CN109232594B - 一种螺吡喃-双吡啶衍生物及其对铜(ⅱ)的裸眼检测 - Google Patents

一种螺吡喃-双吡啶衍生物及其对铜(ⅱ)的裸眼检测 Download PDF

Info

Publication number
CN109232594B
CN109232594B CN201811079422.7A CN201811079422A CN109232594B CN 109232594 B CN109232594 B CN 109232594B CN 201811079422 A CN201811079422 A CN 201811079422A CN 109232594 B CN109232594 B CN 109232594B
Authority
CN
China
Prior art keywords
spiropyran
derivative
bipyridine
mol
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811079422.7A
Other languages
English (en)
Other versions
CN109232594A (zh
Inventor
赵宏伟
韩辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201811079422.7A priority Critical patent/CN109232594B/zh
Publication of CN109232594A publication Critical patent/CN109232594A/zh
Application granted granted Critical
Publication of CN109232594B publication Critical patent/CN109232594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6447Fluorescence; Phosphorescence by visual observation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Abstract

本发明属于生物探针材料的制备及其应用技术领域,为了解决目前螺吡喃衍生物的水溶性差,螺吡喃对光敏感,使得其对环境的要求很高,操作也较为复杂的问题,提供了一种螺吡喃衍生物及其对铜(Ⅱ)的裸眼检测,该衍生物是在螺吡喃结构的基础上另加上了两个吡啶基团,该探针的结构式为
Figure DEST_PATH_IMAGE001
;探针分子在加入铜离子前后,溶液颜色在60秒实现从无色至粉色的转变,响应迅速,而加入其它阳离子时并无变化,因此可在有其他离子共存离子的干扰下实现对铜离子的选择性检测。高极性的结构大大提高了该探针的在水体系的溶解性。响应迅速而显著。与Cu2+络合以后,探针分子在可见光区产生吸收,从而实现裸眼检测。

Description

一种螺吡喃-双吡啶衍生物及其对铜(Ⅱ)的裸眼检测
技术领域
本发明属于生物探针材料的制备及其应用技术领域,具体涉及一种螺吡喃-双吡啶衍生物及其对铜(Ⅱ)的裸眼检测,该衍生物将光致变色分子螺吡喃与吡啶结合,可以裸眼检测铜离子的探针。
背景技术
铜,是人体含量第三的过渡金属元素,是蛋白质和酶的辅助因子,在许多基本的生物过程中发挥着至关重要的作用。然而,高浓度的Cu2+会导致严重的肝脏和肾脏损害。而现有的检测铜离子的方法反应速度慢、测量准确度低,也无法实现对金属离子的可逆、实时检测,而光致变色传感器很好地克服了这些缺点。
螺吡喃(Spiropyran,SP)与部花青(Merocyanine,MC)作为一对光致异构体,被广泛研究。根据螺吡喃分子光照前后引起的结构上以及光化学和光物理性质的变化,它作为分子光开关,应用于物理、化学、生物等相关领域。螺吡喃是无色、无化学活性的闭环体,不与金属离子结合,其特征紫外吸收峰在350 nm附近;经紫外光照射会转变成在560 nm处有吸收峰的有化学活性的部花青结构。部花青上的酚氧基提供与金属离子结合的位点,在与金属离子作用前后其吸收强度发生变化,并且在430 nm左右会出现新的峰。利用这一变化即可实现对相应金属离子的检测。之后再用可见光照射等手段,使部花青释放金属离子,从而实现MC→SP的可逆转变。通过对螺吡喃进行修饰,如添加别的基团或结构,使其衍生物能够有选择地与金属离子作用,因此达到选择性识别的目的。
由于现有的大部分螺吡喃衍生物的水溶性并不好,又因为螺吡喃对光的敏感度,使得其对环境的要求很高,操作也较为复杂。故我们设想合成一种水溶性好的螺吡喃衍生物,以便于与生命体系相融,同时实现光学稳定性好、响应速度快、可逆循环次数高。
发明内容
本发明为了解决目前螺吡喃衍生物的水溶性差,螺吡喃对光敏感,使得其对环境的要求很高,操作也较为复杂的问题,提供了一种螺吡喃-双吡啶衍生物及其对铜(Ⅱ)的裸眼检测,该衍生物是在螺吡喃结构的基础上另加上了两个吡啶基团,高极性的结构大大提高了该探针的在水体系的溶解性。吡啶上的两个N各提供一个与Cu2+结合的位点,响应迅速而显著。与Cu2+络合以后,探针分子在可见光区产生吸收,从而实现裸眼检测。
本发明由如下技术方案实现的:一种螺吡喃-双吡啶衍生物,该探针化合物结构式为:
Figure 31017DEST_PATH_IMAGE001
简写为SP-DP。
制备所述的一种螺吡喃-双吡啶衍生物的方法,半花菁与溴乙烷在乙腈溶剂中加热回流,生成半花菁衍生物,半花菁衍生物在碱的作用下得到的有机相用Na2SO4干燥,再蒸发浓缩得到固体;固体与5-硝基水杨醛在乙醇中加热回流发生成环反应生成螺吡喃硝基衍生物,螺吡喃硝基衍生物在氯化亚锡的作用下还原成螺吡喃氨基衍生物,螺吡喃氨基衍生物与两倍量的氯甲基吡啶在碳酸钾与碘化钾的作用下,氨基上的两个氢被吡啶环环取代,生成具有两个吡啶环的螺吡喃-双吡啶衍生物SP-DP。
具体合成步骤如下:
(1)半花菁衍生物的合成:0.04 mol半花菁和0.044 mol溴乙烷溶于50 mL无水乙腈中,在85℃下搅拌回流24 h,待反应完成后,冷却至室温,得到紫黑色混合物,蒸发浓缩;在浓缩液中加入30 m无水乙醚,使之析出沉淀,抽滤得紫红色固体,即半花菁衍生物;
(2)螺吡喃硝基衍生物的合成:将0.0114 mol半花菁衍生物和0.057 mol NaOH溶于20 mL水中,于室温下搅拌1 h,所获溶液用10 mL的乙醚萃取3次,得到的有机相用Na2SO4干燥,再蒸发浓缩得到固体;将0.0114 mol固体和0.012 mol 5-硝基水杨醛加入50 mL乙醇溶剂中,在85℃下搅拌回流12 h,反应完成后,抽滤,并用无水乙醇洗涤,得浅咖啡色固体,即螺吡喃硝基衍生物;
(3)螺吡喃氨基衍生物的合成:将0.0063 mol螺吡喃硝基衍生物溶于80 mL无水乙醇中,待溶解充分后,再分次向其中加入0.0252 mol SnCl2,在85℃下搅拌回流12 h,待反应完成后,将所得混合液蒸发浓缩至10 mL,之后加入到100 mL体积比为1:2的冰水和乙酸乙酯混合液中,并向其中加入50 mL 5% NaOH水溶液至沉淀溶解,最终使整个体系呈黄绿色;用乙酸乙酯萃取分液2次,合并有机相,用无水Na2SO4干燥,旋转蒸发得深红色油状粗产品,再用柱色谱进行分离提纯,洗脱剂:石油醚/乙酸乙酯 =4:1,V/V,最终得深红棕色油状固体,即螺吡喃氨基衍生物;
(4)螺吡喃-双吡啶衍生物的合成:将0.4493 mmol螺吡喃氨基衍生物和0.8986mmol 2-氯甲基吡啶溶于50 mL乙腈,随后加入2.696 mmol K2CO3和催化剂量的KI(5mg),在85℃下搅拌回流6 h,蒸发浓缩后加入50 mL CH2Cl2,并向其中加入H2O,至过量K2CO3恰好溶解,用CH2Cl2萃取3次,分液,有机相用无水Na2SO4干燥;蒸发浓缩后得粗产品;用柱色谱进行分离提纯,洗脱剂:甲醇/二氯甲烷=1/9,V/V,最终得浅绿色油状固体,即具有两个吡啶环的螺吡喃-双吡啶衍生物。
该荧光探针在Cu2+的检测中的应用。
该荧光探针检测Cu2+的方法,步骤为:
(1)用DMSO配制2 mM的荧光探针母液;
(2)20µL探针分子SP-DP的母液以及pH=7.4,50 mM的PB溶液1980µL加入比色皿中,使探针分子终浓度为20 µM,测量紫外-可见吸收光谱,探针在380 nm处有一个螺吡喃环的吸收峰,之后加入Cu2+,测量紫外-可见吸收光谱,紫外吸收在517 nm处出现新峰。
本发明所述螺吡喃-双吡啶衍生物对Cu2+的检测:该螺吡喃探针分子在加入铜离子前后,溶液颜色在60秒实现从无色至粉色的转变,响应迅速,而加入其它阳离子时并无变化,因此可在有其他离子共存离子的干扰下实现对铜离子的选择性检测。该衍生物是在螺吡喃结构的基础上另加上了两个吡啶基团,高极性的结构大大提高了该探针的在水体系的溶解性。所做的分析检测在98% 水溶液(98:2=H2O:DMSO)体系中进行的,证明探针的溶解性非常好。另外,推测探针检测Cu离子的机理是:吡啶上的两个N,以及苯环上的一个N一起提供了一个与Cu2+特异选择性的结合位点,响应迅速而显著。与Cu2+络合以后,探针分子在可见光区产生吸收,从而实现裸眼检测。
附图说明
图1为螺吡喃氨基衍生物的1H NMR图;图2为螺吡喃-双吡啶探针的1H NMR图;图3为螺吡喃-双吡啶探针的13C NMR图;图4为螺吡喃-双吡啶探针的质谱图;图5为螺吡喃-双吡啶探针分子加入1当量Cu2+离子前后的紫外-可见吸收光谱。图6为其它阳离子存在时螺吡喃-双吡啶探针分子对Cu2+作用的517 nm处紫外吸收光谱柱状图。图7为螺吡喃-双吡啶探针分子(50 mM)加入各种阳离子(1.eq)后溶液颜色变化对比图;图8为半花菁衍生物的合成路线图;图9为螺吡喃硝基衍生物合成路线图;图10为螺吡喃氨基衍生物的合成路线图;图11为螺吡喃-双吡啶衍生物SP-DP合成路线图。
具体实施方式
实施例1:一种螺吡喃-双吡啶衍生物,该探针化合物结构式为:
Figure 10475DEST_PATH_IMAGE001
,简写为SP-DP。
制备所述的螺吡喃-双吡啶衍生物的方法,半花菁与溴乙烷在乙腈溶剂中加热回流,生成半花菁衍生物,半花菁衍生物在碱的作用下生成黄色油状液体,油状液体与5-硝基水杨醛在乙醇中加热回流发生成环反应生成螺吡喃硝基衍生物,螺吡喃硝基衍生物在氯化亚锡和乙酸的作用下还原成螺吡喃氨基衍生物,螺吡喃氨基衍生物与两倍量的氯甲基吡啶在碳酸钾与碘化钾的作用下,氨基上的两个氢被吡啶环环取代,生成具有两个吡啶环的螺吡喃-双吡啶衍生物SP-DP。
具体合成步骤如下:
(1)半花菁衍生物的合成:将半花菁(6.40 g,0.04 mol)和溴乙烷(4.80 g,0.044mol)溶于50 mL无水乙腈中,在85°C下搅拌回流24 h。待反应完成后,冷却至室温,得到紫黑色混合物,蒸发浓缩。在浓缩液中加入少量无水乙醚,使之析出沉淀,迅速抽滤得紫红色固体6.57 g,产率61.28%。
(2)螺吡喃硝基衍生物的合成:将半花菁衍生物(3.05 g,0.0114 mol)和NaOH(2.29 g,0.057 mol)溶于水中,于室温下搅拌1 h。所获溶液用10 mL的乙醚萃取3次,得到的有机相用Na2SO4干燥,再蒸发浓缩得到固体。将所得固体(2.13 g,0.0114 mol)和5-硝基水杨醛(2.01 g,0.012 mol)加入50 mL乙醇溶剂中,在85°C下搅拌回流12 h。反应完成后,抽滤,并用少量无水乙醇洗涤,得浅咖啡色固体2.79 g,即螺吡喃硝基衍生物,产率73.48%。
(3)螺吡喃氨基衍生物的合成:将螺吡喃硝基衍生物(2.13 g,0.0063 mol)溶于80mL无水乙醇中,待溶解充分后,再分次向其中加入0.0252 mol SnCl2,在85°C下搅拌回流12h。待反应完成后,将所得混合液蒸发浓缩至10 mL左右。之后缓慢加入到冰水和乙酸乙酯(1:2)混合液 100 mL中,并向其中加入50 mL 5% NaOH水溶液至沉淀溶解,最终使整个体系呈黄绿色。用乙酸乙酯萃取分液2次,合并有机相,用无水Na2SO4干燥,旋转蒸发得深红色油状粗产品。再用柱色谱进行分离提纯(洗脱剂:石油醚/乙酸乙酯 =4:1,V/V),最终得深红棕色油状固体0.93 g,产率48.32%。1H NMR (600 MHz, CDCl3) δ 7.14 (t, J = 7.5 Hz,1H), 7.10-7.00 (m, 2H), 6.78 (t, J = 7.4 Hz, 1H), 6.71 (d, J = 10.0 Hz, 1H),6.52 (d, J = 7.8 Hz, 2H), 6.47 (d, J = 8.4 Hz, 1H), 5.66 (d, J = 10.1 Hz,2H), 3.34-3.31 (m, 1H), 3.16 (dd, J = 14.7, 7.0 Hz, 1H), 1.28 (s, 3H), 1.16(dd, J = 14.2, 7.2 Hz, 3H), 1.13 (s, 3H)。
(4)螺吡喃-双吡啶衍生物的合成:将螺吡喃氨基衍生物(0.1375 g,0.4493 mmol)和2-氯甲基吡啶(0.1449 g,0.8986 mmol)溶于50 mL乙腈,随后加入K2CO3(0.3726 g,2.696mmol)和(5 mg)KI。在85°C下搅拌回流6 h。蒸发浓缩后加入适量CH2Cl2,并缓慢向其中加入H2O,直至过量K2CO3恰好溶解。用CH2Cl2萃取3次,分液,有机相用无水Na2SO4干燥。蒸发浓缩后得粗产品0.1973 g。柱色谱进行分离提纯(洗脱剂:甲醇/二氯甲烷=1/9,V/V),最终得浅绿色油状固体0.0755 g,产率34.43%。 1H NMR (600 MHz, DMSO, δ/ppm) 8.67 (s, 1H),8.58 (d, J = 9.3 Hz, 1H), 8.46 (s, 2H), 8.43 – 8.39 (m, 2H), 8.35 – 8.32 (m,3H), 8.20 – 8.16 (m, 2H), 7.97 (d, J = 7.5 Hz, 1H), 7.81 (d, J = 15.8 Hz,1H), 7.75 (d, J = 15.8 Hz, 1H), 7.65 – 7.70 (m, 2H), 7.50 (t, J = 7.7 Hz,1H), 7.25 (t, J = 7.5 Hz, 1H), 4.49 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H)。 13C NMR(151 MHz, CDCl3) δ159.43, 149.75, 147.41, 146.71, 142.36, 136.92, 129.64,127.54, 122.11, 121.71, 121.21, 120.69, 118.99, 118.37, 115.67, 114.64,111.12, 106.17, 104.04, 58.09 – 58.02 (m), 52.05, 37.99, 26.17, 20.33, 14.61。
实施例2:螺吡喃-双吡啶探针检测Cu2+
螺吡喃-双吡啶探针母液的配制:用DMSO作溶剂,配制终浓度为2 mM的螺吡喃-双吡啶探针分子的母液。
取20µL探针分子SP-DP的母液以及1980µL PB(pH=7.4,50 mM)于比色皿中,使其终浓度为20 µM,测量紫外-可见吸收光谱,可见其在380 nm处有一个螺吡喃环的吸收峰。之后加入1当量的Cu2+,紫外吸收在517 nm处出现一个新的峰,这表明Cu2+与螺吡喃探针分子以一定方式结合生成新的物质。
在与检测Cu2+完全相同的条件下,对其它常见金属离子(Fe3+、Zn2+、Mn2+、Co2+、Hg2+、Cd2+、Sn2+、Ni2+、Cr2+、Ag+、Fe2+)进行了检测。取20µL螺吡喃探针分子的母液以及1980µL PB(pH=7.4,50 mM)于比色皿中,测量紫外-可见吸收光谱,再向其溶液中分别加入1 当量的上述阳离子。用吸光度的变化来评价探针的选择性。之后我们研究了共存离子对该探针检测Cu2+的影响。向已加入1 当量的各种阳离子的探针SP-DP溶液中加入1 当量的Cu2+,测量其前后吸光度的变化。观察紫外吸收变化可得,该探针分子可良好的、有选择性地检测Cu2+
同时,该螺吡喃探针分子在加入铜离子前后,溶液颜色实现从无色至粉色的转变,而加入其它阳离子时并无变化,因此可在有其他离子共存离子的干扰下实现对铜离子的选择性检测。

Claims (5)

1.一种螺吡喃-双吡啶衍生物,其特征在于:该探针化合物结构式为:
Figure 345120DEST_PATH_IMAGE001
,简写为SP-DP。
2.制备权利要求1所述的一种螺吡喃-双吡啶衍生物的方法,其特征在于:半花菁与溴乙烷在乙腈溶剂中加热回流,生成半花菁衍生物,半花菁衍生物在碱的作用下得到的有机相用Na2SO4干燥,再蒸发浓缩得到固体;固体与5-硝基水杨醛在乙醇中加热回流发生成环反应生成螺吡喃硝基衍生物,螺吡喃硝基衍生物在氯化亚锡的作用下还原成螺吡喃氨基衍生物,螺吡喃氨基衍生物与两倍的物质的量的氯甲基吡啶在碳酸钾与碘化钾的作用下,氨基上的两个氢被吡啶环环取代,生成具有两个吡啶环的螺吡喃-双吡啶衍生物SP-DP;所述半花菁的结构式为:
Figure DEST_PATH_IMAGE002
3.根据权利要求2所述的制备螺吡喃-双吡啶衍生物的方法,其特征在于:具体合成步骤如下:
(1)半花菁衍生物的合成:0.04 mol半花菁和0.044 mol溴乙烷溶于50 mL无水乙腈中,在85℃下搅拌回流24 h,待反应完成后,冷却至室温,得到紫黑色混合物,蒸发浓缩;在浓缩液中加入30 mL无水乙醚,使之析出沉淀,抽滤得紫红色固体,即半花菁衍生物;
(2)螺吡喃硝基衍生物的合成:将0.0114 mol半花菁衍生物和0.057 mol NaOH溶于20mL水中,于室温下搅拌1 h,所获溶液用10 mL的乙醚萃取3次,得到的有机相用Na2SO4干燥,再蒸发浓缩得到固体;将0.0114 mol所得固体和0.012 mol 5-硝基水杨醛加入50 mL乙醇溶剂中,在85℃下搅拌回流12 h,反应完成后,抽滤,并用无水乙醇洗涤,得浅咖啡色固体,即螺吡喃硝基衍生物;
(3)螺吡喃氨基衍生物的合成:将0.0063 mol螺吡喃硝基衍生物溶于80 mL无水乙醇中,待溶解充分后,再分次向其中加入0.0252 mol SnCl2,在85℃下搅拌回流12 h,待反应完成后,将所得混合液蒸发浓缩至10 mL,之后加入到100 mL体积比为1:2的冰水和乙酸乙酯混合液中,并向其中加入50 mL 5%的NaOH水溶液至沉淀溶解,最终使整个体系呈黄绿色;用乙酸乙酯萃取分液2次,合并有机相,用无水Na2SO4干燥,旋转蒸发得深红色油状粗产品,再用柱色谱进行分离提纯,洗脱剂:石油醚/乙酸乙酯 =4:1,V/V,最终得深红棕色油状固体,即螺吡喃氨基衍生物;
(4)螺吡喃-双吡啶衍生物的合成:将0.4493 mmol螺吡喃氨基衍生物和0.8986 mmol2-氯甲基吡啶溶于50 mL乙腈,随后加入2.696 mmol K2CO3和催化剂量5mg的KI,在85℃下搅拌回流6 h,蒸发浓缩后加入50 mL CH2Cl2,并缓慢向其中加入H2O,直至过量K2CO3恰好溶解,用CH2Cl2萃取3次,分液,有机相用无水Na2SO4干燥;蒸发浓缩后得粗产品;用柱色谱进行分离提纯,洗脱剂:甲醇/二氯甲烷=1/9,V/V,最终得浅绿色油状固体,即具有两个吡啶环的螺吡喃-双吡啶衍生物。
4.权利要求1所述的一种螺吡喃-双吡啶衍生物的应用,其特征在于:该荧光探针在Cu2+的检测中的应用。
5.根据权利要求4所述的一种螺吡喃-双吡啶衍生物的应用,其特征在于:该荧光探针检测Cu2+的方法,步骤为:
(1)用DMSO配制2 mM的荧光探针母液;
(2)20µL探针分子SP-DP的母液以及pH=7.4,50 mM的PB溶液1980µL加入比色皿中,使探针分子终浓度为20 µM,测量紫外-可见吸收光谱,可见探针在380 nm处有一个螺吡喃环的吸收峰,之后加入Cu2+,测量紫外-可见吸收光谱,紫外吸收在517 nm处出现新峰。
CN201811079422.7A 2018-09-17 2018-09-17 一种螺吡喃-双吡啶衍生物及其对铜(ⅱ)的裸眼检测 Active CN109232594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811079422.7A CN109232594B (zh) 2018-09-17 2018-09-17 一种螺吡喃-双吡啶衍生物及其对铜(ⅱ)的裸眼检测

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811079422.7A CN109232594B (zh) 2018-09-17 2018-09-17 一种螺吡喃-双吡啶衍生物及其对铜(ⅱ)的裸眼检测

Publications (2)

Publication Number Publication Date
CN109232594A CN109232594A (zh) 2019-01-18
CN109232594B true CN109232594B (zh) 2021-02-02

Family

ID=65058568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811079422.7A Active CN109232594B (zh) 2018-09-17 2018-09-17 一种螺吡喃-双吡啶衍生物及其对铜(ⅱ)的裸眼检测

Country Status (1)

Country Link
CN (1) CN109232594B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280551B (zh) * 2020-10-28 2023-06-20 西北师范大学 基于pda和双(6-甲酰基苯氧基)-二吡啶铜的热致可逆变色复合材料的制备
CN114507239B (zh) * 2022-01-17 2023-07-25 常州大学 用于检测铜离子的螺吡喃类n-苯丙胺化合物比色探针及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357045A (zh) * 2014-11-05 2015-02-18 北京化工大学 具有极酸/极碱开关响应的螺吡喃小分子荧光探针的合成方法及其应用
CN105541855A (zh) * 2015-11-25 2016-05-04 内蒙古自治区科学技术研究院有限责任公司东部分院 一种与螺吡喃键合的1,8-萘酰亚胺化合物及制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094368B2 (en) * 2003-12-10 2006-08-22 Transitions Optical, Inc. Pyrano-quinolines, pyrano-quinolinones, combinations thereof, photochromic compositions and articles
US20070195309A1 (en) * 2004-11-18 2007-08-23 Wisconsin Alumni Research Foundation Photochromic probes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357045A (zh) * 2014-11-05 2015-02-18 北京化工大学 具有极酸/极碱开关响应的螺吡喃小分子荧光探针的合成方法及其应用
CN105541855A (zh) * 2015-11-25 2016-05-04 内蒙古自治区科学技术研究院有限责任公司东部分院 一种与螺吡喃键合的1,8-萘酰亚胺化合物及制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Spiropyran-Based Fluorescent Anion Probe and Its Application for Urinary Pyrophosphate Detection;Na Shao et al.;《Analytical Chemistry》;20100601;第82卷(第11期);第4628-4636页 *
螺吡喃光响应的汞、铬、银离子探针及相互作用光谱;李斌连等;《光谱学与光谱分析》;20130430;第33卷(第4期);第1092-1097页 *

Also Published As

Publication number Publication date
CN109232594A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Li et al. A novel solvent-dependently bifunctional NIR absorptive and fluorescent ratiometric probe for detecting Fe3+/Cu2+ and its application in bioimaging
Dai et al. A novel 2-(hydroxymethyl) quinolin-8-ol-based selective and sensitive fluorescence probe for Cd2+ ion in water and living cells
Chen et al. A highly selective naked-eye and fluorescent probe for fluoride ion based on 1, 8-naphalimide and benzothizazole
Huo et al. Isophorone-based aldehyde for “ratiometric” detection of cyanide by hampering ESIPT
Bhalla et al. Rhodamine appended terphenyl: A reversible “off–on” fluorescent chemosensor for mercury ions
Kundu et al. Developing new Schiff base molecules for selective colorimetric sensing of Fe3+ and Cu2+ metal ions: Substituent dependent selectivity and colour change
Yu et al. A novel turn-on fluorescent probe for cyanide detection in aqueous media based on a BODIPY-hemicyanine conjugate
Dong et al. A novel ferrocenyl-based multichannel probe for colorimetric detection of Cu (II) and reversible fluorescent “turn-on” recognition of Hg (II) in aqueous environment and living cells
Xu et al. A novel “Turn-On” fluorescent probe for F− detection in aqueous solution and its application in live-cell imaging
Zhao et al. Molecular design for novel sensing materials with self-screening interference effect (SSIE): reversible recognizing Cu2+ in aqueous and biologic samples
Cheung et al. Hg2+ sensing in aqueous solutions: an intramolecular charge transfer emission quenching fluorescent chemosensors
Kumar et al. Imidazole-derived new colorimetric/fluorometric chemosensor for the sensitive recognition of CN− ions: Real-time application in food samples and fluorescence bio-imaging
Chebrolu et al. Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple quinoline–carbaldehyde chemosensor
Pan et al. Two highly sensitive fluorescent probes based on cinnamaldehyde with large Stokes shift for sensing of HSO 3− in pure water and living cells
Jiang et al. A novel chemosensor for the distinguishable detections of Cu2+ and Hg2+ by off–on fluorescence and ratiometric UV–visible absorption
CN109232594B (zh) 一种螺吡喃-双吡啶衍生物及其对铜(ⅱ)的裸眼检测
Seenan et al. A new furan based fluorescent chemosensor for the recognition of Cr3+ ion and its application in real sample analysis
CN108658838B (zh) 一种基于七甲川吲哚菁的甲醛荧光探针及其制备方法和使用方法
Wang et al. A near-infrared squaraine dye for cascade recognition of copper ion and biological phosphate and its application in IMPLICATION logic gate
Zhang et al. Phenazine-based colorimetric and fluorescent sensor for the selective detection of cyanides based on supramolecular self-assembly in aqueous solution
Peng et al. Two cyanoethylene-based fluorescence probes for highly efficient cyanide detection and practical applications in drinking water and living cells
Fan et al. A novel and reversible multifunction probe for Al3+ and F− by fluorogenic and colorimetric method
Masood et al. A new palladium complex as a dual fluorometric and colorimetric probe for rapid determination of sulfide anion
Zhu et al. An EDTA promoted coordination induced disaggregation for specific Hg2+ detection
CN107973785B (zh) 一种用于检测银离子的荧光探针及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant