CN109267985A - 一种暂堵转向压裂暂堵剂用量的控制方法 - Google Patents

一种暂堵转向压裂暂堵剂用量的控制方法 Download PDF

Info

Publication number
CN109267985A
CN109267985A CN201811124764.6A CN201811124764A CN109267985A CN 109267985 A CN109267985 A CN 109267985A CN 201811124764 A CN201811124764 A CN 201811124764A CN 109267985 A CN109267985 A CN 109267985A
Authority
CN
China
Prior art keywords
diverting agent
crack
fracture
dosage
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811124764.6A
Other languages
English (en)
Other versions
CN109267985B (zh
Inventor
牟春国
马旭
张燕明
白建文
赵倩云
贾建鹏
吴明松
马新星
王亚娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201811124764.6A priority Critical patent/CN109267985B/zh
Publication of CN109267985A publication Critical patent/CN109267985A/zh
Application granted granted Critical
Publication of CN109267985B publication Critical patent/CN109267985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Abstract

本发明公开了一种暂堵转向压裂暂堵剂用量的控制方法,步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数,其中单井地质资料包括气井井筒半径、储层厚度、储层孔隙度、砂体厚度、测井及录井解释的储层物性参数,其中邻井生产动态资料包括地质条件相似的邻井产量和压力变化曲线,其中压裂分析软件通过输入单井地质资料及邻井生产动态资料,输出压裂施工参数;步骤2)通过压裂分析软件模拟计算,得出暂堵前压裂裂缝形态参数,其中压裂分析软件通过输入单井地质资料,输出暂堵前压裂裂缝形态参数;步骤3)计算暂堵剂用量,其中暂堵剂用量根据裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂计算。

Description

一种暂堵转向压裂暂堵剂用量的控制方法
技术领域
本发明属于气井压裂技术领域,具体涉及一种暂堵转向压裂暂堵剂用量的控制方法。
背景技术
暂堵转向压裂技术可封堵原裂缝,实现裂缝转向,形成新的裂缝,从而形成复杂缝网体系,增加气井泄流面积,实现气井增产目的。目前应用较多的暂堵剂为化学暂堵剂,通过成胶作用,形成渗透率极低、抗压程度高的暂堵阻挡层,实现裂缝或近井筒地带的封堵,使裂缝转向延伸。
目前暂堵压裂对暂堵剂用量的计算控制没有较好的方法,一般根据施工经验设计用量,或考虑因素较多,计算复杂,难以快度计算得出结果,无法满足现场施工需求。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种暂堵转向压裂暂堵剂用量的控制方法,克服了现有技术中1:根据施工经验设计用量,用量控制不准确;2:考虑因素较多,计算复杂,适用性较低;3:难以快度计算得出结果,无法满足现场施工需求等问题。
为了解决技术问题,本发明的技术方案是:一种暂堵转向压裂暂堵剂用量的控制方法,包括以下步骤:
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数,其中单井地质资料包括气井井筒半径、储层厚度、储层孔隙度、砂体厚度、测井及录井解释的储层物性参数,其中邻井生产动态资料包括地质条件相似的邻井产量和压力变化曲线,其中压裂分析软件通过输入单井地质资料及邻井生产动态资料,输出压裂施工参数;
步骤2)获取暂堵前压裂裂缝形态参数;
步骤3)计算暂堵剂用量,其中暂堵剂用量根据裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂计算。
优选的,所述步骤1)中压裂施工参数包括支撑剂用量、平均支撑剂加注比例、施工排量、加暂堵剂前支撑剂用量和转向裂缝加入支撑剂用量。
优选的,所述步骤2)中暂堵前压裂裂缝形态参数包括改造裂缝的导流能力、裂缝长度、裂缝高度、裂缝宽度、近井筒暂堵剂滤失深度和裂缝滤失深度。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝缝口处进行暂堵转向时,所需的暂堵剂用量为裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝+V裂缝滤失+V近井筒滤失=(hi×Li×Wi×1/2)×2+(hi×Li×xi×1/2)×2+π(R2 2-R1 2)×Hi×Φi(m3);
(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
R2—近井筒暂堵剂滤失深度,单位:m;
R1—气井井筒半径,单位:m;
xi—裂缝滤失深度,单位:m;
Hi—储层厚度,单位:m;
—储层孔隙度,单位:%。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝缝端1/3裂缝长度处进行暂堵转向时,所需的暂堵剂用量为1/3裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝×1/3+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/3+(hi×Li×xi×1/2)×2(m3);
(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
xi—裂缝滤失深度,单位:m。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝中部进行暂堵转向时,所需的暂堵剂用量为1/2裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝×1/2+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/2+(hi×Li×xi×1/2)×2(m3);(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
xi—裂缝滤失深度,单位:m。
优选的,所述暂堵剂为化学暂堵剂,其中化学暂堵剂包括酸溶性暂堵剂、油溶性暂堵剂、水溶性暂堵剂和单向压力暂堵剂。
相对于现有技术,本发明的优点在于:
(1)本发明可广泛用于各类暂堵剂的暂堵压裂施工,适用性高,计算过程简单,可操作性强,计算结果可靠准确,计算得出结果速度快,可以满足现场施工需求;
(2)本发明暂堵转向压裂暂堵剂用量的控制方法可有效控制暂堵剂的用量,避免了暂堵剂的浪费或准备不足,使暂堵转向压裂工程顺利进行。
附图说明
图1、本发明实施例5~7暂堵前压裂裂缝形态示意图。
具体实施方式
下面结合附图及实施例描述本发明具体实施方式:
需要说明的是,本说明书所附图中示意的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
实施例1
本发明公开了一种暂堵转向压裂暂堵剂用量的控制方法,包括以下步骤:
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数,其中单井地质资料包括气井井筒半径、储层厚度、储层孔隙度、砂体厚度、测井及录井解释的储层物性参数,其中邻井生产动态资料包括地质条件相似的邻井产量和压力变化曲线,其中压裂分析软件通过输入单井地质资料及邻井生产动态资料,输出压裂施工参数;
步骤2)获取暂堵前压裂裂缝形态参数;
步骤3)计算暂堵剂用量,其中暂堵剂用量根据裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂计算。
实施例2
本发明公开了一种暂堵转向压裂暂堵剂用量的控制方法,包括以下步骤:
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数,其中单井地质资料包括气井井筒半径、储层厚度、储层孔隙度、砂体厚度、测井及录井解释的储层物性参数,其中邻井生产动态资料包括地质条件相似的邻井产量和压力变化曲线,其中压裂分析软件通过输入单井地质资料及邻井生产动态资料,输出压裂施工参数;
步骤2)获取暂堵前压裂裂缝形态参数;;
步骤3)计算暂堵剂用量,其中暂堵剂用量根据裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂计算。
优选的,所述步骤1)中压裂施工参数包括支撑剂用量、平均支撑剂加注比例、施工排量、加暂堵剂前支撑剂用量和转向裂缝加入支撑剂用量。
优选的,所述步骤2)中暂堵前压裂裂缝形态参数包括改造裂缝的导流能力、裂缝长度、裂缝高度、裂缝宽度、近井筒暂堵剂滤失深度和裂缝滤失深度。
实施例3
本发明公开了一种暂堵转向压裂暂堵剂用量的控制方法,包括以下步骤:
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数,其中单井地质资料包括气井井筒半径、储层厚度、储层孔隙度、砂体厚度、测井及录井解释的储层物性参数,其中邻井生产动态资料包括地质条件相似的邻井产量和压力变化曲线,其中压裂分析软件通过输入单井地质资料及邻井生产动态资料,输出压裂施工参数;
步骤2)获取暂堵前压裂裂缝形态参数;;
步骤3)计算暂堵剂用量,其中暂堵剂用量根据裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂计算。
优选的,所述步骤1)中压裂施工参数包括支撑剂用量、平均支撑剂加注比例、施工排量、加暂堵剂前支撑剂用量和转向裂缝加入支撑剂用量。
优选的,所述步骤2)中暂堵前压裂裂缝形态参数包括改造裂缝的导流能力、裂缝长度、裂缝高度、裂缝宽度、近井筒暂堵剂滤失深度和裂缝滤失深度。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝缝口处进行暂堵转向时,所需的暂堵剂用量为裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝+V裂缝滤失+V近井筒滤失=(hi×Li×Wi×1/2)×2+(hi×Li×xi×1/2)×2+π(R2 2-R1 2)×Hi×Φi(m3);
(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
R2—近井筒暂堵剂滤失深度,单位:m;
R1—气井井筒半径,单位:m;
xi—裂缝滤失深度,单位:m;
Hi—储层厚度,单位:m;
—储层孔隙度,单位:%。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝缝端1/3裂缝长度处进行暂堵转向时,所需的暂堵剂用量为1/3裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝×1/3+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/3+(hi×Li×xi×1/2)×2(m3);(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
xi—裂缝滤失深度,单位:m。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝中部进行暂堵转向时,所需的暂堵剂用量为1/2裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝×1/2+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/2+(hi×Li×xi×1/2)×2(m3);(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
xi—裂缝滤失深度,单位:m。
实施例4
本发明公开了一种暂堵转向压裂暂堵剂用量的控制方法,包括以下步骤:
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数,其中单井地质资料包括气井井筒半径、储层厚度、储层孔隙度、砂体厚度、测井及录井解释的储层物性参数,其中邻井生产动态资料包括地质条件相似的邻井产量和压力变化曲线,其中压裂分析软件通过输入单井地质资料及邻井生产动态资料,输出压裂施工参数;
步骤2)通过压裂分析软件模拟计算,得出暂堵前压裂裂缝形态参数,其中压裂分析软件通过输入单井地质资料,输出暂堵前压裂裂缝形态参数;
步骤3)计算暂堵剂用量,其中暂堵剂用量根据裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂计算。
优选的,所述步骤1)中压裂施工参数包括支撑剂用量、平均支撑剂加注比例、施工排量、加暂堵剂前支撑剂用量和转向裂缝加入支撑剂用量。
优选的,所述步骤2)中暂堵前压裂裂缝形态参数包括改造裂缝的导流能力、裂缝长度、裂缝高度、裂缝宽度、近井筒暂堵剂滤失深度和裂缝滤失深度。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝缝口处进行暂堵转向时,所需的暂堵剂用量为裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝+V裂缝滤失+V近井筒滤失=(hi×Li×Wi×1/2)×2+(hi×Li×xi×1/2)×2+π(R2 2-R1 2)×Hi×Φi(m3);
(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
R2—近井筒暂堵剂滤失深度,单位:m;
R1—气井井筒半径,单位:m;
xi—裂缝滤失深度,单位:m;
Hi—储层厚度,单位:m;
—储层孔隙度,单位:%。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝缝端1/3裂缝长度处进行暂堵转向时,所需的暂堵剂用量为1/3裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝×1/3+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/3+(hi×Li×xi×1/2)×2(m3);
(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
xi—裂缝滤失深度,单位:m。
优选的,所述步骤3)中计算暂堵剂用量,当采用在裂缝中部进行暂堵转向时,所需的暂堵剂用量为1/2裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝×1/2+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/2+(hi×Li×xi×1/2)×2(m3);(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
xi—裂缝滤失深度,单位:m。
优选的,所述暂堵剂为化学暂堵剂,其中化学暂堵剂包括酸溶性暂堵剂、油溶性暂堵剂、水溶性暂堵剂和单向压力暂堵剂。化学暂堵剂通过成胶作用,形成渗透率极低、抗压程度高的暂堵阻挡层,实现裂缝或近井筒地带的封堵,使压裂裂缝转向延伸。
优选的,所述压裂分析软件为Fracpro PT软件、E-StimPlan软件或Meyer软件。所述压裂分析软件通过输入单井地质资料及邻井生产动态资料,输出压裂施工参数,确定支撑剂用量、平均支撑剂加注比例、施工排量、加暂堵剂前支撑剂用量和转向裂缝加入支撑剂用量;应用压裂分析软件模拟计算暂堵前压裂裂缝形态参数,确定改造裂缝的导流能力、裂缝长度、裂缝高度、裂缝宽度、近井筒暂堵剂滤失深度和裂缝滤失深度,本发明所述压裂分析软件作为一种工具使用。
实施例5
本实施例以苏B井为例,该井是一口低渗致密砂岩储层气井,准备改造石盒子组、山西组两个气层段,石盒子组层厚度为8m,山西组层厚度为6m,气井井筒直径为215.9mm,采用51/2套管固井完井,压裂采用27/8″油管+机械封隔器注入分压两段,为了对该井储层进行充分改造,设计采用暂堵转向压裂工艺,进行裂缝封口处封堵,计算暂堵剂用量。
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数;
(1)结合压裂分析软件模拟计算,确定石盒子组的支撑剂用量为30m3、平均支撑剂加注比例为18.1%、施工排量为3.5m3/min,加暂堵剂前支撑剂用量为18m3,转向裂缝加入支撑剂用量为12m3
(2)结合压裂分析软件模拟计算,确定山西组的支撑剂用量为26m3、平均支撑剂加注比例为17.8%、施工排量为3.2m3/min,加暂堵剂前支撑剂用量为15m3,转向裂缝加入支撑剂用量为11m3
步骤2)通过压裂分析软件模拟计算,得出暂堵前压裂裂缝形态参数;
(1)应用压裂分析软件模拟计算石盒子组裂缝形态参数,该井石盒子组暂堵转向前裂缝的导流能力为32dc.cm、裂缝长度为150m、裂缝高度为18m、裂缝宽度为5mm,近井筒暂堵剂滤失深度为1.3m,裂缝滤失深度为0.01m,满足该井压裂改造需要。
(2)应用压裂分析软件模拟计算山西组裂缝参数,该井山西组暂堵转向前裂缝的导流能力为30dc.cm、裂缝长度为160m、裂缝高度为15m、裂缝宽度为6mm,近井筒暂堵剂滤失深度为1.3m,裂缝滤失深度为0.01m,满足该井压裂改造需要。
步骤3)计算暂堵剂用量,当采用在裂缝缝口处进行暂堵转向时,所需的暂堵剂用量为裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂的合计用量。
(1)计算石盒子组暂堵剂用量:
如图1所示,L为裂缝长度、h为裂缝高度、W为裂缝宽度、R2为近井筒暂堵剂滤失深度、x裂缝滤失深度。
近井筒暂堵剂滤失深度R2为1.3m,气井井筒半径径R1为0.108m,储层厚度Hi为8m,储层孔隙度为7.3%,裂缝滤失深度xi为0.01m,裂缝长度Li为150m、裂缝高度hi为18m、裂缝宽度Wi为5mm,则石盒子组所需的暂堵剂用量为:
V暂堵剂=V裂缝+V裂缝滤失+V近井筒滤失=(hi×Li×Wi×1/2)×2+(hi×Li×xi×1/2)×2+π(R2 2-R1 2)×Hi×Φi=(18×150×5×10-3×1/2)×2+(18×150×0.01×1/2)×2+3.14×(1.32-0.1082)×8×0.073=13.5+27.0+3.1=43.6(m3);
(2)计算山西组暂堵剂用量:
近井筒暂堵剂滤失深度R2为1.3m,气井井筒半径为R1为0.108m,储层厚度Hi为6m,储层孔隙度为6.8%,裂缝滤失深度xi为0.01m,裂缝长度为Li160m、裂缝高度hi为15m、裂缝宽度Wi为6mm,则石盒子组所需的暂堵剂用量为:
V暂堵剂=V裂缝+V裂缝滤失+V近井筒滤失=(hi×Li×Wi×1/2)×2+(hi×Li×xi×1/2)×2+π(R2 2-R1 2)×Hi×Φi=(15×160×6×10-3×1/2)×2+(15×160×0.01×1/2)×2+3.14×(1.32-0.1082)
×6×0.068=14.4+24.0+2.2=40.6(m3);
(3)计算本井石盒子组和山西组两层所需的暂堵剂用量为:
实施例6
本实施例以苏B井为例,该井是一口低渗致密砂岩储层气井,准备改造石盒子组、山西组两个气层段,石盒子组层厚度为8m,山西组层厚度为6m,气井井筒直径为215.9mm,采用51/2套管固井完井,压裂采用27/8″油管+机械封隔器注入分压两段,为了对该井储层进行充分改造,设计采用暂堵转向压裂工艺,进行裂缝缝端1/3缝长处封堵,计算暂堵剂用量。
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数;
(1)结合压裂分析软件模拟计算,确定石盒子组的支撑剂用量为30m3、平均支撑剂加注比例为18.1%、施工排量为3.5m3/min,加暂堵剂前支撑剂用量为18m3,转向裂缝加入支撑剂用量为12m3
(2)结合压裂分析软件模拟计算,确定山西组的支撑剂用量为26m3、平均支撑剂加注比例为17.8%、施工排量为3.2m3/min,加暂堵剂前支撑剂用量为15m3,转向裂缝加入支撑剂用量为11m3
步骤2)通过压裂分析软件模拟计算,得出暂堵前压裂裂缝形态参数;
(1)应用压裂分析软件模拟计算石盒子组裂缝参数,该井石盒子组暂堵转向前裂缝的导流能力为32dc.cm、裂缝长度为150m、裂缝高度为18m、裂缝宽度为5mm,裂缝滤失深度为0.01m,满足该井压裂改造需要。
(2)应用压裂分析软件模拟计算山西组裂缝参数,该井山西组暂堵转向前裂缝的导流能力为30dc.cm、裂缝长度为160m、裂缝高度为15m、裂缝宽度为6mm,裂缝滤失深度为0.01m,满足该井压裂改造需要。
步骤3)计算暂堵剂用量,裂缝缝端1/3处暂堵转向所需的暂堵剂为1/3裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量。
(1)计算石盒子组暂堵剂用量:
裂缝滤失深度xi为0.01m,裂缝长度Li为150m、裂缝高度hi为18m、裂缝宽度Wi为5mm,则石盒子组所需的暂堵剂用量为:
V暂堵剂=V裂缝封堵×1/3+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/3+(hi×Li×xi×1/2)×2
=(18×150×5×10-3×1/2)×2×1/3+(18×150×0.01×1/2)×2=4.5+27=31.5(m3);
(2)计算山西组暂堵剂用量:
裂缝滤失深度为xi为0.01m,裂缝长度Li为160m、裂缝高度hi为15m、裂缝宽度Wi为6mm,则石盒子组所需的暂堵剂用量为:
V暂堵剂=V裂缝封堵×1/3+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/3+(hi×Li×xi×1/2)×2
=(15×160×6×10-3×1/2)×2×1/3+(15×160×0.01×1/2)×2=4.8+24.0=28.8(m3);
(3)计算本井石盒子组和山西组两层所需的暂堵剂用量为:
实施例7
本实施例以苏B井为例,该井是一口低渗致密砂岩储层气井,准备改造石盒子组、山西组两个气层段,石盒子组层厚度为8m,山西组层厚度为6m,气井井筒直径为215.9mm,采用51/2套管固井完井,压裂采用27/8″油管+机械封隔器注入分压两段,为了对该井储层进行充分改造,设计采用暂堵转向压裂工艺,进行裂缝中部封堵,计算暂堵剂用量。
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数;
(1)结合压裂分析软件模拟计算,确定石盒子组的支撑剂用量为30m3、平均支撑剂加注比例为18.1%、施工排量为3.5m3/min,加暂堵剂前支撑剂用量为18m3,转向裂缝加入支撑剂用量为12m3
(2)结合压裂分析软件模拟计算,确定山西组的支撑剂用量为26m3、平均支撑剂加注比例为17.8%、施工排量为3.2m3/min,加暂堵剂前支撑剂用量为15m3,转向裂缝加入支撑剂用量为11m3
步骤2)通过压裂分析软件模拟计算,得出暂堵前压裂裂缝形态参数;
(1)应用压裂分析软件模拟计算石盒子组裂缝参数,该井石盒子组暂堵转向前裂缝的导流能力为32dc.cm、裂缝长度为150m、裂缝高度为18m、裂缝宽度为5mm,裂缝滤失深度为0.01m,满足该井压裂改造需要。
(2)应用压裂分析软件模拟计算山西组裂缝参数,该井山西组暂堵转向前裂缝的导流能力为30dc.cm、裂缝长度为160m、裂缝高度为15m、裂缝宽度为6mm,裂缝滤失深度为0.01m,满足该井压裂改造需要。
步骤3)根据裂缝参数及形态,裂缝中部暂堵转向所需的暂堵剂为1/2裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量。
(1)计算石盒子组暂堵剂用量:
裂缝滤失深度xi为0.01m,裂缝长度Li为150m、裂缝高度hi为18m、裂缝宽度Wi为5mm,则石盒子组所需的暂堵剂用量为:
V暂堵剂=V裂缝封堵×1/2+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/2+(hi×Li×xi×1/2)×2
=(18×150×5×10-3×1/2)×2×1/2+(18×150×0.01×1/2)×2=6.7+27=33.7(m3);
(2)计算山西组暂堵剂用量:
裂缝滤失深度xi为0.01m,裂缝长度Li为160m、裂缝高度hi为15m、裂缝宽度Wi为6mm,则石盒子组所需的暂堵剂用量为:
V暂堵剂=V裂缝封堵×1/2+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/2+(hi×Li×xi×1/2)×2
=(15×160×6×10-3×1/2)×2×1/2+(15×160×0.01×1/2)×2=7.2+24.0=31.2(m3);
(3)计算本井石盒子组和山西组两层所需的暂堵剂用量为:
本发明可广泛用于各类暂堵剂的暂堵压裂施工,适用性高,计算过程简单,可操作性强,计算结果可靠准确,计算得出结果速度快,可以满足现场施工需求;本发明暂堵转向压裂暂堵剂用量的控制方法可有效控制暂堵剂的用量,避免了暂堵剂的浪费或准备不足,使暂堵转向压裂工程顺利进行。
上面结合附图对本发明优选实施方式作了详细说明,但是本发明不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。
发明的构思和范围可以做出许多其他改变和改型。应当理解,本发明不限于特定的实施方式,本发明的范围由所附权利要求限定。

Claims (7)

1.一种暂堵转向压裂暂堵剂用量的控制方法,其特征在于,包括以下步骤:
步骤1)根据单井地质资料及邻井生产动态资料,结合压裂分析软件模拟计算确定压裂施工参数,其中单井地质资料包括气井井筒半径、储层厚度、储层孔隙度、砂体厚度、测井及录井解释的储层物性参数,其中邻井生产动态资料包括地质条件相似的邻井产量和压力变化曲线,其中压裂分析软件通过输入单井地质资料及邻井生产动态资料,输出压裂施工参数;
步骤2)获取暂堵前压裂裂缝形态参数;
步骤3)计算暂堵剂用量,其中暂堵剂用量根据裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂计算。
2.根据权利要求1所述的一种暂堵转向压裂暂堵剂用量的控制方法,其特征在于:所述步骤1)中压裂施工参数包括支撑剂用量、平均支撑剂加注比例、施工排量、加暂堵剂前支撑剂用量和转向裂缝加入支撑剂用量。
3.根据权利要求1所述的一种暂堵转向压裂暂堵剂用量的控制方法,其特征在于:所述步骤2)中暂堵前压裂裂缝形态参数包括改造裂缝的导流能力、裂缝长度、裂缝高度、裂缝宽度、近井筒暂堵剂滤失深度和裂缝滤失深度。
4.根据权利要求1所述的一种暂堵转向压裂暂堵剂用量的控制方法,其特征在于:所述步骤3)中计算暂堵剂用量,当采用在裂缝缝口处进行暂堵转向时,所需的暂堵剂用量为裂缝封堵的暂堵剂、裂缝滤失的暂堵剂和近井筒滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝+V裂缝滤失+V近井筒滤失=(hi×Li×Wi×1/2)×2+(hi×Li×xi×1/2)×2+π(R2 2-R1 2)×Hi×Φi(m3);
(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
R2—近井筒暂堵剂滤失深度,单位:m;
R1—气井井筒半径,单位:m;
xi—裂缝滤失深度,单位:m;
Hi—储层厚度,单位:m;
—储层孔隙度,单位:%。
5.根据权利要求1所述的一种暂堵转向压裂暂堵剂用量的控制方法,其特征在于:所述步骤3)中计算暂堵剂用量,当采用在裂缝缝端1/3裂缝长度处进行暂堵转向时,所需的暂堵剂用量为1/3裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝×1/3+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/3+(hi×Li×xi×1/2)×2(m3);
(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
xi—裂缝滤失深度,单位:m。
6.根据权利要求1所述的一种暂堵转向压裂暂堵剂用量的控制方法,其特征在于:所述步骤3)中计算暂堵剂用量,当采用在裂缝中部进行暂堵转向时,所需的暂堵剂用量为1/2裂缝封堵的暂堵剂和裂缝滤失的暂堵剂的合计用量,具体计算步骤如下:
(1)单层压裂所需的暂堵剂用量计算:
V暂堵剂=V裂缝×1/2+V裂缝滤失=(hi×Li×Wi×1/2)×2×1/2+(hi×Li×xi×1/2)×2(m3);
(2)单井多层压裂所需的暂堵剂用量计算:
以上公式中:
hi—裂缝高度,单位:m;
Li—裂缝长度,单位:m;
Wi—裂缝宽度,单位:10-3m;
xi—裂缝滤失深度,单位:m。
7.根据权利要求1所述的一种暂堵转向压裂暂堵剂用量的控制方法,其特征在于:所述暂堵剂为化学暂堵剂,其中化学暂堵剂包括酸溶性暂堵剂、油溶性暂堵剂、水溶性暂堵剂和单向压力暂堵剂。
CN201811124764.6A 2018-09-26 2018-09-26 一种暂堵转向压裂暂堵剂用量的控制方法 Active CN109267985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811124764.6A CN109267985B (zh) 2018-09-26 2018-09-26 一种暂堵转向压裂暂堵剂用量的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811124764.6A CN109267985B (zh) 2018-09-26 2018-09-26 一种暂堵转向压裂暂堵剂用量的控制方法

Publications (2)

Publication Number Publication Date
CN109267985A true CN109267985A (zh) 2019-01-25
CN109267985B CN109267985B (zh) 2020-11-06

Family

ID=65197688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811124764.6A Active CN109267985B (zh) 2018-09-26 2018-09-26 一种暂堵转向压裂暂堵剂用量的控制方法

Country Status (1)

Country Link
CN (1) CN109267985B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685657A (zh) * 2019-10-21 2020-01-14 中国石油化工股份有限公司 一种转向压裂用暂堵颗粒用量计算方法
CN112418489A (zh) * 2020-11-05 2021-02-26 中国石油天然气股份有限公司 一种天然气井修井暂堵剂用量神经网络预测方法
CN113047806A (zh) * 2019-12-26 2021-06-29 中国石油天然气股份有限公司 防止水平井井间干扰的远场暂堵方法
CN114562245A (zh) * 2022-03-04 2022-05-31 博丰石油科技发展(辽宁)有限公司 一种精细缝控暂堵转向压裂方法
US11397839B2 (en) * 2019-06-12 2022-07-26 Southwest Petroleum University Method of particle size distribution of particulate bridging lost circulation materials for fractured leakage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815681A (en) * 1972-05-24 1974-06-11 Shell Oil Co Temporarily plugging an earth formation with a transiently gelling aqueous liquid
WO2003001030A1 (en) * 2001-06-22 2003-01-03 Bj Services Company Fracturing fluids and methods of making and using same
CN103953323A (zh) * 2014-05-08 2014-07-30 西南石油大学 一种水平井产生缝网的水力压裂工艺
CN105041287A (zh) * 2015-07-23 2015-11-11 中国石油天然气股份有限公司 一种提高低渗致密砂岩油气井产能的纤维暂堵转向压裂方法
CN106194145A (zh) * 2016-09-27 2016-12-07 西南石油大学 一种多级暂堵深度网络酸压方法
CN108316915A (zh) * 2017-12-20 2018-07-24 北京石油化工学院 一种确定油气井致密储层中暂堵转向剂最优用量的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815681A (en) * 1972-05-24 1974-06-11 Shell Oil Co Temporarily plugging an earth formation with a transiently gelling aqueous liquid
WO2003001030A1 (en) * 2001-06-22 2003-01-03 Bj Services Company Fracturing fluids and methods of making and using same
CN103953323A (zh) * 2014-05-08 2014-07-30 西南石油大学 一种水平井产生缝网的水力压裂工艺
CN105041287A (zh) * 2015-07-23 2015-11-11 中国石油天然气股份有限公司 一种提高低渗致密砂岩油气井产能的纤维暂堵转向压裂方法
CN106194145A (zh) * 2016-09-27 2016-12-07 西南石油大学 一种多级暂堵深度网络酸压方法
CN108316915A (zh) * 2017-12-20 2018-07-24 北京石油化工学院 一种确定油气井致密储层中暂堵转向剂最优用量的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘全喜等: "压力施工中暂堵剂用量计算方法研究", 《大庆石油地质与开发》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11397839B2 (en) * 2019-06-12 2022-07-26 Southwest Petroleum University Method of particle size distribution of particulate bridging lost circulation materials for fractured leakage
CN110685657A (zh) * 2019-10-21 2020-01-14 中国石油化工股份有限公司 一种转向压裂用暂堵颗粒用量计算方法
CN110685657B (zh) * 2019-10-21 2021-08-17 中国石油化工股份有限公司 一种转向压裂用暂堵颗粒用量计算方法
CN113047806A (zh) * 2019-12-26 2021-06-29 中国石油天然气股份有限公司 防止水平井井间干扰的远场暂堵方法
CN112418489A (zh) * 2020-11-05 2021-02-26 中国石油天然气股份有限公司 一种天然气井修井暂堵剂用量神经网络预测方法
CN114562245A (zh) * 2022-03-04 2022-05-31 博丰石油科技发展(辽宁)有限公司 一种精细缝控暂堵转向压裂方法
CN114562245B (zh) * 2022-03-04 2023-10-13 博丰石油科技发展(辽宁)有限公司 一种精细缝控暂堵转向压裂方法

Also Published As

Publication number Publication date
CN109267985B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN109267985A (zh) 一种暂堵转向压裂暂堵剂用量的控制方法
Daccord et al. Carbonate acidizing: toward a quantitative model of the wormholing phenomenon
CN107355206B (zh) 一种页岩气水平井重复压裂暂堵临界压力测试方法
CN103437746A (zh) 一种水平井多段段内多缝体积压裂方法
CN105574320B (zh) 低渗砂岩储层有效渗流能力的评价方法
CN107965305A (zh) 一种分层重复压裂方法
CN108487918B (zh) 隧道与地下工程围岩裂隙水注浆治理设计方法
EP3066294A2 (en) Apparatus and method for simulating and/or controlling fluid injection
CN107939368A (zh) 一种提高水平井同一压裂段内水力裂缝复杂程度的实时控制方法
Furui et al. A comprehensive model of high-rate matrix acid stimulation for long horizontal wells in carbonate reservoirs
CN102777157A (zh) 一种co2驱油气水异井注入油藏混驱开发方法
Bu et al. Effect of casing rotation on displacement efficiency of cement slurry in highly deviated wells
CN109209350A (zh) 一种煤层斜井套管射孔完井破裂压力的预测方法
CN105134180B (zh) 一种分层采油井下油嘴直径的确定方法
CN109726945A (zh) 用于致密油藏复杂缝网的试井解释方法
Shaoul et al. Developing a tool for 3D reservoir simulation of hydraulically fractured wells
Surjaatmadja et al. Unconventional multiple fracture treatments using dynamic diversion and downhole mixing
Mukherjee et al. Successful control of fracture height growth by placement of artificial barrier
Wright et al. Enhanced hydraulic fracture technology for a coal seam reservoir in Central China
CN109751018A (zh) 一种针对常压页岩气体体积压裂的施工方法
Yildiz Productivity of selectively perforated vertical wells
Eberhard et al. Current use of limited-entry hydraulic fracturing in the Codell/Niobrara formations—DJ Basin
Xu et al. Formulation optimization of materials used in temporary plugging diversion between fracture front end and cluster in shale gas: From laboratory research to field application
Mogensen et al. A dynamic model for high-rate acid stimulation of very long horizontal wells
CN206787971U (zh) 一种考虑破胶的支撑剂铺置规律可视化模拟装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant