CN109256972A - 一种基于五段式五电平变换器svpwm调制方法 - Google Patents

一种基于五段式五电平变换器svpwm调制方法 Download PDF

Info

Publication number
CN109256972A
CN109256972A CN201811256783.4A CN201811256783A CN109256972A CN 109256972 A CN109256972 A CN 109256972A CN 201811256783 A CN201811256783 A CN 201811256783A CN 109256972 A CN109256972 A CN 109256972A
Authority
CN
China
Prior art keywords
vector
ref
sector
voltage vector
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811256783.4A
Other languages
English (en)
Other versions
CN109256972B (zh
Inventor
李宁
赵丹
张辉
李婉婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201811256783.4A priority Critical patent/CN109256972B/zh
Publication of CN109256972A publication Critical patent/CN109256972A/zh
Application granted granted Critical
Publication of CN109256972B publication Critical patent/CN109256972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种基于五段式五电平变换器SVPWM调制方法,具体按照以下步骤实施:按以下步骤实施;步骤1:判断参考电压矢量Uref所在区域。步骤2:计算各参考电压矢量Uref的作用时间。步骤3:确定各参考电压矢量Uref对应开关状态的输出序列。步骤4:根据输出三相开关状态的输出序列确定每相各管的开关情况:该方法避免了传统五电平SVPWM三角函数运算和矢量幅角求取,节省处理器运算时间,同时将五电平变换器共模电压最大值抑制到较低水平,开关损耗也得到减小。

Description

一种基于五段式五电平变换器SVPWM调制方法
技术领域
本发明属于电力电子与电力系统技术领域,具体涉及一种基于五段式五电平变换器SVPWM调制方法。
背景技术
在目前应用的多电平拓扑中,NPC型拓扑因其结构简单、性价比高应用最为广泛。特别是三电平NPC拓扑,已经广泛应用于各种3kV以下的中低压领域,极大改善了电力电子设备的输出性能。在6kV以上的中高压领域,五电平NPC拓扑是一种极具竞争力的拓扑,拥有广泛的应用前景。每相有5种工作状态,可以得到53=125个空间电压矢量,传统五电平SVPWM调制方法需要对这125个矢量构成的空间矢量图进行扇区判断及基本矢量作用时间计算,要涉及较多的三角函数运算和表格查询,这些操作给控制器带来了很大负担,与此同时,随着变换器电平数的增加,共模电压幅值也随之增大,过高的共模电压会造成电机轴承烧毁,电磁干扰等,严重制约其在现代工业中的应用。
近年来,许多学者在五电平NPC变换器SVPWM优化问题上进行了研究,取得了一些研究成果。一些文献提出基于非正交坐标系的SVPWM算法将Uref在非正交坐标系分解,在扇区判断、基本矢量作用时间上都避免了三角函数计算,一定程度上减小了计算量,易于实现数字化;但该方法中最近三矢量为二维坐标表示,要得到三相桥臂的开关状态需要进行复杂的坐标变换。一些论文采用了参考矢量分解,但其不同扇区坐标平移的方向不一样,导致不同扇区Uref的修正方法不同,并且二电平的开关状态组合需要转化为五电平开关状态组合后才能驱动五电平变换器,增加了算法的复杂程度。
发明内容
本发明的目的是提供一种基于五段式五电平变换器SVPWM调制方法,该算法可快速判断参考矢量所在位置与矢量作用时间,避免了三角函数运算和矢量幅角求取,节省处理器运算时间,在参考矢量合成时通过选择共模电压较小的开关状态以实现抑制共模电压的效果。
本发明所采用的技术方案是,一种基于五段式五电平变换器SVPWM调制方法,具体按照以下步骤实施:
步骤1:判断参考电压矢量Uref所在的区域;
步骤2:计算各电压矢量Uref的作用时间;
步骤3:确定各电压矢量Uref对应开关状态的输出序列;
步骤4:根据输出三相开关状态的输出序列确定每相各管的开关情况。
本发明的特点还在于,
步骤1具体为:
步骤1.1:根据式(1)建立两相静止αβ坐标系,参考电压矢量Uref在该坐标系进行分解:
其中θ为参考电压矢量Uref与α轴的夹角,θ取值0°-360°,在αβ坐标系中对Uref分别进行α轴和β轴的投影得到Uα、Uβ
步骤1.2:根据式(2)在αβ坐标系基础上建立所有扇区及小区域严格对称的XYZ坐标系,其中X轴超前α轴30°,X、Y、Z轴互差60°:
UX、UY、UZ为Uref分别在XYZ坐标系下在X轴、Y轴、Z轴的坐标分量;
步骤1.3:判断参考电压矢量Uref所在的大扇区,表1为大扇区判断条件:
表1大扇区判断条件
其中:N1代表第一大扇区,N2代表第二大扇区……N6代表第六大扇区;
步骤1.4:判断参考电压矢量Uref所在的小扇区,在进行小扇区判断时,首先要确定参考矢量Uref所在大扇区;若已确定参考电压矢量Uref在第一扇区,其小扇区判断方法如下:每个小扇区的高为分别将UX,UY,UZ与小扇区各个边长对应的高进行比较即可快速判断出Uref所在小扇区,若参考电压矢量Uref位于其他大扇区,只需将第一扇区判断过程中的的坐标系根据表2进行变换,
表2不同扇区选用的坐标系以及虚拟时间
步骤2计算各矢量的作用时间具体为:将参考电压矢量Uref分别在α轴、β轴上进行投影得到Uα、Uβ,然后根据参考矢量所在的空间位置,选取空间位置所对应最近的三个空间电压矢量参与合成,具体采用如下公式:
式中,Ua、Ub、Uc分别为αβ坐标系下距离参考矢量最近的三个矢量的坐标,Ta、Tb、Tc分别为矢量Ua、Ub、Uc的作用时间,Ts为开关周期;
以第一大扇区为例,计算每个小扇区空间电压矢量的作用时间;设当参考电压矢量Uref位于3小扇区,根据就近原则,选取离3小扇区最近的三个电压矢量参与矢量合成,在一定时间内,三个空间电压矢量作用时间之和与参考电压矢量作用时间相等;则根据伏秒平衡原则,得
解得
因此,式(5)可化为:
表3其他小扇区对应的矢量作用时间
当参考矢量位于第一大扇区其他小扇区时采用相同的计算方法得到表3,其他大扇区各矢量的作用时间只需采用表2的方法将表3中的虚拟时间TX、TY、TZ替换即可。
步骤3具体为:为抑制共模电压,在参考矢量合成时通过选择共模电压较小的开关状态从而实现抑制共模电压的效果,根据表4选取共模电压≤±2/12Udc的开关状态,
表4二极管嵌位型五电平变换器开关状态与共模电压对应表
当参考电压矢量处于第一扇区时,各小三角形输出开关序列具体情况如下:
n1:322-222-221-222-322
n2:322-321-311-321-322
n3:322-321-221-321-322
n4:332-331-321-331-332
n5:411-311-310-311-411
n6:421-321-311-321-421
n7:421-321-320-321-421
n8:431-331-321-331-431
n9:431-331-330-331-431
n10:411-410-400-410-411
n11:411-410-310-410-411
n12:421-420-410-420-421
n13:421-420-320-420-421
n14:431-430-420-430-431
n15:431-430-330-430-431
n16:441-440-430-440-441。
步骤4具体为:根据输出三相开关状态确定最后每相各管的开关情况,具体对应关系为:x指三相开关状态a,b,c中任意一相,当x相输出状态为4时,Sx1、Sx2、Sx3、Sx4开通,Sx5、Sx6、Sx7、Sx8关断,x相输出状态为3时,Sx2、Sx3、Sx4、Sx5开通,Sx6、Sx7、Sx8、Sx1关断,x相输出状态为2时,Sx3、Sx4、Sx5、Sx6开通,Sx7、Sx8、Sx1、Sx2关断;x相输出状态为1时,Sx4、Sx5、Sx6、Sx7开通,Sx8、Sx1、Sx2、Sx3关断;x相输出状态为0时,Sx5、Sx6、Sx7、Sx8开通,Sx1、Sx2、Sx3、Sx4关断。
本发明的有益效果是:本发明提供了一种基于新型坐标系五段式五电平变换器SVPWM调制方法,该算法利用电压参考矢量在新坐标系中的分量即可快速判断参考矢量所在位置与矢量作用时间,避免了三角函数运算和矢量幅角求取,节省处理器运算时间,在参考矢量合成时通过选择共模电压较小的开关状态以实现共模电压抑制的效果。
附图说明
图1是本发明二极管钳位型五电平变换器主电路拓扑图;
图2是本发明二极管钳位型五电平变换器空间矢量大扇区划分情况图;
图3是本发明二极管钳位型五电平变换器空间矢量图第一大扇区小扇区区域划分图;
图4是本发明二极管钳位型五电平变换器七段式M=0.9相电压波形图。
图5是本发明二极管钳位型五电平变换器五段式M=0.4相电压波形图。
图6是本发明二极管钳位型五电平变换器七段式M=0.9线电压波形图。
图7是本发明二极管钳位型五电平变换器五段式M=0.9线电压波形图。
图8是本发明二极管钳位型五电平变换器七段式M=0.9共模电压波形图。
图9是本发明二极管钳位型五电平变换器五段式M=0.9共模电压波形图。
图10是本发明二极管钳位型五电平变换器七段式M=0.4共模电压波形图。
图11是本发明二极管钳位型五电平变换器五段式M=0.4共模电压波形图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种基于五段式五电平变换器SVPWM调制方法,如图1所示给出了本发明中二极管钳位型五电平变换器的主电路拓扑图,其中Udc为直流总电压,C1-C4为4个直流电容,每一相桥臂有8个开关器件,内含续流二极管和6个具有相同电压等级的钳位二极管,Z为三相对称负载,O为负载侧中心。
本发明一种基于五段式五电平变换器SVPWM调制方法的具体步骤如下:
步骤1:参考电压矢量Uref的区域判断,具体为:
步骤1.1:根据式(1)建立两相静止坐标系(αβ坐标系),将参考电压矢量Uref在该坐标系进行分解:
其中θ(0°-360°)为参考电压矢量Uref与α轴的夹角,θ取值0°-360°,在α、β坐标系中对Uref分别进行α轴和β轴的投影得到Uα、Uβ
步骤1.2:根据式(2)在αβ坐标系基础上建立如图2所示所有扇区及小区域严格对称的XYZ坐标系,其中X轴超前α轴30°,X、Y、Z轴互差60°:
UX、UY、UZ为Uref分别在XYZ坐标系下在X轴、Y轴、Z轴的坐标分量;
步骤1.3:判断参考矢量Uref所在的大扇区。表1为大扇区N判断条件。
表1大扇区判断表
其中:N1代表第一大扇区,N2代表第二大扇区……N6代表第六大扇区;
步骤1.4:判断参考电压矢量Uref所在的小扇区。在进行小扇区判断时,首先要确定参考矢量Uref所在大扇区;若已确定参考矢量在第一扇区,其小扇区判断方法如下:由图3可以看出每个小扇区的高为分别将UX,UY,UZ与小扇区各个边长对应的高进行比较即可快速判断出Uref所在小扇区。若参考矢量位于其他大扇区,只需将第一扇区判断过程中的的坐标系根据表2进行变换。
表2不同扇区选用的坐标系以及虚拟时间
步骤2:计算各矢量的作用时间。根据伏秒平衡原理,一个矢量作用时间等效为若干个矢量的作用相同时间之和;在αβ坐标系下根据参考矢量所在的空间位置选取空间位置所对应最近的三个空间电压矢量参与合成,具体采用如下公式:
式中,Ua、Ub、Uc分别为αβ坐标系下离参考矢量最近的三个空间电压矢量的坐标,Ta、Tb、Tc为矢量Ua、Ub、Uc的作用时间;Ts为开关周期。用坐标分量UX、UY、UZ表示式(2)的Uref,则
以第一大扇区为例,计算每个小扇区空间电压矢量的作用时间;设当参考矢量位于3小扇区,根据就近原则,选取离3小扇区最近的三个电压矢量参与矢量合成,在一定时间内,三个空间电压矢量作用时间之和与参考电压矢量作用时间相等;则根据伏秒平衡原则,得
将式(5)进行分解得到:
根据式(6)解的:
因此,当参考矢量位于n=3时,Ta,Tb,Tc分别为:
当参考矢量位于第一大扇区其他小扇区时采用相同的计算方法得到表3。其他大扇区各矢量的作用时间只需采用表2的方法将表3中虚拟时间TX、TY、TZ替换即可。
表3其他小扇区对应的矢量作用时间
步骤3:确定各矢量对应开关状态的输出序列。
为抑制共模电压,在参考矢量合成时通过选择共模电压较小的开关状态从而实现抑制共模电压的效果。根据表4选取共模电压≤±2/12Udc的开关状态,同时为了减小开关频率,降低开关损耗,起始矢量全部采用小扇区中三相开关状态之和最小的那个矢量对应的开关状态,两个相邻的小扇区的矢量变化方向完全相反,以便避免在扇区切换的过程中发生矢量突变。
当参考电压矢量处于第一大扇区时,各小三角形输出开关序列具体情况如下:
n1:322-222-221-222-322
n2:322-321-311-321-322
n3:322-321-221-321-322
n4:332-331-321-331-332
n5:411-311-310-311-411
n6:421-321-311-321-421
n7:421-321-320-321-421
n8:431-331-321-331-431
n9:431-331-330-331-431
n10:411-410-400-410-411
n11:411-410-310-410-411
n12:421-420-410-420-421
n13:421-420-320-420-421
n14:431-430-420-430-431
n15:431-430-330-430-431
n16:441-440-430-440-441
表4二极管嵌位型五电平变换器开关状态与共模电压对应表
步骤4:根据输出三相开关状态确定每相各管的开关情况,具体对应关系为:步骤4根据输出三相开关状态确定最后每相各管的开关情况,具体对应关系为:x指三相开关状态a,b,c中任意一相,当x相输出状态为4时,Sx1、Sx2、Sx3、Sx4开通,Sx5、Sx6、Sx7、Sx8关断,x相输出状态为3时,Sx2、Sx3、Sx4、Sx5开通,Sx6、Sx7、Sx8、Sx1关断,x相输出状态为2时,Sx3、Sx4、Sx5、Sx6开通,Sx7、Sx8、Sx1、Sx2关断;x相输出状态为1时,Sx4、Sx5、Sx6、Sx7开通,Sx8、Sx1、Sx2、Sx3关断;x相输出状态为0时,Sx5、Sx6、Sx7、Sx8开通,Sx1、Sx2、Sx3、Sx4关断。
在Matlab/Simulink软件对图1所示系统进行仿真,设定基本参数如表5所示:
表5电压型五电平NPC变换器仿真参数
利用Matlab/Simulink软件,根据表5中的关键参数对本发明所提方法进行验证,由于在不同调制度时,合成参考电压矢量的基本电压矢量不同,变换器的共模电压也会不同,为此,此处选取欠调制时五电平退化为三电平运行的m=0.4和正常调制的m=0.9为例进行对比,图4和图5为M=0.9七段式和五段式SVPWM输出相电压的波形图,可以看出输出相电压波形为五电平,且五段式相电压波形的最大值和最小值处各有一段时间保持了高电平和低电平,开关损耗有所减小。图6和图7分别为M=0.9七段式和五段式输出线电压的波形图,可以看出线电压波形接近正弦波,从而验证了新型坐标系下SVPWM算法的有效性,图8和图9分别为M=0.9七段式与五段式SVPWM的共模电压波形图,可以看出七段式共模电压最大值为165V(Udc/4),而五段式SVPWM调制方法的共模电压为110V(Udc/6)。图10和图11分别为M=0.4七段式和五段式输出共模电压的波形,可以看出七段式SVPWM的共模电压最大值为110V(Udc/6),五段式SVPWM的共模电压最大值为55V(Udc/12),达到了共模电压抑制的效果。

Claims (5)

1.一种基于五段式五电平变换器SVPWM调制方法,其特征在于,具体按照以下步骤实施:
步骤1:判断参考电压矢量Uref所在的区域;
步骤2:计算各电压矢量Uref的作用时间;
步骤3:确定各电压矢量Uref对应开关状态的输出序列;
步骤4:根据输出三相开关状态的输出序列确定每相各管的开关情况。
2.根据权利要求1所述的一种基于五段式五电平变换器SVPWM调制方法,其特征在于,步骤1具体为:
步骤1.1:根据式(1)建立两相静止αβ坐标系,参考电压矢量Uref在该坐标系进行分解:
其中θ为参考电压矢量Uref与α轴的夹角,θ取值0°-360°,在αβ坐标系中对Uref分别进行α轴和β轴的投影得到Uα、Uβ
步骤1.2:根据式(2)在αβ坐标系基础上建立所有扇区及小区域严格对称的XYZ坐标系,其中X轴超前α轴30°,X、Y、Z轴互差60°:
UX、UY、UZ为Uref分别在XYZ坐标系下在X轴、Y轴、Z轴的坐标分量;
步骤1.3:判断参考电压矢量Uref所在的大扇区,表1为大扇区判断条件:
表1大扇区判断条件
其中:N1代表第一大扇区,N2代表第二大扇区……N6代表第六大扇区;
步骤1.4:判断参考电压矢量Uref所在的小扇区,在进行小扇区判断时,首先要确定参考矢量Uref所在大扇区;若已确定参考电压矢量Uref在第一扇区,其小扇区判断方法如下:每个小扇区的高为分别将UX,UY,UZ与小扇区各个边长对应的高进行比较即可快速判断出Uref所在小扇区,若参考电压矢量Uref位于其他大扇区,只需将第一扇区判断过程中的的坐标系根据表2进行变换,
表2不同扇区选用的坐标系以及虚拟时间
3.根据权利要求1所述的一种基于五段式五电平变换器SVPWM调制方法,其特征在于,步骤2计算各矢量的作用时间具体为:将参考电压矢量Uref分别在α轴、β轴上进行投影得到Uα、Uβ,然后根据参考矢量所在的空间位置,选取空间位置所对应最近的三个空间电压矢量参与合成,具体采用如下公式:
式中,Ua、Ub、Uc分别为αβ坐标系下距离参考矢量最近的三个矢量的坐标,Ta、Tb、Tc分别为矢量Ua、Ub、Uc的作用时间,Ts为开关周期;
以第一大扇区为例,计算每个小扇区空间电压矢量的作用时间;设当参考电压矢量Uref位于3小扇区,根据就近原则,选取离3小扇区最近的三个电压矢量参与矢量合成,在一定时间内,三个空间电压矢量作用时间之和与参考电压矢量作用时间相等;则根据伏秒平衡原则,得
解得
因此,式(5)可化为:
表3其他小扇区对应的矢量作用时间
当参考矢量位于第一大扇区其他小扇区时采用相同的计算方法得到表3,其他大扇区各矢量的作用时间只需采用表2的方法将表3中的虚拟时间TX、TY、TZ替换即可。
4.根据权利要求1所述的一种基于五段式五电平变换器SVPWM调制方法,其特征在于:步骤3具体为:为抑制共模电压,在参考矢量合成时通过选择共模电压较小的开关状态从而实现抑制共模电压的效果,根据表4选取共模电压≤±2/12Udc的开关状态,
表4二极管嵌位型五电平变换器开关状态与共模电压对应表
当参考电压矢量处于第一扇区时,各小三角形输出开关序列具体情况如下:
n1:322-222-221-222-322
n2:322-321-311-321-322
n3:322-321-221-321-322
n4:332-331-321-331-332
n5:411-311-310-311-411
n6:421-321-311-321-421
n7:421-321-320-321-421
n8:431-331-321-331-431
n9:431-331-330-331-431
n10:411-410-400-410-411
n11:411-410-310-410-411
n12:421-420-410-420-421
n13:421-420-320-420-421
n14:431-430-420-430-431
n15:431-430-330-430-431
n16:441-440-430-440-441。
5.根据权利要求4所述的一种基于五段式五电平变换器SVPWM调制方法,其特征在于,步骤4具体为:根据输出三相开关状态确定最后每相各管的开关情况,具体对应关系为:x指三相开关状态a,b,c中任意一相,当x相输出状态为4时,Sx1、Sx2、Sx3、Sx4开通,Sx5、Sx6、Sx7、Sx8关断,x相输出状态为3时,Sx2、Sx3、Sx4、Sx5开通,Sx6、Sx7、Sx8、Sx1关断,x相输出状态为2时,Sx3、Sx4、Sx5、Sx6开通,Sx7、Sx8、Sx1、Sx2关断;x相输出状态为1时,Sx4、Sx5、Sx6、Sx7开通,Sx8、Sx1、Sx2、Sx3关断;x相输出状态为0时,Sx5、Sx6、Sx7、Sx8开通,Sx1、Sx2、Sx3、Sx4关断。
CN201811256783.4A 2018-10-26 2018-10-26 一种基于五段式五电平变换器svpwm调制方法 Active CN109256972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811256783.4A CN109256972B (zh) 2018-10-26 2018-10-26 一种基于五段式五电平变换器svpwm调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811256783.4A CN109256972B (zh) 2018-10-26 2018-10-26 一种基于五段式五电平变换器svpwm调制方法

Publications (2)

Publication Number Publication Date
CN109256972A true CN109256972A (zh) 2019-01-22
CN109256972B CN109256972B (zh) 2020-07-24

Family

ID=65046372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811256783.4A Active CN109256972B (zh) 2018-10-26 2018-10-26 一种基于五段式五电平变换器svpwm调制方法

Country Status (1)

Country Link
CN (1) CN109256972B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071653A (zh) * 2019-04-30 2019-07-30 西安理工大学 五电平npc变换器低调制度直流侧电容电压自平衡方法
CN114142758A (zh) * 2021-12-07 2022-03-04 浙江大学先进电气装备创新中心 一种适用于线电压级联型三重化变流器的新型调制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253556A (zh) * 2014-09-05 2014-12-31 中国矿业大学 一种五电平逆变器七段式svpwm调制方法
US8976556B2 (en) * 2012-07-12 2015-03-10 Mitsubishi Electric Research Laboratories, Inc. Space vector modulation for multilevel inverters
CN106059352A (zh) * 2016-06-08 2016-10-26 厦门理工学院 降低h/npc变换器开关损耗的三段式svpwm算法
CN108566109A (zh) * 2018-05-09 2018-09-21 大连理工大学 一种五段式三电平逆变器svpwm调制算法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8976556B2 (en) * 2012-07-12 2015-03-10 Mitsubishi Electric Research Laboratories, Inc. Space vector modulation for multilevel inverters
CN104253556A (zh) * 2014-09-05 2014-12-31 中国矿业大学 一种五电平逆变器七段式svpwm调制方法
CN106059352A (zh) * 2016-06-08 2016-10-26 厦门理工学院 降低h/npc变换器开关损耗的三段式svpwm算法
CN108566109A (zh) * 2018-05-09 2018-09-21 大连理工大学 一种五段式三电平逆变器svpwm调制算法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071653A (zh) * 2019-04-30 2019-07-30 西安理工大学 五电平npc变换器低调制度直流侧电容电压自平衡方法
CN110071653B (zh) * 2019-04-30 2021-04-02 西安理工大学 五电平npc变换器低调制度直流侧电容电压自平衡方法
CN114142758A (zh) * 2021-12-07 2022-03-04 浙江大学先进电气装备创新中心 一种适用于线电压级联型三重化变流器的新型调制方法
CN114142758B (zh) * 2021-12-07 2023-05-19 浙江大学先进电气装备创新中心 一种适用于线电压级联型三重化变流器的新型调制方法

Also Published As

Publication number Publication date
CN109256972B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
US10630163B2 (en) Pulse width modulation method, pulse width modulation system, and controller
Gupta et al. A general space vector PWM algorithm for multilevel inverters, including operation in overmodulation range
Wei et al. A general space vector PWM control algorithm for multilevel inverters
Loh et al. Reduced common-mode modulation strategies for cascaded multilevel inverters
Gao et al. A space vector switching strategy for three-level five-phase inverter drives
Levi et al. Analytical determination of DC-bus utilization limits in multiphase VSI supplied AC drives
Yazdani et al. Full utilization of the inverter in split-phase drives by means of a dual three-phase space vector classification algorithm
Zhang et al. A PWM for minimum current harmonic distortion in metro traction PMSM with saliency ratio and load angle constrains
Mohseni et al. A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters
CN105827176B (zh) 抑制双y移30度六相电机共模电压的空间矢量调制方法
WO2018033214A1 (en) Modulation of ac/ac mmc
Wang et al. Overmodulation strategy for electrolytic capacitorless PMSM drives: Voltage distortion analysis and boundary optimization
JP2007306678A (ja) 交流−交流直接変換装置の入出力デューティ制御方法
Yang et al. A sequential direct torque control scheme for seven-phase induction machines based on virtual voltage vectors
CN113783456A (zh) 一种三电平snpc逆变器的低共模矢量调制方法及系统
CN109256972A (zh) 一种基于五段式五电平变换器svpwm调制方法
Lin High power factor AC/DC/AC converter with random PWM
Li et al. Five-phase series-end winding motor controller: converter topology and modulation method
JP4893152B2 (ja) 交流−交流直接変換装置の空間ベクトル変調方法
Rangari et al. Implimentaion of large and medium vectors for SVPWM technique in five phase voltage source inverter
Zhang et al. Research on a discontinuous three-dimensional space vector modulation strategy for the three-phase four-leg inverter
Chen et al. Direct torque control for a matrix converter based on induction motor drive systems
CN115566872A (zh) 一种可抑制三相四桥矩阵变换器共模电压的双空间矢量调制策略
CN114531089A (zh) 双三相永磁同步电机可变循环svpwm调制方法及系统
Liu et al. Four-module three-phase permanent-magnet synchronous motor based PWM modulation strategy for suppressing vibration and common mode current

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant