CN109273599B - 一种制造柔性光电探测器的方法 - Google Patents

一种制造柔性光电探测器的方法 Download PDF

Info

Publication number
CN109273599B
CN109273599B CN201810952144.5A CN201810952144A CN109273599B CN 109273599 B CN109273599 B CN 109273599B CN 201810952144 A CN201810952144 A CN 201810952144A CN 109273599 B CN109273599 B CN 109273599B
Authority
CN
China
Prior art keywords
substrate material
flexible substrate
layer
precursor solution
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810952144.5A
Other languages
English (en)
Other versions
CN109273599A (zh
Inventor
李世彬
秦朝杰
杨丹丹
张婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Hengli Juneng Photoelectric Technology Co ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810952144.5A priority Critical patent/CN109273599B/zh
Publication of CN109273599A publication Critical patent/CN109273599A/zh
Application granted granted Critical
Publication of CN109273599B publication Critical patent/CN109273599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明实施例公开了一种制造柔性光电探测器的方法,其将柔性光电探测器和和蓝光LED阵列集成,获得基于三基团Cs5FA79MA16PbI2.5Br0.5钙钛矿材料的柔性光电探测器,其响应速度和探测率及稳定性都实现提高,并且可以实现对NO2气体含量的微弱、一般、严重超标三个档的定量监测。本发明实施例的制造方法简单操作,成本较低,可重复性好,适合大规模生产化的需要。

Description

一种制造柔性光电探测器的方法
技术领域
本发明涉及气体检测技术领域,尤其是涉及一种制造柔性光电探测器的方法。
背景技术
光电探测器可以捕获光信号并将其转换为电信号,是许多实际应用器件中非常重要的功能部件。半导体材料对于吸收入射光子并在光激发时产生电子和空穴对是必不可少的。为了产生电流,需要内置或施加电场来分离电子和空穴。各种类型的半导体材料已被应用于光电探测器中,例如Si,InGaAs,ZnO,GaN,碳纳米管,量子点和共轭聚合物。虽然某些应用需要不同的功能,但关键品质因数参数是响应度(R),检测率(D *),噪声等效功率(NEP),线性动态范围(LDR)和响应速度。
有机-无机钙钛矿材料具有ABX3结构并且通常由有机阳离子A=(甲基胺(MA)CH3NH3 +;甲脒胺(FA)CH3(NH22 +),二价金属阳离子B=(Pb2 +;Sn2 +;Ge2 +)和阴离子X=(Cl-;Br-;I-;BF4-;PF6-;SCN-)构成。钙钛矿太阳能电池的高性能归功于卓越的材料特性,如在可见光谱上的高吸收率,低激子结合能,电荷载流子在μm范围内的扩散长度,尖锐的光学带边缘,通过互换上述阳离子,金属或卤化物,可调带隙从1.1到2.3eV。这使钙钛矿的范围扩大到激光发光器件,等离子体激元,串联太阳能电池,光电探测器和XRD检测器。
最近一种混合阳离子钙钛矿引起注意,离子半径为1.81的无机铯(Cs),其比MA(2.70)或FA(2.79)小得多,Cs将FA“推入”由于Cs和FA之间的大尺寸差异而所以有利的黑色钙钛矿相。另一方面,MA也诱导FA钙钛矿的结晶,但速率要慢得多(因为MA只比FA略小),这仍然允许大部分的黄相持续存在。
使用具有混合阳离子和卤化物的钙钛矿变得重要,因为适合于光伏应用的主要是MAPbX3,FAPbX3和CsPbX3(X = Br或I)的纯钙钛矿化合物具有许多缺点。纯无机铯导致三卤化物钙钛矿显示优异的热稳定性,纯钙钛矿化合物主要由于热或结构不稳定性而不足。
用较小的阳离子例如MA在形成结构稳定的黑相FA钙钛矿中起关键作用。然而,即使存在MA,即使对于非常高效率的太阳能电池也是经常观察到的,获得没有黄相痕迹的FA钙钛矿仍然是具有挑战性的。这些黄相杂质需要避免,因为即使是少量的影响钙钛矿的晶体生长和形态也会抑制有效的电荷收集,从而限制器件的性能。采用三Cs/MA /FA阳离子混合物的新策略,其中Cs用于进一步改善MA/FA钙钛矿化合物,少量的Cs足以有效地抑制黄相杂质,允许制备更纯的,无缺陷的钙钛矿薄膜。
二氧化氮(N02),常温下呈棕红色的气态,并伴有刺激性气味。N02主要来源于化石燃料的燃烧释放,如火力发电厂、化工厂及机动车排放的废气。N02不仅破坏臭氧层,还是形成酸雨及光化学烟雾的重要组成部分,化石燃料的燃烧反应物(如NO,N02)释放于大气中,再进行一系列的光化学反应后形成硝酸气溶胶,造成光化学污染嘲,或随雨水降落形成酸雨,酸雨的腐蚀性不仅会导致土壤酸化,酸雨的长期作用会使土壤因营养流失变得富营养化,造成土地贫瘠,还会损害植物,污染水质导致水中生物病变甚至死亡,及对非金属的建筑材料造成损坏等,可见酸雨会严重破坏自然环境,给人类的经济带来巨大损失。N02除了污染生态环境外,还会对人类身体健康造成伤害,如长期呼入N02会刺激人类某些器官,引发支气管炎、肺炎、肺气肿等疾病。N02严重危害了生态环境及人类健康,因此它的监测与防治工作也刻不容缓。
发明内容
本发明的目的之一是提供一种制造柔性光电探测器的方法,该方法简单操作,成本较低,可重复性好,适合大规模生产化的需要,使用该方法制造的柔性光电探测器能够实现对NO2气体含量的微弱、一般、严重超标三个档的定量监测,并且响应速度和探测率及稳定性都得到了提高。
一个实施例中,提供了一种制造柔性光电探测器的方法,该方法包括:获取柔性基底材料;依次在丙酮、乙醇和去离子水中超声清洗所述柔性基底材料,将清洗后的所述柔性基底材料烘干,并用紫外线照射所述柔性基底材料;在所述柔性基底材料上形成所述叉指金电极层;将XM2用正丁基锂溶解,然后用己烷稀释,并在氩气环境下反应,获得反应混合物,其中X为过渡金属元素;将所述反应混合物离心,并用己烷冲洗,获得前驱体溶液;将所述前驱体溶液转移到去离子水中,并超声清洗;将超声清洗后的前驱体溶液中的上层分散液转移到另外的容器中,获得二维硫化物薄膜;将所述二维硫化物薄膜转移到所述柔性基底材料的所述叉指金电极层上;将FAI、PbI2、MABr和PbBr2溶解在体积比为4:1的无水DMF:DMSO中,获得混合前驱体液;将预先溶解在DMSO中的CsI溶液加入所述混合前驱体液中,获得钙钛矿前驱体溶液;将所述钙钛矿前驱体溶液旋涂在所述柔性基底材料上的二维硫化物薄膜上,生成三基团MAFACsPbX3钙钛矿膜层,从而获得探测器单元;在蓝宝石衬底上依次外延生长N型金属电极、N型SiC衬底、N型AIGaN成核层、N型GaN缓冲层、4个周期的GaN/InGaN多量子阱有源区、P型A1GaN窗口层、P型GaN盖帽层、Ni/Au透明金属电极、P型电极,获得蓝光发光二极管;将所述蓝光发光二极管与所述探测器单元并联集成在电路板上。
一个实施例中,所述柔性基底材料为PET或PEN。
一个实施例中,用热蒸发方法在在所述柔性基底材料上形成叉指金电极层。
一个实施例中,X为钼或者钨。
一个实施例中,所述二维硫化物薄膜厚度为3-12纳米,具有5-10个分子层。
一个实施例中,将三个所述蓝光发光二极管与所述探测器单元并联集成在电路板上。
一个实施例中,当所测环境中空气中二氧化氮浓度达到0.006﹪时,三个所述蓝光发光二极管发光;当所测环境中空气中二氧化氮浓度达到0.01﹪时,两个所述蓝光发光二极管发光;当所测环境中空气中二氧化氮浓度达到0.025﹪时,一个所述蓝光发光二极管发光。
本发明的实施例中,将柔性光电探测器单元和和蓝光LED阵列集成,基于三基团Cs5FA79MA16PbI2.5Br0.5钙钛矿材料的柔性光电探测器响应速度和探测率及稳定性都实现提高,并且可以实现对NO2气体含量的微弱、一般、严重超标三个档的定量监测。本发明实施例的制造方法简单操作,成本较低,可重复性好,适合大规模生产化的需要。
附图说明
图1是本发明一个实施例的探测器单元的示意图;
图2是本发明一个实施例的制造柔性光电探测器的方法的流程示意图;
图3是本发明一个实施例的蓝光发光二极管的示意图;
图4是本发明一个实施例的探测器单元与蓝光发光二极管集成后的电路示意图。
具体实施方式
下面将结合附图详细说明本发明的实施例的制造柔性光电探测器的方法的具体步骤。
一个实施例中,一种制造柔性光电探测器的方法可以包括:获取柔性基底材料;依次在丙酮、乙醇和去离子水中超声清洗该柔性基底材料,将清洗后的该柔性基底材料烘干,并用紫外线照射该柔性基底材料;在该柔性基底材料上形成该叉指金电极层;将XM2用正丁基锂溶解,然后用己烷稀释,并在氩气环境下反应,获得反应混合物,其中X为过渡金属元素;将该反应混合物离心,并用己烷冲洗,获得前驱体溶液;将该前驱体溶液转移到去离子水中,并超声清洗;将超声清洗后的前驱体溶液中的上层分散液转移到另外的容器中,获得二维硫化物薄膜;将该二维硫化物薄膜转移到该柔性基底材料的该叉指金电极层上;将FAI、PbI2、MABr和PbBr2溶解在体积比为4:1的无水DMF:DMSO中,获得混合前驱体液;将预先溶解在DMSO中的CsI溶液加入该混合前驱体液中,获得钙钛矿前驱体溶液;将该钙钛矿前驱体溶液旋涂在该柔性基底材料上的二维硫化物薄膜上,生成三基团MAFACsPbX3钙钛矿膜层,从而获得探测器单元;在蓝宝石衬底上依次外延生长N型金属电极、N型SiC衬底、N型AIGaN成核层、N型GaN缓冲层、4个周期的GaN/InGaN多量子阱有源区、P型A1GaN窗口层、P型GaN盖帽层、Ni/Au透明金属电极、P型电极,获得蓝光发光二极管;将该蓝光发光二极管与该探测器单元并联集成在电路板上。
一个实施例中,该柔性基底材料可以为PET或PEN。一个实施例中,前述的X(过渡金属元素)可以为钼或者钨。
一个实施例中,可以用热蒸发方法在在该柔性基底材料上形成叉指金电极层。
一个实施例中,前述的二维硫化物薄膜厚度可以为3-12纳米,可以具有5-10个分子层。
一个实施例中,可以将三个该蓝光发光二极管与该探测器单元并联集成在电路板上,如图4所示。
一个实施例中,当所测环境中空气中二氧化氮浓度达到0.006﹪时,三个该蓝光发光二极管发光;当所测环境中空气中二氧化氮浓度达到0.01﹪时,两个该蓝光发光二极管发光;当所测环境中空气中二氧化氮浓度达到0.025﹪时,一个该蓝光发光二极管发光。
下面结合附图1、2、3、4对实施方案进一步详解。
如图2中步骤1所示,首先获取用于制造钙钛矿薄膜的柔性基底材料PET或PEN。
步骤2:在柔性基底材料上形成叉指金电极层。获得基底材料后,在基底材料上形成一定厚度的叉指金电极层。本发明方案中,可使用热蒸发方法。
步骤3:在叉指金电极层上真空抽滤获取二维硫化物薄膜。本发明方案中,在所述步骤2叉指金电极层上真空抽滤获取二维硫化物薄膜,先将二维硫化物薄膜转移到水中,然后通过25nm的微孔膜转移到柔性PET或PEN基底上。
本发明在实施步骤3前,还可以包括对二维硫化物薄膜的制备,步骤如下:
1)、0.6g XM2(X是Mo、W等过渡金属元素)用6ml的正丁基锂(n-butyllithium)溶解,然后20ml的己烷稀释,并在氩气环境下反应48h;
2)、将1)中得到的反应混合物离心,用己烷冲洗去除过量的锂盐和有机残留物;
3)、将2)中LiXS2的前驱体溶液转移到去离子水中(1.5mg/ml)超声清洗1h;
4)、将3)中溶液中去除锂离子的上层分散液转移到其他容器中,得到3-12nm、5-10个分子层的二维硫化物薄膜溶液。
步骤4中在;在二维硫化物薄膜上旋涂生长三基团MAFACsPbX3钙钛矿膜层,从而获得探测器单元。本发明方案中,在所述步骤4叉指金电极层上旋涂一层MAFACsPbX3钙钛矿膜层,旋涂时第一步1000转持续10s,然后第二步旋涂6000转持续20s(并在最后5s采用100ul的氯苯冲洗)。冲洗完MAFACsPbX3钙钛矿膜层立即变黑,接着在手套箱内在100℃退火60min。
本发明在实施步骤4前,还应包括对三基团MAFACsPbX3钙钛矿前驱体溶液的配置。配置步骤包括:
1、制备混合前驱体液:在无水 DMF:DMSO (体积比4:1)溶解FAI (1 M), PbI2(1.1 M), MABr (0.2M) 和 PbBr2 (0.2 M);
2、然后将预先溶解在DMSO中的1.5M CsI加入到混合钙钛矿中前体液中以达到所需的三种阳离子组成。
本发明在实施步骤2前,还应包括对基底材料的清洗。清洗步骤包括:依次在丙酮、乙醇、去离子水中超声清洗半小时左右;在真空腔中放置半小时,将基底材料烘干。实验之前紫外UV灯照射30min增加柔性基底材料的亲水性,随后立即进行后续实验。
如图2中所示在蓝宝石衬底上依次外延生长N型金属电极、N型SiC衬底、N型AIGaN成核层、N型GaN缓冲层、4个周期的GaN/InGaN多量子阱有源区、P型A1GaN窗口层、P型GaN盖帽层、Ni/Au透明金属电极、P型电极。
图3中AIGaN成核层的主要作用是给高温GaN层的生长提供必要的成核中心、降低GaN与衬底间的界面自由能以促进反应物原子在衬底上的吸附,同时降低衬底与n-GaN之间因晶格差异而产生的应力。图3中在低温成核层上生长低温GaN缓冲层,可以减少位错密度,提高晶体质量。
图3中4个周期的多量子阱发光层,让电子和空穴更容易局限在一起,增强光子再循环效应,进而增加器件的发光强度。P-A1GaN窗口层,充当电流扩散层的作用,让电流扩展到被不透明电极覆盖之外的区域,并且提供空穴给LED。
图3中P-GaN盖帽层的作用是降低与金属电极之间的欧姆接触电阻。而Ni/Au合金的作用,一方面是作为电流传导层,缓解电流的拥挤效应,使P-electrode电流均匀散布于整个LED;另一方面是它的透明性,能够保证光线的逸出。
如图4中所示,将LED蓝光二极管与探测器单元并联集成在电路板上,当所测环境中空气中二氧化氮浓度达到0.006﹪微弱超标时,三个LED全部发光 ;当所测环境中空气中二氧化氮浓度达到0.01﹪一般超标时,只有两个LED发光;当所测环境中空气中二氧化氮浓度达到0.025﹪严重超标时,仅一个LED发光。
本发明的实施例中,将柔性光电探测器单元和蓝光LED阵列集成,基于三基团Cs5FA79MA16PbI2.5Br0.5钙钛矿材料的柔性光电探测器响应速度和探测率及稳定性都实现提高,并且可以实现对NO2气体含量的微弱、一般、严重超标三个档的定量监测。本发明实施例的制造方法简单操作,成本较低,可重复性好,适合大规模生产化的需要。
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。此外,以上多处所述的“一个实施例”表示不同的实施例,当然也可以将其全部或部分结合在一个实施例中。

Claims (7)

1.一种制造柔性光电探测器的方法,其特征在于,包括:
获取柔性基底材料;
依次在丙酮、乙醇和去离子水中超声清洗所述柔性基底材料,将清洗后的所述柔性基底材料烘干,并用紫外线照射所述柔性基底材料;
在所述柔性基底材料上形成叉指金电极层;
将XM2用正丁基锂溶解,然后用己烷稀释,并在氩气环境下反应,获得反应混合物,其中X为过渡金属元素;
将所述反应混合物离心,并用己烷冲洗,获得前驱体溶液;
将所述前驱体溶液转移到去离子水中,并超声清洗;
将超声清洗后的前驱体溶液中的上层分散液转移到另外的容器中,获得二维硫化物薄膜;
将所述二维硫化物薄膜转移到所述柔性基底材料的所述叉指金电极层上;
将FAI、PbI2、MABr和PbBr2溶解在体积比为4:1的无水DMF和DMSO混合溶液中,获得混合前驱体液;
将预先溶解在DMSO中的CsI溶液加入所述混合前驱体液中,获得钙钛矿前驱体溶液;
将所述钙钛矿前驱体溶液旋涂在所述柔性基底材料上的二维硫化物薄膜上,生成三基团MAFACsPbX3钙钛矿膜层,从而获得探测器单元;
在蓝宝石衬底上依次外延生长N型金属电极、N型SiC衬底、N型AIGaN成核层、N型GaN缓冲层、4个周期的GaN/InGaN多量子阱有源区、P型A1GaN窗口层、P型GaN盖帽层、Ni/Au透明金属电极、P型电极,获得蓝光发光二极管;
将所述蓝光发光二极管与所述探测器单元并联集成在电路板上。
2.如权利要求1所述的方法,其特征在于:所述柔性基底材料为PET或PEN。
3.如权利要求1或者2所述的方法,其特征在于:用热蒸发方法在在所述柔性基底材料上形成叉指金电极层。
4.如权利要求1所述的方法,其特征在于:X为钼或者钨。
5.如权利要求1所述的方法,其特征在于:所述二维硫化物薄膜厚度为3-12纳米,具有5-10个分子层。
6.如权利要求1所述的方法,其特征在于:将三个所述蓝光发光二极管与所述探测器单元并联集成在电路板上。
7.如权利要求1所述的方法,其特征在于:当所测环境中空气中二氧化氮浓度达到0.006﹪时,三个所述蓝光发光二极管发光;当所测环境中空气中二氧化氮浓度达到0.01﹪时,两个所述蓝光发光二极管发光;当所测环境中空气中二氧化氮浓度达到0.025﹪时,一个所述蓝光发光二极管发光。
CN201810952144.5A 2018-08-21 2018-08-21 一种制造柔性光电探测器的方法 Active CN109273599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810952144.5A CN109273599B (zh) 2018-08-21 2018-08-21 一种制造柔性光电探测器的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810952144.5A CN109273599B (zh) 2018-08-21 2018-08-21 一种制造柔性光电探测器的方法

Publications (2)

Publication Number Publication Date
CN109273599A CN109273599A (zh) 2019-01-25
CN109273599B true CN109273599B (zh) 2020-06-30

Family

ID=65153783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810952144.5A Active CN109273599B (zh) 2018-08-21 2018-08-21 一种制造柔性光电探测器的方法

Country Status (1)

Country Link
CN (1) CN109273599B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909119A (zh) * 2021-01-26 2021-06-04 电子科技大学 一种室温下长波柔性红外探测器及其制备方法
CN114141955A (zh) * 2021-11-16 2022-03-04 武汉理工大学 一种稳定高效钙钛矿太阳能电池的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799404A (zh) * 2010-03-16 2010-08-11 中国科学院安徽光学精密机械研究所 基于宽带光源双波长差分石英音叉光声气体传感装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201520972D0 (en) * 2015-11-27 2016-01-13 Isis Innovation Mixed cation perovskite
CN207114415U (zh) * 2017-05-19 2018-03-16 杭州春来科技有限公司 交替测量大气中气溶胶消光系数和no2浓度的装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799404A (zh) * 2010-03-16 2010-08-11 中国科学院安徽光学精密机械研究所 基于宽带光源双波长差分石英音叉光声气体传感装置

Also Published As

Publication number Publication date
CN109273599A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
Rasool et al. Analysis on different detection mechanisms involved in ZnO-based photodetector and photodiodes
Sinha et al. Growth of carbon dot-decorated ZnO nanorods on a graphite-coated paper substrate to fabricate a flexible and self-powered schottky diode for UV detection
Manna et al. High efficiency Si/CdS radial nanowire heterojunction photodetectors using etched Si nanowire templates
US6849798B2 (en) Photovoltaic cell using stable Cu2O nanocrystals and conductive polymers
Hazra et al. Ultraviolet photodetection properties of ZnO/Si heterojunction diodes fabricated by ALD technique without using a buffer layer
Zeng et al. Combination of solution-phase process and halide exchange for all-inorganic, highly stable CsPbBr3 perovskite nanowire photodetector
Nguyen et al. Practical demonstration of deep-ultraviolet detection with wearable and self-powered halide perovskite-based photodetector
Wu et al. ${\rm Ga} _ {2}{\rm O} _ {3} $ Nanowire Photodetector Prepared on ${\rm SiO} _ {2}/{\rm Si} $ Template
Zhang et al. Colloidal quantum dots: synthesis, composition, structure, and emerging optoelectronic applications
Farooq et al. Bandgap engineering of lead-free ternary halide perovskites for photovoltaics and beyond: Recent progress and future prospects
Zhang et al. Metal halide perovskite/2D material heterostructures: syntheses and applications
US20240047144A1 (en) Conversion of halide perovskite surfaces to insoluble, wide-bandgap lead oxysalts for enhanced solar cell stability
CN109273599B (zh) 一种制造柔性光电探测器的方法
Zhang et al. Broadening the spectral response of perovskite photodetector to the solar-blind ultraviolet region through phosphor encapsulation
Al-Hardan et al. A study on the UV photoresponse of hydrothermally grown zinc oxide nanorods with different aspect ratios
Dhar et al. CdS-decorated al-doped ZnO nanorod/polymer schottky junction ultraviolet–visible dual-wavelength photodetector
Hou et al. Self-powered ZnO nanowire UV photodetector integrated with GaInP/GaAs/Ge solar cell
He et al. Pulsed laser deposition of lead-free Cs3Cu2Br5 thin films on GaN substrate for ultraviolet photodetector applications
Abena et al. Computational analysis of mixed cation mixed halide-based perovskite solar cell using SCAPS-1D software
Mondal et al. Ultrafast and Ultrabroadband UV–vis-NIR Photosensitivity under Reverse and Self-Bias Conditions by n+-ZnO/n-Si Isotype Heterojunction with> 1 kHz Bandwidth
CN111244282B (zh) 基于甲胺铅溴单晶的同质结光电二极管和三极管及其制备方法
Vasudevan et al. On the responsivity of UV detectors based on selectively grown ZnO nanorods
Kathalingam et al. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film
Hameed Enhanced ultraviolet photodetector based on Mg-doped ZnO nanorods films
Park et al. Unleashing the Power of Quantum Dots: Emerging Applications from Deep‐Ultraviolet Photodetectors for Brighter Futures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230406

Address after: Room 104, No. 898 Baicao Road, Gaoxin District, Chengdu, Sichuan 610000

Patentee after: Sichuan Hengli Juneng Photoelectric Technology Co.,Ltd.

Address before: 610000 No. 2006 West Yuan Road, Chengdu high tech Zone (West District), Sichuan

Patentee before: University of Electronic Science and Technology of China

TR01 Transfer of patent right