CN109280882B - 一种金刚石单晶散热片的制备方法 - Google Patents

一种金刚石单晶散热片的制备方法 Download PDF

Info

Publication number
CN109280882B
CN109280882B CN201811312711.7A CN201811312711A CN109280882B CN 109280882 B CN109280882 B CN 109280882B CN 201811312711 A CN201811312711 A CN 201811312711A CN 109280882 B CN109280882 B CN 109280882B
Authority
CN
China
Prior art keywords
single crystal
diamond
diamond single
cavitation
strong carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811312711.7A
Other languages
English (en)
Other versions
CN109280882A (zh
Inventor
于盛旺
郑可
高洁
黑鸿君
申艳艳
贺志勇
吴玉程
李飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201811312711.7A priority Critical patent/CN109280882B/zh
Publication of CN109280882A publication Critical patent/CN109280882A/zh
Application granted granted Critical
Publication of CN109280882B publication Critical patent/CN109280882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/16Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases more than one element being diffused in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明为一种金刚石单晶散热片的制备方法,解决了目前单晶金刚石化学惰性高、不易焊接等问题。该方法首先使用超声波空蚀仪,以含有Fe3+的盐溶液作为空泡产生介质,对金刚石单晶片表面进行空蚀处理;然后在表面制备一层强碳化物金属内层,接着再制备一层耐氧化外层,最后将制备的金刚石单晶片在高温下进行固溶处理即可。该方法利用空泡急速溃灭爆裂时产生的高速微射流,冲击金刚石单晶表面局部剥落形成微小的孔洞;强碳化物金属原子能够与金刚石表面的部分碳原子反应形成化学键结合;Au与强碳化物金属元素具有良好的固溶度和良好的耐氧化性能。因此,所制备的金刚石单晶散热片不但涂层与基体具有高的结合强度,而且具有良好的耐氧化性能。

Description

一种金刚石单晶散热片的制备方法
技术领域
本发明涉及金刚石散热材料技术领域,特别是一种金刚石单晶散热片的制备方法。
背景技术
金刚石具有室温下最高的热导率,约为2000W·m-1·K-1,是铜的5倍以上,硅的13倍。利用金刚石优异的散热性能将其应用在大功率半导体激光器、集成电路、固体微波器件等散热衬底材料,高密度集成电路的封装材料,功率微波器件的电路基板等方面,能够将器件工作产生的热量迅速导出,降低温度,提高工作功率和稳定性,具有极大的应用前景和产业价值。
但是金刚石本身化学惰性较高,与其它材料的浸润性较差,因此应用时与其它材料的焊接较为困难。目前提高金刚石焊接接头的方法有两种:(1)采用与金刚石之间浸润较好的活性焊剂,这种方法的缺点是活性焊剂的配比复杂,不容易掌握;其次是将金刚石单晶表面金属化处理,然后再进行焊接的方式,利用金属化表面改善金刚石与其它材料之间的浸润性,满足金刚石的焊接要求,但是目前人们大都使用物理气相沉积(PVD)法对金刚石进行表面金属化处理,金属层与金刚石很难形成化学键结合,所以二者结合强度较差。此外,对于单晶金刚石,其表面一般光洁度较高,导致其与其它材料焊接时,界面结合强度较差。对于多晶金刚石而言,其表面粗糙度较高,进行焊接时,其粗糙表面在一定程度上能够增加焊料与金刚石界面的结合强度,因而多晶金刚石焊接接头的结合强度一般比单晶金刚石高。基于以上启发,本发明提出通过增加单晶金刚石表面粗糙度加金属化处理的方式提高单晶金刚石的焊接性能。
但是,金刚石材料硬度高,耐任何酸碱腐蚀,其表面粗化处理较为困难,目前常用的机械加工和电解加工不适用于单晶金刚石表面的粗化处理。空蚀是一种水力机械常见的破坏方式,在金属或合金表面产生大量的微孔,造成机组破坏,甚至报废。空蚀的原理为:超声波作用于液体时,会在液体的某一区域形成局部的暂时负压区,于是在液体中产生空化泡。这些充满液体蒸汽或者是空气的泡是处于不稳定状态的,当它们在超声波正半波受压突然闭合时可产生射流或激波,因而在局部很微小的范围内会产生瞬间的高温高压。据估算,其极限温度可达5000K,压强可达l00MPa。当靠近固体表面附近聚集的空化泡崩溃时会产生一种特殊的现象:非对称式爆破。空化泡爆破时产生的冲击波,速度可达数百米每秒,对固体表面形成高速冲击作用,这种特殊的现象导致了声致空蚀,从而在固体表面产生表面微坑。目前多采用各种手段增加水力机械材料的抗空蚀能力,鲜少有人将这种表面破坏进行应用。中国专利201410465600.5提出一种利用超声波空蚀加工平板表面微坑的方法,利用超声波空化致蚀效应在材料表面形成密度、直径和深度可控的表面微坑,将其用于摩擦副零部件的储油槽,提高摩擦副零部件的使用寿命。但是,他们提出的利用空蚀处理加工平板表面微坑主要的加工材料为金属材料及其合金或钢材等,未见有处理陶瓷和非金属材料的情况。
此外,单晶金刚石在作为散热器件进行应用时,一般温度较高,而金刚石在空气中的起始氧化温度为550℃,在1000℃以上金刚石会发生石墨化,从而大大影响金刚石的使用效果。因此将单晶金刚石作为散热器件进行应用时,提高金刚石的抗氧化性、防止金刚石在高温下的石墨化转化是提高散热片的使用性能和使用寿命的关键因素。
发明内容
本发明的目的是为了解决目前单晶金刚石化学惰性高、不易焊接等问题,而提供一种金刚石单晶散热片的制备方法。
本发明是通过如下技术方案实现的:
一种金刚石单晶散热片的制备方法,包括如下步骤:
1)空蚀处理:使用超声波空蚀仪,以含有Fe3+的盐溶液作为空泡产生介质,对金刚石单晶片表面进行空蚀处理,使其表面形成均匀分布的空蚀坑;利用空泡急速溃灭爆裂时产生的高速微射流,冲击金刚石单晶表面局部剥落形成微小的孔洞,增加单晶金刚石表面的粗糙度;
2)强碳化物金属内层制备:在空蚀处理后的金刚石单晶片表面制备一层强碳化物金属内层,强碳化物金属内层材料采用Cr、Mo或W;选择强碳化物金属元素作为涂层材料能在金刚石和涂层界面形成化学键合,从而提高单晶金刚石与金属涂层的结合强度;
3)耐氧化外层制备:在强碳化物金属内层表面制备一层耐氧化外层,耐氧化外层材料采用Au;利用Au具有良好的耐氧化性能,保护金刚石在高温下不会发生石墨化转变;
4)高温处理:在步骤3)的基础上,将制备的金刚石单晶片在高温下进行固溶处理;Au虽然与Cr、Mo和W等元素均具有较高的固溶度,但是也需要一定的温度才能形成固溶体,因此在高温下进行固溶处理,使得Au外层与Cr、Mo或W内层之间形成良好的扩散、固溶,从而避免内外层界面的增加而导致表面涂层与单晶金刚石之间结合强度的降低。
作为优选的技术方案,所述的含有Fe3+的盐溶液为无毒的硫酸铁溶液或铁氰化钾溶液,其中,Fe3+的浓度为0.01-1.0 mol/L。硫酸铁溶液由硫酸铁和稀硫酸加去离子水配比而成,铁氰化钾溶液由铁氰化钾和稀硫酸加去离子水配比而成。
作为优选的技术方案,空蚀处理时,超声波空蚀仪的工作频率为30~40KHz,振幅为20~50μm,工作时间为120~960 min,探头与金刚石单晶片的距离为1-15mm。
作为优选的技术方案,空蚀处理时,含有Fe3+的盐溶液的温度控制在20-50℃。
作为优选的技术方案,步骤2)中的强碳化物金属涂层以及步骤3)中的Au涂层的制备方法可以为双层辉光离子渗金属、磁控溅射、蒸发镀或电镀方法。
本发明的有益效果如下:
1)本发明采用超声波空蚀处理,在单晶金刚石表面形成微坑增加单晶金刚石的表面粗糙度,有利于提高表面金属化涂层与单晶金刚石之间的结合强度,同时也有利于提高单晶金刚石的可焊性和焊接接头的结合强度,焊接接头的界面示意图如图1所示,粗糙表面有利于在金刚石与焊料之间形成咬合,从而增加接头的焊接强度。
2)本发明制备的金属化涂层包括两层,内层选用Cr、Mo或W强碳化物金属,外层选用Au金属,该材料是在优选各种金属材料和金属之间固溶性的基础上得出的材料匹配结果,选择固溶性良好的金属作为内外层,有利于在界面处通过扩散形成固溶体,提高内外层界面之间的结合强度,在实现金属化层功能的基础上,避免新界面增加降低金属化层与单晶金刚石之间的结合强度。
3)本发明在金属化涂层制备完成后,进行高温固溶处理,该步骤一方面有利于在内外层界面形成厚的固溶扩散层,提高内外层界面的结合强度,另一方面还有利于促进内层与金刚石之间的扩散,及金属碳化物的形成,促进内外层界面的化学键合,尤其是采用磁控溅射和电镀等方法制备金属涂层时,由于基体温度低,一般不易形成化学键合,该高温处理过程将大幅提高金属化涂层与基体间的结合强度。
附图说明
图1为本发明中超声波空蚀仪的结构及工作原理图。
图2为本发明金刚石表面空蚀处理后的截面示意图。
图3为本发明制备强碳化物金属内层后的截面示意图。
图4为本发明制备耐氧化外层后的截面示意图。
图5为本发明高温固溶处理后的截面示意图。
图中:1-超声发生器、2-换能器、3-变幅杆、4-进水口、5-出水口、6-冷却水、7-含有Fe3+的盐溶液、8-金刚石单晶片、9-空蚀坑、10-强碳化物金属内层、11-耐氧化外层、12-强碳化物金属内层/耐氧化外层界面固溶形成的扩散层、13-强碳化物金属内层/金刚石单晶片界面固溶形成的扩散层、14-底座壳体、15-反应腔。
具体实施方式
为了使本领域技术人员更好的理解本发明,以下结合参考附图并结合实施例对本发明作进一步清楚、完整的说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
一种金刚石单晶散热片的制备方法,包括如下步骤:
1)空蚀处理:使用超声波空蚀仪,以含有Fe3+的盐溶液7作为空泡产生介质,对金刚石单晶片8表面进行空蚀处理,使其表面形成均匀分布的空蚀坑9,如图2所示;超声波空蚀仪的结构构造如图1所示,其包括超声发生器1、换能器2、变幅杆3和中空结构的底座壳体14,超声发生器1与换能器2连接,换能器2与变幅杆3连接,底座壳体14的一侧壳壁的下部设有进水口4、另一侧壳壁的上部设有冷却出水口5,底座壳体14的内部空间注充有冷却水6;底座壳体14的顶部设有反应腔15,反应腔15的腔底上放置金刚石单晶片8,反应腔15内盛有含有Fe3+的盐溶液7,变幅杆3浸没在反应腔15内的含有Fe3+的盐溶液7中。空蚀处理时,超声波空蚀仪的工作频率优选30~40KHz,振幅优选20~50μm,工作时间优选120~960 min,变幅杆3上的探头与金刚石单晶片的距离优选1-15mm。含有Fe3+的盐溶液为无毒的硫酸铁溶液或铁氰化钾溶液,其中,Fe3+的浓度为0.01-1.0 mol/L。含有Fe3+的盐溶液的温度优选在20-50℃。
2)强碳化物金属内层制备:在空蚀处理后的金刚石单晶片8表面制备一层强碳化物金属内层10,强碳化物金属内层10材料采用Cr、Mo或W,如图3所示。强碳化物金属内层10的制备方法可以为双层辉光离子渗金属、磁控溅射、蒸发镀或电镀方法。
3)耐氧化外层制备:在强碳化物金属内层10表面制备一层耐氧化外层11,耐氧化外层11材料采用Au,如图4所示。耐氧化外层11的制备方法可以为双层辉光离子渗金属、磁控溅射、蒸发镀或电镀方法。
4)高温处理:在步骤3)的基础上,将制备的金刚石单晶片在高温下进行固溶处理,高温固溶处理后的截面示意图如图5所示,分别形成强碳化物金属内层/耐氧化外层界面固溶形成的扩散层12、强碳化物金属内层/金刚石单晶片界面固溶形成的扩散层13。

Claims (8)

1.一种金刚石单晶散热片的制备方法,其特征在于,包括如下步骤:
1)空蚀处理:使用超声波空蚀仪,以含有Fe3+的盐溶液作为空泡产生介质,对金刚石单晶片表面进行空蚀处理,使其表面形成均匀分布的空蚀坑;
2)强碳化物金属内层制备:在空蚀处理后的金刚石单晶片表面制备一层强碳化物金属内层,强碳化物金属内层材料采用Mo或W;
3)耐氧化外层制备:在强碳化物金属内层表面制备一层耐氧化外层,耐氧化外层材料采用Au;
4)高温处理:在步骤3)的基础上,将制备的金刚石单晶片在高温下进行固溶处理。
2.根据权利要求1所述的一种金刚石单晶散热片的制备方法,其特征在于:所述的含有Fe3+的盐溶液为无毒的硫酸铁溶液或铁氰化钾溶液,其中,Fe3+的浓度为0.01-1.0 mol/L。
3.根据权利要求1或2所述的一种金刚石单晶散热片的制备方法,其特征在于:空蚀处理时,超声波空蚀仪的工作频率为30~40KHz,振幅为20~50μm,工作时间为120~960 min,探头与金刚石单晶片的距离为1-15mm。
4.根据权利要求1或2所述的一种金刚石单晶散热片的制备方法,其特征在于:空蚀处理时,含有Fe3+的盐溶液的温度控制在20-50℃。
5.根据权利要求3所述的一种金刚石单晶散热片的制备方法,其特征在于:空蚀处理时,含有Fe3+的盐溶液的温度控制在20-50℃。
6.根据权利要求1或2或5所述的一种金刚石单晶散热片的制备方法,其特征在于:步骤2)中的强碳化物金属涂层以及步骤3)中的Au涂层的制备方法可以为双层辉光离子渗金属、磁控溅射、蒸发镀或电镀方法。
7.根据权利要求3所述的一种金刚石单晶散热片的制备方法,其特征在于:步骤2)中的强碳化物金属涂层以及步骤3)中的Au涂层的制备方法可以为双层辉光离子渗金属、磁控溅射、蒸发镀或电镀方法。
8.根据权利要求4所述的一种金刚石单晶散热片的制备方法,其特征在于:步骤2)中的强碳化物金属涂层以及步骤3)中的Au涂层的制备方法可以为双层辉光离子渗金属、磁控溅射、蒸发镀或电镀方法。
CN201811312711.7A 2018-11-06 2018-11-06 一种金刚石单晶散热片的制备方法 Active CN109280882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811312711.7A CN109280882B (zh) 2018-11-06 2018-11-06 一种金刚石单晶散热片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811312711.7A CN109280882B (zh) 2018-11-06 2018-11-06 一种金刚石单晶散热片的制备方法

Publications (2)

Publication Number Publication Date
CN109280882A CN109280882A (zh) 2019-01-29
CN109280882B true CN109280882B (zh) 2020-06-02

Family

ID=65174902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811312711.7A Active CN109280882B (zh) 2018-11-06 2018-11-06 一种金刚石单晶散热片的制备方法

Country Status (1)

Country Link
CN (1) CN109280882B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921766B (zh) * 2022-05-26 2023-10-13 太原理工大学 一种金刚石/金属复合散热片及其制备方法
CN115401306B (zh) * 2022-08-26 2023-09-29 华中科技大学 一种cvd金刚石窗口片与热传导铜组件的键合方法
CN115491637B (zh) * 2022-09-30 2023-07-18 太原理工大学 一种提高金刚石衬底光学透过率的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024680A (en) * 1988-11-07 1991-06-18 Norton Company Multiple metal coated superabrasive grit and methods for their manufacture
CN104985489A (zh) * 2015-05-27 2015-10-21 浙江工业大学 一种基于空化效应的软脆材料加工方法
CN108682608B (zh) * 2018-05-18 2020-05-01 太原理工大学 太赫兹频段真空器件用金刚石单晶输能窗片及其制备方法

Also Published As

Publication number Publication date
CN109280882A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN109280882B (zh) 一种金刚石单晶散热片的制备方法
Liang et al. Review of pool boiling enhancement by surface modification
CN103188877B (zh) 一种陶瓷线路板快速高柔性制作的方法
CN102345145B (zh) 钼铜合金表面电镀的方法
US4258783A (en) Boiling heat transfer surface, method of preparing same and method of boiling
CN100450694C (zh) 一种真空电子束焊接方法
CN103327732B (zh) 一种高导热基板及其制备方法
CN103060866B (zh) 一种钼铜材料镀金前的处理方法
CN112538651A (zh) 一种超声辅助电解等离子体抛光钛合金的方法
CN112376098B (zh) 一种钼铜合金表面电镀的方法
CN106637339A (zh) 一种具有高粘接强度阳极氧化膜的铝合金的制备工艺
CN109321957A (zh) 一种环保型外壳镀覆前处理蚀刻液工艺及镀覆方法
CN113267082B (zh) 一种歧管式全金刚石微通道散热器的制备方法
CN109161890B (zh) 一种SiO2微弧氧化复合涂层及其制备方法
CN106048667B (zh) 一种基于电镀的同种或异种金属的连接方法
CN110565093A (zh) 一种钼铜复合材料镀覆方法
CN111394771B (zh) 一种在铜及其合金表面制备涂层的方法及铜制品
JPS5948876B2 (ja) 放熱体の表面処理方法
CN113584568B (zh) 一种金属微细结构的电化学高精度抛光方法
CN102034905B (zh) 发光二极管散热基板及其制作方法
WO2018121219A1 (zh) 散热基板及其制备方法和应用以及电子元器件
US4186063A (en) Boiling heat transfer surface, method of preparing same and method of boiling
TWI542050B (zh) 高散熱發光二極體複合基板及其製作方法
CN111805068A (zh) 一种多孔ods钨与铜的放电等离子扩散连接方法
WO2023167087A1 (ja) 冷却部材、冷却器、冷却装置及び冷却部材の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant