CN109231646A - 一种工业含铬废水的处理方法 - Google Patents

一种工业含铬废水的处理方法 Download PDF

Info

Publication number
CN109231646A
CN109231646A CN201811202674.4A CN201811202674A CN109231646A CN 109231646 A CN109231646 A CN 109231646A CN 201811202674 A CN201811202674 A CN 201811202674A CN 109231646 A CN109231646 A CN 109231646A
Authority
CN
China
Prior art keywords
water
chromium
waste water
pipeline
sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811202674.4A
Other languages
English (en)
Inventor
高云鹏
章嘉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811202674.4A priority Critical patent/CN109231646A/zh
Publication of CN109231646A publication Critical patent/CN109231646A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明公开了一种工业含铬废水的处理方法,本方法中铬反应池为独创设计,核心采用了浸铜铁屑与蛋白质泡沫的双重处理技术,第一步利用铜和铁的电位差不同,在铁表面形成了Cu‑Fe原电池,原电池增加了铁屑表面离子的活性电位,从而促进了铁表面的电子转移,加快了还原去除铬离子的反应速率。第二步利用碱化后的蛋白质,蛋白质表面具有了活性,使水中的铬离子与表面活性剂形成络合沉淀吸附在气泡表面,随着气泡不断上浮至溶液主体上方,形成泡沫层,排出泡沫,达到去除目的。同时石英砂、砂土的过滤以及曝气,使化学需氧量、氨氮等有机物浓度大幅降低。

Description

一种工业含铬废水的处理方法
技术领域
本发明一种工业含铬废水的处理方法,属于环境保护中的废水处理领域。
背景技术
在我们的生活饮用水中,虽然存在的量较少,但却是含铬;铬在水中多以六价铬和三价铬两种态形式出现,其中毒性较强的是六价铬,大约是三价铬的100倍,六价铬又主要以铬酸盐的形式存在。含铬污水处理方法主要有药剂还原沉淀法、SO2还原法、铁屑铁粉处理法等。铬渣是在金属铬生产过程中排出的废渣,主要是重铬酸钠。铬渣大多呈粉末状,有黄、黑等颜色;渣中含有镁、钙、硅、铁、铝和没有反应的三氧化二铬。药剂还原沉淀法
还原沉淀法是目前应用较为广泛的含铬废水处理方法。基本原理是在酸性条件下向废水中加入还原剂,将Cr6+还原成Cr3+,然后再加入石灰或氢氧化钠,使其在碱性条件下生成氢氧化铬沉淀,从而去除铬离子。可作为还原剂的有:SO2、FeSO4 、Na2SO3、NaHSO3、Fe等。还原沉淀法具有一次性投资小、运行费用低、处理效果好、操作管理简便的优点,因而得到广泛应用,但在采用此方法时,还原剂的选择是至关重要的一个问题。
铁氧体法不仅具有还原法的一般优点,还有其特点,即铬污泥可制作磁体和半导体,这样不但使铬得以回收利用,又减少了二次污染的发生,出水水质好,能达到排放标准。但是,铁氧体法也有试剂投量大,能耗较高,不能单独回收有用金属,处理成本较高的缺点。
离子交换法的优点是处理效果好,废水可回用,并可回收铬酸。尤其适用于处理污染物浓度低、水量小、出水要求高的废水。缺点是工艺较为复杂,且使用的树脂不同,工艺也不同;一次投资较大,占地面积大,运行费用高,材料成本高,因此对于水量很大的工业废水,该法在经济上不适用。
发明内容
为解决现有技术中存在的不足,本发明提供了一种工业含铬废水的处理方法,含铬废水通过管道进入格栅,废水中的杂质等在此处被拦截,格栅的出水通过管道进入沉砂池,沉淀时间为2h,沉砂池出水通过管道进入调节池,在此处把工业废水的pH调节至中性,调节池的出水通过管道进入铬反应池的加热仓中,由加药口将95%浓硫酸加入进加热仓内,浓硫酸与废水的比例为1:50,之后加热电阻丝开始对水体加热,加热温度控制在200℃,时间为2h,使废水完全被酸化,加热过程中,打开水槽入口与水槽出口,开启循环水泵,将蓄水池的水引入水槽中,待加热完成,打开加热仓出口,废水由加热仓经水槽的过水管流入反应器中,在循环水的作用下,热的废水流经过水管时,被循环水冷却、降温后,进入反应器内,反应器内添加3层填料,从上至下分别为石英砂、砂土、制备铁屑,流经反应器的酸化废水中的有机物得到大幅度的消减,废水流经制备铁屑层,铜和铁的电位差不同,在铁表面形成了Cu-Fe原电池,加快了酸化废水中还原去除铬离子的反应速率,废水由反应器底部流出,进入缓冲箱内,此时由废水带出少量的滤料受到重力总用,留在缓冲箱部,液面高度到达缓冲箱中间的出水口时,废水从此处经管道流入过渡箱中,待废水全部进入缓冲箱内,开启磁铁搅拌器,转速为30r/min,水中携带出来的制备铁屑被磁铁收集,吸附在磁铁搅拌器的扇叶上,持续10min后,开启提升水泵将废水送入气泡发生器内,同时加入经氢氧化钠碱化后的蛋清液,废水和蛋清液进入气泡发生器内,开启曝气泵,外界空气经由曝气泵送入气泡发生器内,曝气泵控制流量为3L/min,碱化后的蛋清液表面具有了活性,使水中的铬离子与表面活性剂形成络合沉淀吸附在气泡表面,随着气泡不断上浮至溶液主体上方,形成泡沫层,泡沫经管道进入泡沫箱内,开启加热装置,蛋白质受热变为固体,固定其中的铬及部分有机物,待集中收集焚烧处置,气体则由箱内的气体出口排出池体,待气泡发生器处理完毕,打开铬反应池出水口,气泡发生器中的出水由管道排出铬反应池进入二沉池,二沉池的出水通过管道进入蓄水池,蓄水池中的储水通过循环水出水口及管道能够返回反应池中作为冷却水使用,蓄水池的出水口通过管道连接排放管道。
其中,铬反应池包括加热仓、水槽、循环水泵、反应器、缓冲箱、过渡箱、气泡发生器、泡沫箱、曝气泵、气体入口、气体出口、铬反应池出水口、铬反应池入水口、加药口等;其中:加热仓位于池体上部,密闭式结构,内置一组加热电阻丝,底端两侧设有加热仓出口,顶部与铬反应池入水口连通;水槽位于加热仓下,为密封式长方体,水槽两端分别设有水槽入口和水槽出口,水槽入口与外侧的循环水泵连接,水槽出口通过管道连接蓄水池的循环水入水口,水槽内部垂直分布多根过水管,过水管为玻璃材质,壁厚0.5cm,高50cm,直径为2cm,每根过水管间距为10cm,循环水无法进入过水管,加热仓出口通过玻璃管道连接水槽内的过水管;反应器位于水槽下的缓冲箱内,顶端由玻璃管道连接水槽内的过水管,反应器为圆柱形设计,高70cm,直径2.5m,内添加5层填料,从上至下分别为石英砂、砂土、制备铁屑、砂土、石英砂;铬反应池内左下方设置过渡箱,过渡箱内安装提升水泵和磁铁搅拌器,缓冲箱出水口通过管道连接过渡箱;气泡发生器位于缓冲箱下,气体入口通过管道连接曝气泵,曝气泵通过管道连接气泡发生器,气泡发生器底部通过管道连接铬反应池的出水口;铬反应池体右下方设置泡沫箱,泡沫箱内布置加热装置,泡沫箱右侧与气体出口连通,泡沫箱通过管道连接气泡发生器;加药口位于池体顶端。
其中,石英砂层高10cm,砂土层高5cm,制备铁屑层高40cm。
其中,泡沫箱中加热装置加热温度为120℃。
其中,经氢氧化钠碱化后的蛋清液为经加入氢氧化钠高速搅拌碱化后的蛋清液,pH为9-10。
其中,制备铁屑为工业铁屑经10%稀盐酸清洗后,在10g/L的硫酸铜溶液中搅拌2h后,烘干得到,其粒径平均为0.2mm。
本发明的优点在于:
(1)本方法完全适应于各种类型的工业含铬废水的处理,能够达到国家的废水排放标准,符合环保要求。
(2)废水中的铬元素以及各项污染物的浓度处理效率高,水中铬的处理效率达到100%,化学需氧量处理效率可达98.0%以上,氨氮的处理效率可达98.3%以上,悬浮物的处理效率可达99.8%以上,出水水质不带有明显色度。
(3)本方法铬反应池为独创设计,核心采用了浸铜铁屑与蛋白质泡沫的双重处理技术,第一步利用铜和铁的电位差不同,在铁表面形成了Cu-Fe原电池,原电池增加了铁屑表面离子的活性电位,从而促进了铁表面的电子转移,加快了还原去除铬离子的反应速率。第二步利用碱化后的蛋白质,蛋白质表面具有了活性,使水中的铬离子与表面活性剂形成络合沉淀吸附在气泡表面,随着气泡不断上浮至溶液主体上方,形成泡沫层,排出泡沫,达到去除目的。同时石英砂、砂土的过滤以及曝气,使化学需氧量、氨氮等有机物浓度大幅降低。
(4)本方法内的主要处理工艺的原材料制备简单,技术成熟,原料绿色,来源丰富,无毒无害,不会对环境造成二次污染。
附图说明
图1是本发明的设备示意图。
图中:1-格栅、2-沉砂池、3-调节池、4-铬反应池、5-二沉池、6-蓄水池
图2是铬反应池的示意图。
图中:41-加热仓、42-加热电阻丝、43-加热仓出口、44-水槽、45-过水管、46-循环水泵、47-水槽入口、48-水槽出口、49-反应器、410-缓冲箱、411-过渡箱、412-提升水泵、413-气泡发生器、414-泡沫箱、415-曝气泵、416-气体入口、417-气体出口、418-铬反应池出水口、419-铬反应池入水口、420-加药口、421-导流阀、422-磁铁搅拌器、423-加热装置。
具体实施方式
如图1所示的一种工业含铬废水的处理方法,该方法使用的系统系统包括格栅1、沉砂池2、调节池3、铬反应池4、二沉池5、蓄水池6等;其中:来自工业生产过程中的含铬废水通过管道连接格栅1的入水口,废水中的杂质在此处等被拦截。格栅1的出水口通过管道连接沉砂池2的入水口,废水中的细小颗粒在此处沉淀,沉淀时间为2h。沉砂池2的出水口通过管道连接调节池3的入水口,在此处把工业废水的pH调节至中性。调节池3的出水口通过管道连接铬反应池4的入水口,铬反应池4的出水口通过管道连接二沉池5的入水口,由铬反应池4的出水中有部分杂质在此处得到沉淀。二沉池5的出水口通过管道连接蓄水池6的入水口,蓄水池6的循环水出水口通过管道连铬反应池4的循环水入水口,铬反应池4的循环水出水口通过管道连接蓄水池6的循环水入水口,在此处存水当冷却水回流备用,并在此处将pH调节至中性待排放。蓄水池6的出水口通过管道连接排放管道。其中,铬反应池4包括加热仓41、加热电阻丝42、加热仓出口43、水槽44、过水管45、循环水泵46、水槽入口47、水槽出口48、反应器49、缓冲箱410、过渡箱411、提升水泵412、气泡发生器413、泡沫箱414、曝气泵415、气体入口416、气体出口417、铬反应池出水口418、铬反应池入水口419、加药口420、导流阀等421、磁铁搅拌器422、加热装置423;其中:加热仓41位于池体上部,密闭式结构,内置一组加热电阻丝42于仓底,底端两侧设有加热仓出口43,顶部与铬反应池入水口419联通;水槽44位于加热仓41下,水槽44内分布多根过水管45,水槽44底部留有水槽入口47和水槽出口48,水槽入口47左侧设有循环水泵46,循环水泵46经循环水管道连接水槽入口47,加热仓出口43通过玻璃管道连接水槽44内的过水管45;反应器49位于水槽44下,顶端由玻璃管道连接水槽44内的过水管45,反应器49外设有缓冲箱410,反应器49位于缓冲箱410中心位置,缓冲箱410中部设有出水口;池内左下方设置过渡箱411,过渡箱411内安装提升水泵412,缓冲箱410出水口通过管道连接过渡箱411;气泡发生器413位于缓冲箱下410,气体入口416通过管道连接曝气泵415,曝气泵415通过管道连接气泡发生器413底部,气泡发生器413底部设有出水口,其通过管道连接铬反应池的出水口418;池体右下方设置泡沫箱414,泡沫箱414右侧与气体出口417联通,泡沫箱414通过管道连接气泡发生器413; 加药口420位于池体顶端,加药口420连接池内导流阀421。废水经过调节池3调整pH为中性后,经铬反应池入水口419进入铬反应池4的加热仓41中,此时关闭所有的进水口,由加药口420将95%浓硫酸加入进加热仓41内,浓硫酸与废水的比例为1:50,之后加热电阻丝42开始对水体加热,加热仓41为钢筋混凝土设计,内壁进行抗高温高压、防腐抗酸处理,加热温度控制在200℃,时间为2h,使废水完全被酸化。加热过程中,打开水槽入口47与水槽出口48,开启循环水泵46,将蓄水池6的水引入水槽44中。过水管45为玻璃材质,壁厚0.5cm,高50cm,直径为2cm,每根过水管45间距为10cm,水槽44内部的循环水无法进入过水管45。待加热完成,打开加热仓出口43,废水由加热仓41两侧分别经水槽的过水管45流入反应器49中,在循环水的作用下,热的废水流经过水管45时,被循环水冷却、降温后,进入反应器49内。反应器49为圆柱形设计,高70cm,直径2.5m,内添加3层填料,从上至下分别为石英砂、砂土、制备铁屑;石英砂层高10cm,砂土层高5cm,制备铁屑层高40cm,流经反应器49的酸化废水中的有机物得到大幅度的消减,废水流经制备铁屑层,铜和铁的电位差不同,在铁表面形成了Cu-Fe原电池,原电池增加了铁屑表面的离子活性电位,从而促进了铁表面的电子转移,加快了酸化废水中还原去除铬离子的反应速率。废水由反应器49底部流出,进入缓冲箱410内,此时由废水带出少量的滤料受到重力总用,留在缓冲箱410底部,液面高度到达缓冲箱410中间的出水口时,废水从此处经管道流入过渡箱411中,待废水全部进入缓冲箱410内,此时开启磁铁搅拌器422,转速为30r/min,水中携带出来的制备铁屑被磁铁收集,吸附在磁铁搅拌器的扇叶上,持续10min后,开启提升水泵412,将废水送入气泡发生器413内,同时加入经氢氧化钠高速搅拌5min碱化后,pH为9-10的蛋清液。废水和药剂进入气泡发生器413内,关闭气泡发生器内的进水口,开启曝气泵415,外界空气经气体入口416由曝气泵415送入气泡发生器413内,曝气泵415控制流量为3L/min,利用碱化后的蛋白质,蛋白质表面具有了活性,使水中的铬离子与表面活性剂形成络合沉淀吸附在气泡表面,随着气泡不断上浮至溶液主体上方,形成泡沫层,排出泡沫,达到去除目的。泡沫经管道进入泡沫箱414内,开启加热装置423,蛋白质受热变为固体,固定其中的铬及部分有机物,待集中收集焚烧处置,气体则由箱内的气体出口417排出池体,保证系统的气压稳定。待气泡发生器413处理完毕,打开铬反应池出水口418,气泡发生器413中的废水由管道连接排出池外。
表1 本工艺处理效率表 单位mg/L,色度除外
铬元素 化学需氧量 氨氮 悬浮物 色度(倍)
处理前 100 600 120 500 128
处理后 未检出 12 2.0 1 2
处理效率(%) 100% 98.0% 98.3% 99.8%
表2 传统物理曝气工艺处理效率表 单位mg/L,色度除外
铬元素 化学需氧量 氨氮 悬浮物 色度(倍)
处理前 100 600 120 500 128
处理后 2 50 8 10 32
处理效率(%) 98.0% 91.7% 93.3 98.0%

Claims (6)

1.一种工业含铬废水的处理方法,其特征在于,含铬废水通过管道进入格栅,废水中的杂质等在此处被拦截,格栅的出水通过管道进入沉砂池,沉淀时间为2h,沉砂池出水通过管道进入调节池,在此处把工业废水的pH调节至中性,调节池的出水通过管道进入铬反应池的加热仓中,由加药口将95%浓硫酸加入进加热仓内,浓硫酸与废水的比例为1:50,之后加热电阻丝开始对水体加热,加热温度控制在200℃,时间为2h,使废水完全被酸化,加热过程中,打开水槽入口与水槽出口,开启循环水泵,将蓄水池的水引入水槽中,待加热完成,打开加热仓出口,废水由加热仓经水槽的过水管流入反应器中,在循环水的作用下,热的废水流经过水管时,被循环水冷却、降温后,进入反应器内,反应器内添加3层填料,从上至下分别为石英砂、砂土、制备铁屑,流经反应器的酸化废水中的有机物得到大幅度的消减,废水流经制备铁屑层,铜和铁的电位差不同,在铁表面形成了Cu-Fe原电池,加快了酸化废水中还原去除铬离子的反应速率,废水由反应器底部流出,进入缓冲箱内,此时由废水带出少量的滤料受到重力总用,留在缓冲箱部,液面高度到达缓冲箱中间的出水口时,废水从此处经管道流入过渡箱中,待废水全部进入缓冲箱内,开启磁铁搅拌器,转速为30r/min,水中携带出来的制备铁屑被磁铁收集,吸附在磁铁搅拌器的扇叶上,持续10min后,开启提升水泵将废水送入气泡发生器内,同时加入经氢氧化钠碱化后的蛋清液,废水和蛋清液进入气泡发生器内,开启曝气泵,外界空气经由曝气泵送入气泡发生器内,曝气泵控制流量为3L/min,碱化后的蛋清液表面具有了活性,使水中的铬离子与表面活性剂形成络合沉淀吸附在气泡表面,随着气泡不断上浮至溶液主体上方,形成泡沫层,泡沫经管道进入泡沫箱内,开启加热装置,蛋白质受热变为固体,固定其中的铬及部分有机物,待集中收集焚烧处置,气体则由箱内的气体出口排出池体,待气泡发生器处理完毕,打开铬反应池出水口,气泡发生器中的出水由管道排出铬反应池进入二沉池,二沉池的出水通过管道进入蓄水池,蓄水池中的储水通过循环水出水口及管道能够返回反应池中作为冷却水使用,蓄水池的出水口通过管道连接排放管道。
2.根据权利要求1所述的一种工业含铬废水的处理方法,其特征在于,铬反应池包括加热仓、水槽、循环水泵、反应器、缓冲箱、过渡箱、气泡发生器、泡沫箱、曝气泵、气体入口、气体出口、铬反应池出水口、铬反应池入水口、加药口等;其中:加热仓位于池体上部,密闭式结构,内置一组加热电阻丝,底端两侧设有加热仓出口,顶部与铬反应池入水口连通;水槽位于加热仓下,为密封式长方体,水槽两端分别设有水槽入口和水槽出口,水槽入口与外侧的循环水泵连接,水槽出口通过管道连接蓄水池的循环水入水口,水槽内部垂直分布多根过水管,过水管为玻璃材质,壁厚0.5cm,高50cm,直径为2cm,每根过水管间距为10cm,循环水无法进入过水管,加热仓出口通过玻璃管道连接水槽内的过水管;反应器位于水槽下的缓冲箱内,顶端由玻璃管道连接水槽内的过水管,反应器为圆柱形设计,高70cm,直径2.5m,内添加5层填料,从上至下分别为石英砂、砂土、制备铁屑、砂土、石英砂;铬反应池内左下方设置过渡箱,过渡箱内安装提升水泵和磁铁搅拌器,缓冲箱出水口通过管道连接过渡箱;气泡发生器位于缓冲箱下,气体入口通过管道连接曝气泵,曝气泵通过管道连接气泡发生器,气泡发生器底部通过管道连接铬反应池的出水口;铬反应池体右下方设置泡沫箱,泡沫箱内布置加热装置,泡沫箱右侧与气体出口连通,泡沫箱通过管道连接气泡发生器;加药口位于池体顶端。
3.根据权利要求1所述的一种工业含铬废水的处理方法,其特征在于,石英砂层高10cm,砂土层高5cm,制备铁屑层高40cm。
4.根据权利要求1所述的一种工业含铬废水的处理方法,其特征在于,泡沫箱中加热装置加热温度为120℃。
5.根据权利要求1所述的一种工业含铬废水的处理方法,其特征在于,经氢氧化钠碱化后的蛋清液为经加入氢氧化钠高速搅拌碱化后的蛋清液,pH为9-10。
6.根据权利要求1所述的一种工业含铬废水的处理方法,其特征在于,制备铁屑为工业铁屑经10%稀盐酸清洗后,在10g/L的硫酸铜溶液中搅拌2h后,烘干得到,其粒径平均为0.2mm。
CN201811202674.4A 2018-10-16 2018-10-16 一种工业含铬废水的处理方法 Withdrawn CN109231646A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811202674.4A CN109231646A (zh) 2018-10-16 2018-10-16 一种工业含铬废水的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811202674.4A CN109231646A (zh) 2018-10-16 2018-10-16 一种工业含铬废水的处理方法

Publications (1)

Publication Number Publication Date
CN109231646A true CN109231646A (zh) 2019-01-18

Family

ID=65052923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811202674.4A Withdrawn CN109231646A (zh) 2018-10-16 2018-10-16 一种工业含铬废水的处理方法

Country Status (1)

Country Link
CN (1) CN109231646A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977783A (zh) * 2020-08-19 2020-11-24 徐张 一种含铬离子废水处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989608A (en) * 1975-12-30 1976-11-02 The United States Of America As Represented By The United States Energy Research And Development Administration Flotation process for removal of precipitates from electrochemical chromate reduction unit
CN101108761A (zh) * 2006-07-18 2008-01-23 扬州大学 含油污水处理工艺及其设备
CN101456637A (zh) * 2008-11-25 2009-06-17 天津大学 综合电镀废水的处理工艺及方法
CN101811793A (zh) * 2009-02-24 2010-08-25 宝山钢铁股份有限公司 一种含铬废水的预处理工艺
CN101811792A (zh) * 2009-02-24 2010-08-25 宝山钢铁股份有限公司 一种不锈钢冷轧酸洗废水处理方法
KR20110038905A (ko) * 2009-10-09 2011-04-15 손덕순 도금폐수 중금속처리 장치 및 방법
CN202643370U (zh) * 2012-07-17 2013-01-02 江苏艾特克环境工程设计研究院有限公司 一种含铬鞣革废水中铬的回收装置
CN108128965A (zh) * 2016-11-30 2018-06-08 内蒙古大唐国际克什克腾煤制天然气有限责任公司 一种煤化工废水零排放处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989608A (en) * 1975-12-30 1976-11-02 The United States Of America As Represented By The United States Energy Research And Development Administration Flotation process for removal of precipitates from electrochemical chromate reduction unit
CN101108761A (zh) * 2006-07-18 2008-01-23 扬州大学 含油污水处理工艺及其设备
CN101456637A (zh) * 2008-11-25 2009-06-17 天津大学 综合电镀废水的处理工艺及方法
CN101811793A (zh) * 2009-02-24 2010-08-25 宝山钢铁股份有限公司 一种含铬废水的预处理工艺
CN101811792A (zh) * 2009-02-24 2010-08-25 宝山钢铁股份有限公司 一种不锈钢冷轧酸洗废水处理方法
KR20110038905A (ko) * 2009-10-09 2011-04-15 손덕순 도금폐수 중금속처리 장치 및 방법
CN202643370U (zh) * 2012-07-17 2013-01-02 江苏艾特克环境工程设计研究院有限公司 一种含铬鞣革废水中铬的回收装置
CN108128965A (zh) * 2016-11-30 2018-06-08 内蒙古大唐国际克什克腾煤制天然气有限责任公司 一种煤化工废水零排放处理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
乔丹: "泡沫分离/三维电极法处理重金属废水的试验研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
宿程远等: "增强型内电解-H2O2催化氧化处理染料废水研究", 《水处理技术》 *
曾郴琳等: "《微电解法处理难降解有机废水的理论与实例分析》", 31 October 2017, 中国环境出版社 *
阚建全: "《食品化学》", 30 June 2010, 中国农业大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977783A (zh) * 2020-08-19 2020-11-24 徐张 一种含铬离子废水处理系统

Similar Documents

Publication Publication Date Title
CN202924850U (zh) 一种污水高级氧化系统
CN103771625B (zh) Fenton催化氧化法处理制浆废水的装置及方法
CN103466829B (zh) 高浓度氨氮废水处理方法及其系统
CN104150639B (zh) 一种石灰石石膏湿法钢铁烧结机烟气脱硫废水处理方法
CN106396184A (zh) 一种高氨氮废水的氨吹脱工艺及其装置
CN106673295A (zh) 一种处理高浓度甲醛废水的方法
CN109231646A (zh) 一种工业含铬废水的处理方法
CN205382011U (zh) Tic厌氧反应器
CN102050529B (zh) 浸没式内循环膜混凝反应器水处理装置
CN105967454A (zh) 一种用于生活污水预处理的太阳能化粪池装置及处理工艺
CN108423953A (zh) 一种基于超临界技术的城市污泥中氮磷回收系统及方法
CN205151914U (zh) 一种复合微生物流化床好氧反应器
CN109231647A (zh) 一种工业含铬废水的处理系统
CN206359347U (zh) 一种高氨氮废水的氨吹脱工艺的装置
CN102616997B (zh) 一种氧化铁颜料生产废水处理方法
CN206502646U (zh) 高效微电解反应器
CN105692951B (zh) 一种铁泥循环利用的废水铁炭还原处理方法及其装置
CN210855550U (zh) 一种环氧废水处理后沉淀液回收利用的装置
CN205442984U (zh) 废水处理装置
CN205917068U (zh) 一体化sbr/mbbr反应器
CN205838797U (zh) 纤维素制乙醇的废水处理系统
CN216538490U (zh) 一种含铝含铁污泥资源化处理设备
CN217757115U (zh) 一种三乙烯二胺工艺废水预处理装置
CN205382013U (zh) Tao一体化自循环生物反应器
CN204778869U (zh) 一种聚合氯化铝的生产装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190118