de bore et/ou de graphite, et procédé
CN107540392A (zh) * 2017-08-23 2018-01-05 中国人民解放军海军工程大学 氮化硅结合碳化硅耐火陶瓷的真空振动浇注成型方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482981A1 (fr) * 1990-10-24 1992-04-29 Savoie Refractaires Nouveaux matériaux réfractaires constitués de grains liés par une phase liante à base de nitrure d'aluminium contenant des particules de nitrure de bore et/ou de graphite, et procédé
CN107540392A (zh) * 2017-08-23 2018-01-05 中国人民解放军海军工程大学 氮化硅结合碳化硅耐火陶瓷的真空振动浇注成型方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张志华等.B4C加入量对Si3N4结合SiC材料抗氧化性的影响.《耐火材料》.2017,第51卷(第1期),第28-31页. *

Also Published As

Publication number Publication date
CN109293374A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN107698266B (zh) 热风炉管道密封料及其制备方法
Ding et al. Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO-C refractories
CN104058754B (zh) β-SiC/Si2N2O复相结合SiC窑具及制备方法
CN106631039A (zh) 一种氮化硅陶瓷基板的制备方法
CN101648812A (zh) 一种高铬砖的制备方法
CN109293374B (zh) “红柱石-碳化硼-氮化硅-碳化硅”四元耐火陶瓷的制备方法
CN113716969B (zh) 一种莫来卡特抗结皮浇注料及预制件的制备方法
CN111662090A (zh) 一种镁铝尖晶石-碳化硅-铝复合耐火材料
CN108516849A (zh) 一种水泥窑用锆莫砖及其制备方法
CN104844233A (zh) 一种燃烧炉用的特种耐火材料及其制备方法
CN101665365B (zh) 碳素保护套管耐火材料及其制备方法
CN114538964B (zh) SiC-Si包覆碳/碳复合材料表面富含MoSi2高温抗氧化涂层及制备方法
CN113968724B (zh) 一种金属改性镁砂、低碳转炉镁质滑板及它们的制备方法
CN112279685A (zh) 具有环境热障涂层MTaO4的石墨基复合材料及其制备方法
CN106699205B (zh) 一种溶胶结合高炉内衬湿法喷涂料及制备方法
CN101374784A (zh) 用于制备耐火衬里的模制浆料
CN107673767B (zh) 一种添加镁钙铝砂的低碳铝质滑板及其制备方法
CN108975949A (zh) 一种基于原位发泡AlON-AlN多孔材料及其制备方法
CN106365654A (zh) 一种添加ZrN‑SiAlON的抗锂电材料侵蚀耐火坩埚
CN105152663B (zh) 一种氮化硅结合氮化硅铁材料的制备方法
CN107540392A (zh) 氮化硅结合碳化硅耐火陶瓷的真空振动浇注成型方法
Zhou et al. Effect of microsilica content on microstructure and properties of foamed ceramics with needle-like mullite
CN110372405A (zh) 用于铝合金熔炼炉衬的新型陶瓷材料及其制备方法
CN103044037A (zh) 一种氮化烧成的莫来石氮化铝质预制砖
CN106495715B (zh) 一种ZrB2-SiC复合粉体改性转炉挡渣用滑动水口外水口砖及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant