CN109232937A - 一种负载山奈酚的海藻酸水凝胶敷料载药体系及其制备方法 - Google Patents
一种负载山奈酚的海藻酸水凝胶敷料载药体系及其制备方法 Download PDFInfo
- Publication number
- CN109232937A CN109232937A CN201810856722.5A CN201810856722A CN109232937A CN 109232937 A CN109232937 A CN 109232937A CN 201810856722 A CN201810856722 A CN 201810856722A CN 109232937 A CN109232937 A CN 109232937A
- Authority
- CN
- China
- Prior art keywords
- alginic acid
- hydrogel
- kaempferol
- modified
- medicine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/20—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing organic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/28—Polysaccharides or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/425—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/44—Medicaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/46—Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0084—Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/216—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/41—Anti-inflammatory agents, e.g. NSAIDs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/04—Alginic acid; Derivatives thereof
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Preparation (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种负载山奈酚的海藻酸水凝胶敷料载药体系及其制备方法,包括以下步骤:以海藻酸、水、辛胺、EDC·HCL、CaCl2为原料,高速搅拌,离心干燥后得到改性后的海藻酸水凝胶薄膜;通过将山奈酚负载在水凝胶上,得到载药的改性后的水凝胶薄膜敷料;对所合成的载药的改性后的水凝胶薄膜敷料进行详细的性能表征,并进行缓释实验。本发明通过辛胺改性水凝胶带上疏水基团,实现对疏水性中药山柰酚的成功包覆,这在水凝胶医用敷料领域具有很大的应用前景。
Description
技术领域
本发明涉及生物医药领域,具体涉及一种负载山奈酚的具有抗菌消炎功能的水凝胶复合敷料制备方法及其应用。
背景技术
水凝胶敷料是一种较好的创口敷料。水凝胶亲水性较好,能吸收创伤处的积液,换药时不会破坏新生组织,也不会产生痛感,并为伤口创造了一个良好的愈合环境。这种敷料的使用也比较方便,只要将水凝胶医用敷料贴在创伤表面,换药时只需将水凝胶轻轻撕掉。
常见的水凝胶有块状、膜状以及液状,因此根据水凝胶复合敷料的物理形态,将水凝胶分为膜状、无定形和复合型水凝胶。
海藻酸是一种多糖碳水化合物,其结构如下所示:
它的水溶液可与钙离子结合形成机械性能较好的凝胶。这种凝胶生物活性较好,可以在生物体内以酶降解的方式生成甘露糖醛酸和葡萄糖醛酸,适合作为药物的包覆材料用在伤口敷料中。但海藻酸亲水性较强,很难负载疏水性药物,需要对其进行改性以提高其对疏水性药物的负载率。
山奈酚(Kaempferol,KP),山奈酚作为抗炎抗癌的抗生药物,被引入与水凝胶结合,将水凝胶医用敷料的应用逐渐扩大。
目前,尚未有用辛胺改性海藻酸水凝胶负载山奈酚并用于抗菌消炎治疗中的研究或报道。本发明开发了一种具有良好溶胀性能、机械性能稳定性、生物相容性以及高负载量的具有抗菌消炎功能的负载山奈酚的海藻酸水凝胶敷料。
发明内容
本发明的目的是提供一种具有能负载中药山奈酚的海藻酸水凝胶敷料的制备方法。该方法制备的水凝胶复合敷料具有有序多孔结构、较高的载药率、良好的透气性、机械性能和缓释性能,在医用敷料领域具有广泛的应用。
为达到本发明的目的,本发明采用如下技术方案:
一种负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,包括以下步骤:
步骤(1):以海藻酸、水、辛胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC·HCL)、 CaCl2为原料,高速搅拌,离心干燥后得到改性后的海藻酸水凝胶薄膜;
步骤(2):通过将山奈酚负载在水凝胶薄膜上,得到载药的改性后的水凝胶薄膜敷料,并进行性能表征。
进一步的技术方案,所述的步骤(1),包括如下具体步骤:
将海藻酸溶于水中,配置成质量分数为2~4%的海藻酸溶液,完全溶解后加入0.05~0.15mol/L盐酸调节pH至2~4;加入EDC·HCL,搅拌均匀后,再加入辛胺,在20~30℃下反应20~24h;用丙酮沉淀法将反应产物沉淀,静置过夜,然后透析三天,冷冻干燥;将产物溶于水,配成1~3%的溶液,高速搅拌后静置除去气泡;用流延成膜法将混合液加入2~4%的CaCl2溶液中,待凝胶完全后干燥。
进一步的技术方案,所述步骤(1)中,海藻酸质量1.98g,海藻酸溶液质量分数为3%, CaCl2溶液浓度为3%;
所述的海藻酸溶液用盐调节pH至3~4,加入EDC·HCL和辛胺后,在25℃下反应24h。
所述的EDC·HCL:海藻酸的摩尔比为1:1~1:3;
所述的辛胺:海藻酸的摩尔比为1:1~1:3。
进一步的技术方案,所述的步骤(2),包括如下具体步骤:
将水凝胶浸泡入50ml超纯水中,每隔30min测量一次质量,直至质量不再变化,及使其充分溶胀,称取4~6mg山奈酚,将其溶于5~15%的乙醇溶液中,将160~180mg充分溶胀后的凝胶放置于山奈酚溶液中,放入振荡箱振荡,20~24h后取出,取上层清液测量吸光度,计算出包封率:
进一步的技术方案,所述的山奈酚质量为5mg,蒸馏水与乙醇体积比为9:1,振荡时间为 24h。
载药的未改性的水凝胶薄膜敷料的制备方法如下:
(1)以海藻酸、水、CaCl2为原料,高速搅拌,离心干燥后得到未改性的海藻酸水凝胶薄膜,具体步骤如下:
称取海藻酸,溶于水,配成出质量分数为2~4%的海藻酸溶液;高速搅拌该溶液,待溶解完全后静置10~12h除去气泡;将溶液加入到2~4%的CaCl2溶液中;待凝胶完全后,将所得产物离心,干燥;
(2)通过将山奈酚负载在水凝胶薄膜上,得到载药的未改性的水凝胶薄膜敷料,此步骤与将山奈酚负载在改性的水凝胶薄膜上的方法相同。
对所合成的载药的未改性的水凝胶薄膜敷料与载药的改性后的水凝胶薄膜敷料进行详细的性能表征,并进行缓释实验。实验数据参见实施例部分。
本发明所取得的有益效果:
(1)本发明先制备海藻酸(SA)水凝胶薄膜,用辛胺改性并合成水凝胶薄膜敷料体系,其在水凝胶上连接上疏水链端,有利于包裹疏水性的山奈酚药物。对水凝胶薄膜的溶胀性能、吸水与保湿性能、机械性能以及透气性能进行测试分析。通过紫外分光光度计(UV-Vis)对辛胺改性水凝胶薄膜敷料的载药率和缓释性能进行研究。
(2)本发明合成的辛胺改性的负载山奈酚海藻酸水凝胶敷料具有良好的亲水性、保湿性、透气性和机械性能。
(3)本发明采用山奈酚作为模型药物,负载在改性后的水凝胶薄膜敷料并进行缓释实验,测试结果表明药物包封率高,缓释效果好。
附图说明
图1为实施例1所制备的改性前后的水凝胶薄膜的红外分析:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
图2为实施例1所制备的水凝胶薄膜的扫描电镜图:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜;(c)载药前海藻酸水凝胶薄膜;(d)载药后海藻酸水凝胶薄膜。
图3为实施例1所制备的改性前后的水凝胶薄膜的接触角图:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
图4为实施例1所制备的改性前后的水凝胶薄膜不同温度下的溶胀曲线:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
图5为实施例1所制备的改性前后水凝胶薄膜在溶胀状态下的机械性能测试:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
图6为实施例1所制备的改性前后水凝胶薄膜的水蒸气通过率曲线:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
图7为实施例1所制备的载药前后的海藻酸水凝胶薄膜热重分析图:(a)载药前海藻酸水凝胶薄膜;(b)载药后海藻酸水凝胶薄膜。
图8为实施例1所制备的载药后的海藻酸水凝胶薄膜缓释曲线图。
具体实施方式
以下结合实施例和附图对本发明做进一步说明,但下述实施例对本发明的保护范围并无明确限制。
实施例1
一种负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,包括以下步骤:
称取1.98g海藻酸,溶于66ml水,配成质量分数为3%的溶液;高速搅拌该溶液,待溶解完全后静置12h除去气泡;将溶液加入到3%的CaCl2溶液中;待凝胶完全后,将所得产物离心,干燥。
将1.98g海藻酸溶于66ml水,完全溶解后加入0.05mol/L盐酸调节pH至2~4;加入EDC·HCL,搅拌均匀后,再加入辛胺,在25℃下反应24h;用丙酮沉淀法将反应产物沉淀,静置过夜,然后透析三天,冷冻干燥;将产物溶于水,配成2%的溶液,高速搅拌后静置除去气泡;用流延成膜法将混合液加入3%的CaCl2溶液中,待凝胶完全后干燥;其中,EDC·HCL:海藻酸的摩尔比为1:1;辛胺:海藻酸的摩尔比为1:3。
称取5mg山奈酚,将其溶于蒸馏水与乙醇体积比为9:1的溶液中,将170mg充分溶胀后的凝胶放置于山奈酚溶液中,放入振荡箱振荡,24h后取出,取上层清液测量吸光度,计算出包封率。
根据药物缓释的最大释放量,在最大吸收波长370nm处测其吸光度值为0.3880。使用 origin软件进行线性拟合,得到标准曲线为y=25.0962x+0.0003,R2=0.9973,从而计算出药物在载体中的质量3.52mg,包封率为70.4%。
载药的未改性的水凝胶薄膜敷料的制备方法如下:
(1)以海藻酸、水、CaCl2为原料,高速搅拌,离心干燥后得到未改性的海藻酸水凝胶薄膜,具体步骤如下:
称取1.98g海藻酸,溶于66ml水,配成质量分数为3%的溶液;高速搅拌该溶液,待溶解完全后静置12h除去气泡;将溶液加入到3%的CaCl2溶液中;待凝胶完全后,将所得产物离心,干燥。
(2)通过将山奈酚负载在水凝胶薄膜上,得到载药的未改性的水凝胶薄膜敷料,此步骤与将山奈酚负载在改性的水凝胶薄膜上的方法相同。
对所合成的载药的未改性的水凝胶薄膜敷料与载药的改性后的水凝胶薄膜敷料进行详细的性能表征,并进行缓释实验。实验数据参见实施例部分。
对制备过程中的中间产物及本发明最终产物进行性能分析。
实施例2
一种负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,包括以下步骤:
称取1.49g海藻酸,溶于61ml水,配成质量分数为2%的溶液;高速搅拌该溶液,待溶解完全后静置10h除去气泡;将溶液加入到2%的CaCl2溶液中;待凝胶完全后,将所得产物离心,干燥。
将1.49g海藻酸溶于61ml水,配成质量分数为2%的溶液;完全溶解后加入0.1mol/L盐酸调节pH至2~4;加入EDC·HCL,搅拌均匀后,再加入辛胺,在20℃下反应24h;用丙酮沉淀法将反应产物沉淀,静置过夜,然后透析三天,冷冻干燥;将产物溶于水,配成1%的溶液,高速搅拌后静置除去气泡;用流延成膜法将混合液加入2%的CaCl2溶液中,待凝胶完全后干燥,其中,EDC·HCL:海藻酸的摩尔比为1:2;辛胺:海藻酸的摩尔比为1:2。
称取4mg山奈酚,将其溶于蒸馏水与乙醇体积比为9:1的溶液中,将160mg充分溶胀后的凝胶放置于山奈酚溶液中,放入振荡箱振荡,24h后取出,取上层清液测量吸光度,计算出包封率。
根据药物缓释的最大释放量,在最大吸收波长处测其吸光度值。根据标准曲线,计算其浓度,从而计算出药物在载体中的质量为3.4mg,包封率为85%。
实施例3
一种负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,包括以下步骤:
称取2.48g海藻酸,溶于71ml水,配成质量分数为4%的溶液;高速搅拌该溶液,待溶解完全后静置12h除去气泡;将溶液加入到4%的CaCl2溶液中;待凝胶完全后,将所得产物离心,干燥。
将2.48g海藻酸溶于71ml水,配成质量分数为4%的溶液;完全溶解后加入0.15mol/L盐酸调节pH至2~4;加入EDC·HCL,搅拌均匀后,再加入辛胺,在25℃下反应24h;用丙酮沉淀法将反应产物沉淀,静置过夜,然后透析三天,冷冻干燥;将产物溶于水,配成3%的溶液,高速搅拌后静置除去气泡;用流延成膜法将混合液加入4%的CaCl2溶液中,待凝胶完全后干燥,其中,EDC·HCL:海藻酸的摩尔比为1:1;辛胺:海藻酸的摩尔比为1:3。
称取6mg山奈酚,将其溶于体积比为15%的乙醇溶液中,将180mg充分溶胀后的凝胶放置于山奈酚溶液中,放入振荡箱振荡,24h后取出,取上层清液测量吸光度,计算出包封率。
根据药物缓释的最大释放量,在最大吸收波长处测其吸光度值。根据标准曲线,计算其浓度,从而计算出药物在载体中的质量为3.6mg,包封率为60%。
对制备过程中的中间产物及本发明最终产物进行性能分析,实验数据与实施例1接近。
对实施例1中所合成的载药的未改性的水凝胶薄膜敷料与载药的改性后的水凝胶薄膜敷料进行详细的性能表征,并进行缓释实验。
具体如下:
(1)红外光谱分析
采用红外光谱(FTIR,Nicolet IS10型)对水凝胶薄膜进行表征。用研砵将水凝胶薄膜磨成粉末,然后采用KBr压片法制样进行测定。
(2)形貌分析
采用扫描电镜(TEM,Su8010型)观察水凝胶薄膜敷料的微观形貌。
(3)接触角分析
采用接触角分析仪(DropShape Analyzer-DSA25)型测定水凝胶薄膜敷料的润湿性。
(4)溶胀性能测试
将改性前和辛胺改性后水凝胶薄膜真空干燥,再分别切成1cm×1cm的片状,称好质量。然后将切好的干凝胶片浸入25℃的蒸馏水中24h,每隔30min取出,准确称重Ws,直至水凝胶保持恒重。根据公式计算溶胀度(SR):
式中:Ws为水凝胶的湿重,g;
Wq为水凝胶的干重,g。
(5)吸水与保湿性能测试
a.吸水率测试:将改性前后且干燥后的水凝胶分别切成1cm×1cm的小片,准确称重,干重为Md;然后将切好的干凝胶片分别浸入蒸馏水中24h后取出,准确称重,湿重为Mw。根据公式计算吸水率(WR):
b.保湿率测试:将吸水溶胀后的水凝胶薄膜放入离心管内,用离心机3500r/min离心3 min,取出准确称重Mh,根据公式(2.3)计算保水率(MR):
式中:Md为干燥水凝胶的干重,g;
Mw为水凝胶吸水后的质量,g;
Mh为水凝胶离心后的质量,g。
(6)机械性能测试
将改性前后的水凝胶膜分别剪成60mm×10mm的条状样品,设置万能试验拉力机的拉伸速度为10mm/min,改性前后的膜各做三组平行样,根据公式计算拉伸强度(T):
式中:T为拉伸强度,Mpa;
F为膜拉断时最大拉力,N;
L为膜的厚度,mm;
W为膜的宽度,mm。
根据公式计算断裂伸长率(E):
式中:E为断裂伸长率,%;
L0为膜的初始长度,mm;
L1为膜拉伸的最大长度,mm。
(7)透气性能测试
干燥的称量瓶装入50ml去离子水,将改性前后的水凝胶膜密封瓶口,静置2h后称重。将密封好的称量瓶置于密闭且干燥的容器中测试48h,每隔2h测定一次称量瓶的质量,测试方法参考文献,按式计算水蒸气透过率(WVTR):
式中:WVTR为水蒸气透过率,g/(m2·s);
ml为称量瓶、去离子水及膜的初重,g;
m2为失水后称量瓶、去离子水及膜的重量,g;
A为称量瓶敞口面积,m2;
T为实验时间,s。
(8)缓释实验
水凝胶薄膜对疏水性药物山奈酚的负载,绘制标准曲线,进行载药的红外分析,进行山奈酚的缓释研究。
称取4~6mg山奈酚,将其溶于5~15%的乙醇溶液中,将160~180mg充分溶胀后的凝胶放置于山奈酚溶液中,放入振荡箱振荡,20~24h后取出,取上层清液测量吸光度,计算出包封率:
分别在1*10-3,2*10-3,3*10-3,4*10-3,5*10-3,10*10-3,20*10-3,30*10-3mg/L的浓度下测量其吸光度,选取最高峰处的吸光度作为评定山奈酚质量浓度的标准,并在此基础上绘制山奈酚的标准曲线,使用origin软件进行线性拟合,得到标准曲线为y=25.0962x+0.0003, R2=0.9973;
根据药物缓释的最大释放量,在最大吸收波长处测其吸光度值;根据标准曲线,计算出药物在载体中的浓度,进而按照下面公式计算出药物累积释放率;
药物累积释放率按公式计算:
Wn—药物累积释放率,cn—释放液中药物浓度,m0—载药体系中药物质量。
图1为实施例1所制备的改性前后的水凝胶薄膜的红外分析:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
图1(a)改中1620cm-1处的峰在b中向高波数蓝移了10cm-1变成1630cm-1,且峰变得更为尖锐、强度更强,这是由于C的邻位存在电负性更强的元素,其吸电子效应更强,导致羰基双键性增强,这表明海藻酸中生成了酰胺键,而生成酰胺键后,海藻酸的侧链空间位阻效应较强,这也会使C=O峰发生蓝移;图1(a)中3430cm-1处为O-H伸缩振动峰,虽然N-H 峰会和O-H峰重叠,但上述分析可判断出图1(b)中3432cm-1处为N-H峰,1630cm-1处为 C=O峰,因此可以说明海藻酸与辛胺发生了缩合反应生成了酰胺键;图1(b)中2927cm-1处的峰为甲基和亚甲基不对称伸缩振动峰,2858cm-1处的峰为亚甲基对称伸缩振动吸收峰,这表明海藻酸上接枝了含亚甲基官能团的侧链。
图2为实施例1所制备的改性前后的水凝胶薄膜的扫描电镜图:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜;(c)载药前海藻酸水凝胶薄膜;(d)载药后海藻酸水凝胶薄膜。
从图2(a)改中可看出改性前海藻酸水凝胶薄膜的扫描电镜图片较平整,但有一些孔洞存在,这是由于改性前海藻酸溶于水后所形成的溶液较粘稠,交联形成的薄膜后不易揭膜,与模具分离时容易损坏。从图2(b)改中可看出改性后海藻酸水凝胶薄膜的扫描电镜图中存在着一些褶皱片层结构,且分布较为均匀,无明显团聚现象,整体较为平整。从图2(c)可看出载药前的薄膜较为平整,存在着一些片层状结构;图2(d)中可明显的看出载药后的薄膜表面布满了大量的颗粒状物质,且分布较均匀,无明显团聚现象,说明山奈酚较好的负载在薄膜上。
图3为实施例1所制备的改性前后的水凝胶薄膜的接触角图:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
图3(a)改中可看出改性前海藻酸水凝胶薄膜的接触角分别为55.1°和35.2°,图3(b) 改中可看出改性后海藻酸水凝胶薄膜的接触角,分别为130.7°和93.0°,这说明改性前海藻酸水凝胶薄膜的亲水性较好,改性后海藻酸水凝胶薄膜疏水性有所提高,表明海藻酸通过改性成功的接枝了疏水性侧链。
图4为实施例1所制备的改性前后的水凝胶薄膜不同温度下的溶胀曲线:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
从图中可以看出,改性前的水凝胶膜在25℃下1h左右就能充分溶胀,达到平衡;而改性后的水凝胶膜在4h左右才充分溶胀达到平衡,且平衡溶胀度达到350%。原因在于海藻酸在辛胺改性后产生侧链,降低聚合物的交联度,增大了溶胀渗透压;并且经辛胺改性后产生很多支链,增加了分子内旋的位阻,亲水性效果增强。因此,水凝胶在改性后的溶胀度比改性前的溶胀度大。
图5为实施例1所制备的改性前后水凝胶薄膜在溶胀状态下的机械性能测试:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
图5(a)、5(b)分别是水凝胶薄膜辛胺改性前后的拉伸应力-应变关系图,表2、3分别是辛胺改性前后水凝胶薄膜拉伸强度与断裂伸长率。由图5(a)、6(b)和表2、3可以看出,改性后的拉伸强度减小,而断裂伸长率增大。这是由于辛胺改性的主要目的在于改善聚合物疏水性位点,提高疏水性药物的负载率。所以改性后水凝胶粘度减小,流动性较差,成膜时的薄膜厚度和结构不均匀,影响了水凝胶薄膜的拉伸强度,而且改性后水凝胶分子支链的增加使分子间作用力也随之减小,从而拉伸强度大幅度降低,而拉伸强度的降低使冲击强度增大,断裂伸长率随之增大,综上说明改性后的水凝胶薄膜的塑性更好。
图6为实施例1所制备的改性前后水凝胶薄膜的水蒸气通过率曲线:(a)改性前海藻酸水凝胶薄膜;(b)改性后海藻酸水凝胶薄膜。
从图中可以看出,改性前的水凝胶膜在室温下随测试时间的增加,膜质量减小幅度较小;改性后的水凝胶膜随着测试时间的增加质量减小幅度较大,说明改性后水凝胶膜透过水蒸气较多。由表4可知,水凝胶在改性后的透气率高达0.068g/(m2·s),明显好于改性前透气率好。这是因为海藻酸是一种天然创伤修复材料,具有独特的离子交换性能,而改性海藻酸在冷冻干燥后制成水凝胶膜的具有疏水多孔结构。因此,水凝胶在改性后的透气率比改性前的透气率大。
图7为实施例1所制备的载药前后的海藻酸水凝胶薄膜热重分析图:(a)载药前海藻酸水凝胶薄膜;(b)载药后海藻酸水凝胶薄膜。
由此分析载药海藻酸水凝胶薄膜中山奈酚的含量。从图(a)中可看出,载药前海藻酸水凝胶薄膜在加热过程中主要有3个热损失阶段,第一阶段200℃以下36%的质量损失主要为样品中剩余溶剂和水分的挥发以及不稳定的含氧基团在受热过程中被氧化成CO,CO2和水蒸气挥发出去了;第二阶段16%的质量损失主要是因为海藻酸的分解;第三阶段12%的质量损失是由于不稳定的碳骨架的热分解;最后约有36%的质量剩余。从图(b)中可看出载药后的水凝胶薄膜热重曲线也分为三个阶段,第一阶段19%的质量损失也为水分和溶剂的挥发以及不稳定的含氧基团被氧化成CO,CO2和水蒸气挥发出去;第二阶段的质量损失增大到30%,这是由于所负载的山奈酚在此温度范围内发生热解,分解温度在200℃~400℃之间,可算得山奈酚负载率约为2%;第三阶段400℃~560℃的质量损失是由于不稳定的碳骨架的热分解;最后约有30%的质量剩余。
图8为实施例1所制备载药后的海藻酸水凝胶薄膜在37℃下所测三组平行样品的缓释曲线图,测试的前8h的释放速度很快,之后的5h内药物释放稍有波动,整个体系的最大累计释放率分别达到55.86%、64.72%、58.03%,随后缓释速率减慢,趋于平缓,80h后依然有药物释放。
表1为实施例1所制备的水凝胶的改性前后水凝胶薄膜的保湿性数据。
表1
试样 | 干重(g) | 湿重(g) | 离心质量(g) | 吸水率(%) | 保水率(%) |
改性前水凝胶膜 | 0.0160 | 0.040 | 0.035 | 147.200 | 88.690 |
辛胺改性水凝胶膜 | 0.017 | 0.116 | 0.106 | 561.140 | 91.960 |
由表可知,改性前水凝胶膜的吸水率和保水率分别为147.20%和88.69%,改性后水凝胶膜的吸水率和保水率分别为561.41%和91.96%。吸水性原理与溶胀原理相同,都在于海藻酸在辛胺改性后产生侧链,降低聚合物的交联度,增大了溶胀渗透压;并且改性后产生的很多支链,增加了分子内旋的位阻,亲水性效果增强,所以吸水率明显增大。而且改性后水凝胶膜交联紧密,结构紧密,保水效果增强。
表2为实施例1所制备的改性前水凝胶薄膜的机械性能数据
表3为实施例1所制备的改性后水凝胶薄膜的机械性能数据
由图5(a)、5(b)和表2、3可以看出,改性后的拉伸强度减小,而断裂伸长率增大。这是由于辛胺改性的主要目的在于改善聚合物疏水性位点,提高疏水性药物的负载率。所以改性后水凝胶粘度减小,流动性较差,成膜时的薄膜厚度和结构不均匀,影响了水凝胶薄膜的拉伸强度,而且改性后水凝胶分子支链的增加使分子间作用力也随之减小,从而拉伸强度大幅度降低,而拉伸强度的降低使冲击强度增大,断裂伸长率随之增大。
表4为实施例1所制备的改性前后水凝胶薄膜的透气性能数据。
由表4可知,水凝胶在改性后的透气率高达0.068g/(m2·s),明显好于改性前透气率好。这是因为海藻酸是一种天然创伤修复材料,具有独特的离子交换性能,而改性海藻酸在冷冻干燥后制成水凝胶膜的具有疏水多孔结构。
Claims (7)
1.一种负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,其特征在于,包括以下步骤:
步骤(1):以海藻酸、水、辛胺、EDC·HCL、CaCl2为原料,高速搅拌,离心干燥后得到改性后的海藻酸水凝胶薄膜;
步骤(2):通过将山奈酚负载在水凝胶薄膜上,得到载药的改性后的水凝胶薄膜敷料,并进行性能表征。
2.根据权利要求1所述的负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,其特征在于:所述的步骤(1),包括如下具体步骤:
将海藻酸溶于水中,配置成质量分数为2~4%的海藻酸溶液,完全溶解后加入0.05~0.15mol/L盐酸调节pH至2~4;加入EDC·HCL,搅拌均匀后,再加入辛胺,在20~30℃下反应20~24h;用丙酮沉淀法将反应产物沉淀,静置过夜,然后透析三天,冷冻干燥;将产物溶于水,配成1~3%的溶液,高速搅拌后静置除去气泡;用流延成膜法将混合液加入2~4%的CaCl2溶液中,待凝胶完全后干燥。
3.根据权利要求2所述的负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,其特征在于:所述步骤(1)中,海藻酸质量1.98g,海藻酸溶液质量分数为3%,CaCl2溶液浓度为3%;
所述的海藻酸溶液用盐调节pH至3~4,加入EDC·HCL和辛胺后,在25℃下反应24h。
4.根据权利要求2所述的负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,其特征在于:所述的EDC·HCL:海藻酸的摩尔比为1:1~1:3;
所述的辛胺:海藻酸的摩尔比为1:1~1:3。
5.根据权利要求1所述的负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,其特征在于:所述的步骤(2),包括如下具体步骤:
将水凝胶浸泡入50ml超纯水中,每隔30min测量一次质量,直至质量不再变化,及使其充分溶胀,称取4~6mg山奈酚,将其溶于5~15%的乙醇溶液中,将160~180mg充分溶胀后的凝胶放置于山奈酚溶液中,放入振荡箱振荡,20~24h后取出,取上层清液测量吸光度,计算出包封率:
6.根据权利要求5所述的负载山奈酚的海藻酸水凝胶敷料载药体系的制备方法,其特征在于:所述的山奈酚质量为5mg,蒸馏水与乙醇体积比为9:1;振荡时间为24h。
7.按照权利要求1-6任一方法所制备的一种负载山奈酚的海藻酸水凝胶敷料载药体系。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810856722.5A CN109232937B (zh) | 2018-07-31 | 2018-07-31 | 一种负载山奈酚的海藻酸水凝胶敷料载药体系及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810856722.5A CN109232937B (zh) | 2018-07-31 | 2018-07-31 | 一种负载山奈酚的海藻酸水凝胶敷料载药体系及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109232937A true CN109232937A (zh) | 2019-01-18 |
CN109232937B CN109232937B (zh) | 2021-06-04 |
Family
ID=65073308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810856722.5A Active CN109232937B (zh) | 2018-07-31 | 2018-07-31 | 一种负载山奈酚的海藻酸水凝胶敷料载药体系及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109232937B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113574096A (zh) * | 2019-02-04 | 2021-10-29 | 日清纺控股株式会社 | 疏水性海藻酸粒子群及其制造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106237374A (zh) * | 2016-08-17 | 2016-12-21 | 林春梅 | 一种医用抗菌水凝胶敷料及其制备方法 |
CN106729960A (zh) * | 2016-12-13 | 2017-05-31 | 金陵科技学院 | 一种负载山奈酚的壳聚糖基水凝胶复合敷料及其制备方法 |
-
2018
- 2018-07-31 CN CN201810856722.5A patent/CN109232937B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106237374A (zh) * | 2016-08-17 | 2016-12-21 | 林春梅 | 一种医用抗菌水凝胶敷料及其制备方法 |
CN106729960A (zh) * | 2016-12-13 | 2017-05-31 | 金陵科技学院 | 一种负载山奈酚的壳聚糖基水凝胶复合敷料及其制备方法 |
Non-Patent Citations (3)
Title |
---|
CE´LINE GALANT: "Altering Associations in Aqueous Solutions of a Hydrophobically Modified Alginate in the Presence of β-Cyclodextrin Monomers", 《AMERICAN CHEMICAL SOCIETY》 * |
夏照帆: "《烧伤外科学高级教程》", 31 March 2014 * |
王宏丽: "海藻酸钠的疏水改性及其对药物的缓释", 《功能材料》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113574096A (zh) * | 2019-02-04 | 2021-10-29 | 日清纺控股株式会社 | 疏水性海藻酸粒子群及其制造方法 |
CN113574096B (zh) * | 2019-02-04 | 2024-05-28 | 日清纺控股株式会社 | 疏水性海藻酸粒子群及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109232937B (zh) | 2021-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking | |
Xu et al. | Morphological and swelling behavior of cellulose nanofiber (CNF)/poly (vinyl alcohol)(PVA) hydrogels: poly (ethylene glycol)(PEG) as porogen | |
Wang et al. | Ultrasonic-assisted synthesis of sodium lignosulfonate-grafted poly (acrylic acid-co-poly (vinyl pyrrolidone)) hydrogel for drug delivery | |
Masruchin et al. | Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly (N-isopropylacrylamide) for model drug release | |
Dumitriu et al. | Multi‐responsive hydrogels based on N‐isopropylacrylamide and sodium alginate | |
CN101703805B (zh) | 一种生物相容性和温敏性纳米复合水凝胶及其制备方法 | |
Lu et al. | Self-healing hydroxypropyl guar gum/poly (acrylamide-co-3-acrylamidophenyl boronic acid) composite hydrogels with yield phenomenon based on dynamic PBA ester bonds and H-bond | |
CN106397646B (zh) | 高强度超分子水凝胶及其制备方法和应用 | |
CN107428930B (zh) | 使用了凝胶前体簇的低浓度凝胶的制造方法和通过该制造方法得到的凝胶 | |
Tao et al. | Carboxymethylated hyperbranched polysaccharide: Synthesis, solution properties, and fabrication of hydrogel | |
CN108484832B (zh) | 一种具有紫外、pH敏感的自愈合水凝胶的制备方法 | |
CN107663263B (zh) | 一种交联海藻酸钠水凝胶及其制备方法和应用 | |
Yin et al. | Smart pH-sensitive hydrogel based on the pineapple peel-oxidized hydroxyethyl cellulose and the Hericium erinaceus residue carboxymethyl chitosan for use in drug delivery | |
Zhao et al. | Effects of cellulose nanocrystal polymorphs and initial state of hydrogels on swelling and drug release behavior of alginate-based hydrogels | |
Rudyardjo et al. | The synthesis and characterization of hydrogel chitosan-alginate with the addition of plasticizer lauric acid for wound dressing application | |
CN107501577B (zh) | 一种可降解原位凝胶的制备方法 | |
Liao et al. | A fungal chitin derived from Hericium erinaceus residue: Dissolution, gelation and characterization | |
Etminani-Isfahani et al. | 4-(6-Aminohexyl) amino-4-oxo-2-butenoic acid as a novel hydrophilic monomer for synthesis of cellulose-based superabsorbents with high water absorption capacity | |
Rahmani et al. | Preparation of self-healable nanocomposite hydrogel based on Gum Arabic/gelatin and graphene oxide: Study of drug delivery behavior | |
Tian et al. | Formation chitosan-based hydrogel film containing silicon for hops β-acids release as potential food packaging material | |
Dong et al. | Hydroxybutyl starch-based thermosensitive hydrogel for protein separation | |
Hu et al. | Photopatterned salecan composite hydrogel reinforced with α-Mo2C nanoparticles for cell adhesion | |
CN112062946A (zh) | 一种基于硼酸酯键的双交联自修复水凝胶及其制备方法和应用 | |
Chaudhary et al. | Carboxymethylagarose-based multifunctional hydrogel with super stretchable, self-healable having film and fiber forming properties | |
CN109232937A (zh) | 一种负载山奈酚的海藻酸水凝胶敷料载药体系及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220826 Address after: Room 108-56, Building F, No. 5 Yongzhi Road, Qinhuai District, Nanjing City, Jiangsu Province, 210000 Patentee after: Nanjing Meicai Technology Co.,Ltd. Address before: No. 99 Jiangning Road, Nanjing District hirokage 211169 cities in Jiangsu Province Patentee before: JINLING INSTITUTE OF TECHNOLOGY |