CN109225256A - 硼氢化钠醇解制氢催化剂 - Google Patents
硼氢化钠醇解制氢催化剂 Download PDFInfo
- Publication number
- CN109225256A CN109225256A CN201811199348.2A CN201811199348A CN109225256A CN 109225256 A CN109225256 A CN 109225256A CN 201811199348 A CN201811199348 A CN 201811199348A CN 109225256 A CN109225256 A CN 109225256A
- Authority
- CN
- China
- Prior art keywords
- nickel
- catalyst
- ruthenium
- foam
- sodium borohydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/892—Nickel and noble metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1217—Alcohols
- C01B2203/1223—Methanol
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种硼氢化钠醇解制氢催化剂,属于负载型催化剂制备技术领域。该催化剂的质量百分比组成为:由载体和合金镀层构成,所述载体为泡沫镍,所述合金为钌镍合金,其质量百分比组成为:泡沫镍70%~90%,镍1~10%,钌3~20%。本发明采用化学镀与电镀联合方法制备了Ru‑Ni/Ni foam催化剂,极大地增加了催化剂的比表面积,增加了催化剂的活性位点,进而增强了催化剂的产氢性能。制得的泡沫镍载钌镍金属催化剂在反应过程中易于分离,可控产氢,这非常符合燃料电池汽车安全便捷的要求,可广泛应用于化学制氢技术,促进氢能经济的进一步发展。
Description
技术领域
本发明涉及一种硼氢化钠醇解制氢催化剂,特别涉及一种硼氢化钠醇解用泡沫镍载钌-镍合金催化剂,特别是化学镀与电镀结合制备海绵状镂空结构的负载型泡沫镍载钌-镍合金催化剂(Ru-Ni/Ni foam),属于催化剂技术领域。
技术背景
可持续能源的寻找已经成为了重中之重,而氢能作为一种安全环保、高效清洁的能源,已经被利用于工业的各个方面。
目前来说,氢能在汽车行业的应用已经成为了焦点,尤其是用于质子交换膜燃料电池(PEMFC)中。限制燃料电池的工业化生产的因素之一就是氢气的储存和运输;2017年12月7日,中华人民共和国首个氢能领域团体标准《质子交换膜燃料电池汽车用燃料氢气》正式发布,规定了燃料电池汽车用氢气的纯度、规范以及测试方法。
硼氢化钠,因其无毒、稳定等优点在制氢产业中占据了一定的比例。硼氢化钠醇解制氢放出大量的热量,醇解后的副产物NaB(OCH3)4溶于甲醇,甲醇的低冰点也使硼氢化钠的醇解在低温条件下可以顺利进行,因此,目前,越来越多的化学工作者开始转向硼氢化钠的醇解。硼氢化钠在碱性溶液中稳定存在,在合适催化剂的催化下可以发生可控产氢反应,这非常符合燃料电池汽车安全便捷的要求,因此,催化剂的制备是硼氢化钠制氢发展的关键。
硼氢化钠制氢催化剂基本可分为负载型和非负载型催化剂,考虑到催化剂的团聚和回收问题,很明显,负载型催化剂的金属颗粒的高分散性更能吸引到化学工作者的注意力。
研究发现,贵金属钌(Ru)对于硼氢化钠制氢反应中有着明显高于其他贵金属的催化活性,但钌(Ru)金属价格昂贵,限制了其工业化生产。
为了降低催化剂的成本,对贵金属钌催化剂进行了非贵金属掺杂,形成合金化或者核壳型纳米颗粒催化剂,这些非贵金属与贵金属钌彼此之间存在相互作用,常见的非贵金属Co、Ni、Fe、Mo原子上的电子可以转移到钌(Ru)原子的未充满的d轨道上,使金属钌呈现富电子状态,富电子的金属活性位通过提供电子,使活性位点表面吸附的硼氢根更容易与甲醇自由氢结合生成氢气,这就是非贵金属的掺杂,既能降低贵金属的使用量也可以提高纯贵金属的催化活性的重要原因,但目前来说,这种合金催化剂大多是粉末型的,在实际产氢测试中很难即时可控的产氢。
因此,提供一种可控制氢、利用率高、高催化活性的硼氢化钠醇解制氢催化剂就成为该技术领域急需解决的技术难题。
发明内容
本发明的目的之一在于提供一种可控制氢、利用率高、高催化活性的硼氢化钠醇解制氢催化剂。
为了实现本发明的上述目的,采用以下技术方案:
一种硼氢化钠醇解制氢催化剂,由载体和合金镀层构成,所述载体为泡沫镍,所述合金镀层中的合金为钌镍合金;催化剂的质量百分比组成为:泡沫镍70%~90%,镍1~10%,钌3~20%。
优选的,所述钌镍合金颗粒细密且均匀的附着排列在泡沫镍的表面。
优选的,所述钌镍合金为海绵状镂空结构的钌镍合金。
优选的,所述的泡沫镍的厚度为1.5~2.0mm,面密度为300~500g/m2。
优选的,所述合金镀层通过化学镀与电镀结合的方法沉积在泡沫镍表面。
本发明的另一目是提供上述硼氢化钠醇解制氢催化剂的制备方法。
一种硼氢化钠醇解制氢催化剂的制备方法,包括如下步骤:
(1)泡沫镍的预处理
剪取泡沫镍,在无水乙醇中超声处理去除表面的油污,用去离子水冲洗;再放置在盐酸溶液中超声溶解表面的氧化物,用去离子水冲洗后,放在去离子水中浸泡,取出,晾干,得泡沫镍;
(2)化学镀
将步骤(1)处理好的泡沫镍,在三氯化钌溶液中浸泡后,取出,用超纯水冲洗后晾干,得化学镀后的泡沫镍;
(3)电镀
将步骤(2)所得的化学镀后的泡沫镍放到钌镍镀液中,以石墨电极为阳极,泡沫镍为阴极,在稳流条件下电镀,使钌镍镀液中的钌镍离子被电镀在泡沫镍的表面,形成均匀的钌镍合金镀层,得到镀钌镍合金的泡沫镍;
(4)硼氢化钠醇解制氢催化剂的制备
将步骤(3)得到的镀钌镍合金的泡沫镍取出,用超纯水冲洗,晾干,得硼氢化钠醇解制氢催化剂。
优选的,所述步骤(1)中的盐酸溶液的浓度为10wt.%。
优选的,所述步骤(2)中所述的三氯化钌溶液的浓度为3~10g/L,在镀液三氯化钌中浸泡4~7小时,三氯化钌溶液的温度控制在40~60℃。
优选的,所述步骤(3)中所述钌镍镀液的配制过程如下:配置无水三氯化钌镀液和六水合氯化镍镀液,称氨基磺酸铵,配成钌镍镀液。
优选的,所述六水合氯化镍溶液的浓度为3~5g/L,三氯化钌溶液的浓度为3~10g/L。
优选的,所述步骤(3)中所述六水合氯化镍溶液和三氯化钌溶液以1:1-1:5的比例混合。
优选的,所述步骤(3)中所述钌镍镀液中六水合氯化镍溶液和三氯化钌溶液以1:3的比例混合。
优选的,所述步骤(3)中所述钌镍镀液的温度控制在50℃,电流为2A,电镀时间控制在30min。
本发明为一种硼氢化钠醇解制氢催化剂,通过化学镀与电镀方法联合制备了泡沫镍载钌-镍合金催化剂,镍元素的掺杂有效的提高了纯钌催化剂的催化活性,对其制备的催化剂的结构和形貌进行表征,证明了该催化剂仍然保持了载体泡沫镍的3D网状结构,合金镀层为钌镍合金颗粒细密且均匀的附着排列分布在泡沫镍的表面,表面颗粒粗糙且呈现一种海绵状镂空结构,这种蜘蛛网结构极大地增加催化剂的比表面积进而增强了催化剂的催化活性。
下面通过附图和具体实施方式对本发明进行详细说明。应该理解的是,所述的实施例仅涉及本发明的优选实施方案,在不脱离本发明的精神和范围情况下,各种成分及含量的变化和改进都是可能的。
附图说明
图1是本发明实施例1和对比例1和对比例2中预处理过的商业泡沫镍的扫描电镜图。
图2是本发明实施例1制备的硼氢化钠醇解制氢催化剂的扫描电镜图。
图3是本发明实施例1制备的硼氢化钠醇解制氢催化剂的能谱(EDS)能谱图。
图4是本发明实施例1和对比例1和对比例2制备的硼氢化钠醇解制氢催化剂的醇解产氢图。
具体实施方式
实施例1
(1)泡沫镍预处理:采购市售泡沫镍,剪取面密度为350g/m2、厚度为1.6mm的商业泡沫镍4cm×4cm块状,在无水乙醇中超声处理60min去除表面的油污,用去离子水冲洗;再放置在10wt.%HCl溶液中,超声10min溶解表面的氧化物,用去离子水冲洗后放在去离子水中浸泡,取出,晾干,称取质量,备用,得处理好的泡沫镍;
(2)化学镀:将步骤(1)处理好的泡沫镍在4g/L(0.02mol/L)RuCl3溶液中,在50℃下浸泡5h,取出,晾干;
(3)电镀:配置4g/L的无水三氯化钌镀液和4.75g/L六水合氯化镍镀液;量取配置的无水三氯化钌镀液187.5mL,六水合氯化镍镀液62.5mL,称取12.5g氨基磺酸铵,配成钌镍镀液,对化学镀后的泡沫镍进行电镀,设置温度为50℃,电流为2A,电镀时间控制在30min,以石墨电极为阳极,泡沫镍为阴极,在泡沫镍的表面镀上一层钌镍合金层;
(4)硼氢化钠醇解制氢催化剂的制备
将步骤(3)得到的镀钌镍合金的泡沫镍取出,用超纯水冲洗,晾干,得硼氢化钠醇解制氢催化剂(化学镀与电镀联合制备出泡沫镍负载钌镍合金催化剂(Ru-Ni/Ni foam)。
用常规方法对实施例1制备的硼氢化钠醇解制氢催化剂(泡沫镍负载钌镍合金催化剂)进行形貌结构表征,证明其是以泡沫镍为载体,钌镍合金负载于网状结构的泡沫镍表面,其中活性合金是海绵状镂空结构的钌镍合金,属于微米级材料。
对比例1(只有化学镀钌镍合金)
(1)泡沫镍预处理:采购市售泡沫镍,剪取面密度为350g/m2、厚度为1.6mm的商业泡沫镍4cm×4cm块状,在无水乙醇中超声处理60min去除表面的油污,用去离子水冲洗;再放置在10wt.%的HCl溶液中,超声10min溶解表面的氧化物,用去离子水冲洗后放在去离子水中浸泡,取出,晾干,称取质量,备用;
(2)化学镀:将步骤(1)处理好的泡沫镍在4g/L(0.02mol/L)RuCl3和4.75g/L六水合氯化镍混合溶液中50℃下浸泡5h,取出,晾干;化学镀制备出泡沫镍负载钌镍合金催化剂(Ru-Ni/Ni foam)。
对比例2(只有电镀钌镍合金)
(1)泡沫镍预处理:采购市售泡沫镍,剪取面密度为350g/m2、厚度为1.6mm的商业泡沫镍4cm×4cm块状,在无水乙醇中超声处理60min去除表面的油污,用去离子水冲洗;再放置在10wt.%HCl溶液中,超声10min溶解表面的氧化物,用去离子水冲洗后放在去离子水中浸泡,取出,晾干,称取质量,备用;
(2)电镀:配置4g/L的无水三氯化钌镀液和4.75g/L六水合氯化镍镀液;量取配置的无水三氯化钌镀液187.5mL,六水合氯化镍镀液62.5mL,称取12.5g氨基磺酸铵,配成钌镍镀液,对预处理过后的泡沫镍进行电镀,设置温度为50℃,电流为2A,电镀时间控制在30min,以石墨电极为阳极,泡沫镍为阴极,在泡沫镍的表面镀上一层钌镍合金层,电镀制备出泡沫镍负载钌镍合金催化剂(Ru-Ni/Ni foam)。
分别对对比例1和对比例2制备的催化剂进行形貌结构表征,进一步说明,只有通过化学镀与电镀结合的方法将钌镍合金负载在泡沫镍上,海绵状镂空结构合金颗粒可以细密且均匀的附着排列在预处理过的泡沫镍表面。
如图1所示,是本发明实施例1和对比例1和对比例2中使用的预处理过的商业泡沫镍的扫描电镜图,从图1中可以看出,泡沫镍有着表面平滑的3D网状结构。
如图2所示,是本发明实施例1制备的泡沫镍负载钌镍合金催化剂的扫描电镜图,从图2中可以看出,在泡沫镍的表面上,钌镍合金颗粒细密且均匀的附着排列,有着粗糙的颗粒表面,呈现一种海绵状的镂空结构。
对本发明实施例1制得的泡沫镍负载钌镍合金催化剂进行元素分析,如图3所示,本发明实施例1制备的泡沫镍负载钌镍合金催化剂的能谱(EDS)能谱图,图中很明显的存在镍、钌的峰。
对本发明实施例1和对比例1和对比例2制备的泡沫镍负载钌镍合金催化剂进行硼氢化钠醇解制氢测试,催化剂的活性通过催化硼氢化钠甲醇碱性溶液产氢量来测试。反应在50mL的三颈烧瓶中进行,NaBH4为15wt.%,NaOH为1wt.%,设置温度为30℃,温度通过恒温水浴锅保持,整个反应过程在搅拌下进行,其中一端连接气体流量计,记录瞬时速率,测试结果如图4所示,是本发明实施例1和对比例1和对比例2制备的硼氢化钠醇解制氢催化剂的醇解产氢图;从图4可以看出,本发明的采用化学镀与电镀联合方法制备的泡沫镍负载钌镍合金催化剂的产氢率明显高于对比例1和对比例2,并且具有明显的超加和作用。
本发明采用化学镀与电镀联合方法制备了泡沫镍负载钌镍合金催化剂(Ru-Ni/Nifoam)催化剂,极大地增加了催化剂的比表面积,增加了催化剂的活性位点,进而增强了催化剂的产氢性能。制得的泡沫镍载钌镍金属催化剂在反应过程中易于分离,可控产氢,这非常符合燃料电池汽车安全便捷的要求,可广泛应用于化学制氢技术,促进氢能经济的进一步发展。
本发明的硼氢化钠醇解制氢催化剂,由载体和合金镀层构成,载体为泡沫镍,合金镀层中的合金为钌镍合金;催化剂的质量百分比组成为:泡沫镍70%~90%,镍1~10%,钌3~20%;泡沫镍是一种3D的网状结构,孔隙率高,这种结构大大提高了氢气的释放率,通过化学镀与电镀结合的方法将钌镍合金负载在泡沫镍上,合金颗粒细密且均匀的附着排列在预处理过的泡沫镍表面。
Claims (5)
1.一种硼氢化钠醇解制氢催化剂,由载体和合金镀层构成,所述载体为泡沫镍,所述合金镀层中的合金为钌镍合金;催化剂的质量百分比组成为:泡沫镍70%~90%,镍1~10%,钌3~20%。
2.根据权利要求1所述的硼氢化钠醇解制氢催化剂,其特征在于:所述钌镍合金为海绵状镂空结构的钌镍合金。
3.根据权利要求2所述的硼氢化钠醇解制氢催化剂,其特征在于:所述钌镍合金颗粒细密且均匀的附着排列在泡沫镍的表面。
4.根据权利要求1所述的硼氢化钠醇解制氢催化剂,其特征在于:所述的泡沫镍厚度为1.5~2.0mm,面密度为300~500g/m2。
5.根据权利要求1所述的硼氢化钠醇解制氢催化剂,其特征在于:所述合金镀层通过化学镀与电镀结合的方法沉积在泡沫镍表面。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811199348.2A CN109225256B (zh) | 2018-10-15 | 2018-10-15 | 硼氢化钠醇解制氢催化剂 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811199348.2A CN109225256B (zh) | 2018-10-15 | 2018-10-15 | 硼氢化钠醇解制氢催化剂 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109225256A true CN109225256A (zh) | 2019-01-18 |
CN109225256B CN109225256B (zh) | 2021-07-30 |
Family
ID=65052817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811199348.2A Active CN109225256B (zh) | 2018-10-15 | 2018-10-15 | 硼氢化钠醇解制氢催化剂 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109225256B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112599798A (zh) * | 2020-12-16 | 2021-04-02 | 北京大学 | 一种NaBH4海绵及其制备方法 |
US11549188B2 (en) | 2021-04-28 | 2023-01-10 | Industrial Technology Research Institute | Membrane electrode assembly and method for hydrogen evolution by electrolysis |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7601797B2 (en) * | 2004-05-14 | 2009-10-13 | Purdue Research Foundation | Method of controlled alcoholysis and regeneration of a borohydride |
CN102266774A (zh) * | 2011-06-07 | 2011-12-07 | 广东工业大学 | 一种半导体纳米光催化材料及其制备方法 |
CN102441330A (zh) * | 2011-10-24 | 2012-05-09 | 南京工业大学 | 一种钯基双功能膜及其制备方法 |
US8609054B2 (en) * | 2007-05-18 | 2013-12-17 | Enerfuel, Inc. | Hydrogen production from borohydrides and glycerol |
CN104888807A (zh) * | 2015-04-24 | 2015-09-09 | 华南理工大学 | 一种NaBH4水解制氢催化剂的再生方法 |
CN106179398A (zh) * | 2016-06-30 | 2016-12-07 | 北京化工大学 | 一种硼氢化钠醇解制氢用钌钴合金催化剂及其制备方法 |
CN106334561A (zh) * | 2016-09-07 | 2017-01-18 | 江苏师范大学 | 一种硼氢化钠醇解制氢用非贵金属催化剂及其制备方法 |
CN107159227A (zh) * | 2017-06-27 | 2017-09-15 | 江苏师范大学 | 一种高效、长寿命硼氢化钠水解制氢用CoWB/NF催化剂及其制备方法 |
CN108479820A (zh) * | 2018-01-24 | 2018-09-04 | 北京化工大学 | 一种硼氢化钠醇解制氢用块状载体纳米型合金催化剂及其制备方法 |
-
2018
- 2018-10-15 CN CN201811199348.2A patent/CN109225256B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7601797B2 (en) * | 2004-05-14 | 2009-10-13 | Purdue Research Foundation | Method of controlled alcoholysis and regeneration of a borohydride |
US8609054B2 (en) * | 2007-05-18 | 2013-12-17 | Enerfuel, Inc. | Hydrogen production from borohydrides and glycerol |
CN102266774A (zh) * | 2011-06-07 | 2011-12-07 | 广东工业大学 | 一种半导体纳米光催化材料及其制备方法 |
CN102441330A (zh) * | 2011-10-24 | 2012-05-09 | 南京工业大学 | 一种钯基双功能膜及其制备方法 |
CN104888807A (zh) * | 2015-04-24 | 2015-09-09 | 华南理工大学 | 一种NaBH4水解制氢催化剂的再生方法 |
CN106179398A (zh) * | 2016-06-30 | 2016-12-07 | 北京化工大学 | 一种硼氢化钠醇解制氢用钌钴合金催化剂及其制备方法 |
CN106334561A (zh) * | 2016-09-07 | 2017-01-18 | 江苏师范大学 | 一种硼氢化钠醇解制氢用非贵金属催化剂及其制备方法 |
CN107159227A (zh) * | 2017-06-27 | 2017-09-15 | 江苏师范大学 | 一种高效、长寿命硼氢化钠水解制氢用CoWB/NF催化剂及其制备方法 |
CN108479820A (zh) * | 2018-01-24 | 2018-09-04 | 北京化工大学 | 一种硼氢化钠醇解制氢用块状载体纳米型合金催化剂及其制备方法 |
Non-Patent Citations (3)
Title |
---|
JING CHANG ET AL.: ""Investigation into hydrolysis and alcoholysis of sodium borohydride in ethanol-water solutions in the presence of supported Co-Ce-B catalyst"", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 * |
侯炳轩等: ""化学镀—电镀结合法制备的 Pd-Cu/Al2O3膜及其透氢行为"", 《高校化学工程学报》 * |
张雅君等: ""硼氢化钠醇解制氢负载型催化剂的制备及性能研究"", 《万方学位论文》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112599798A (zh) * | 2020-12-16 | 2021-04-02 | 北京大学 | 一种NaBH4海绵及其制备方法 |
CN112599798B (zh) * | 2020-12-16 | 2021-12-07 | 北京大学 | 一种NaBH4海绵及其制备方法 |
US11549188B2 (en) | 2021-04-28 | 2023-01-10 | Industrial Technology Research Institute | Membrane electrode assembly and method for hydrogen evolution by electrolysis |
Also Published As
Publication number | Publication date |
---|---|
CN109225256B (zh) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chai et al. | Electrodeposited amorphous cobalt-nickel-phosphide-derived films as catalysts for electrochemical overall water splitting | |
Tian et al. | In-situ cobalt-nickel alloy catalyzed nitrogen-doped carbon nanotube arrays as superior freestanding air electrodes for flexible zinc-air and aluminum-air batteries | |
Wei et al. | CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting | |
Peng et al. | Hierarchical heterostructured nickle foam–supported Co3S4 nanorod arrays embellished with edge-exposed MoS2 nanoflakes for enhanced alkaline hydrogen evolution reaction | |
Zou et al. | Carbon-based electrocatalysts for rechargeable Zn-air batteries: design concepts, recent progress and future perspectives | |
Zhang et al. | Nickel particles supported on multi-walled carbon nanotubes modified sponge for sodium borohydride electrooxidation | |
Li et al. | Construction of Ni2P-NiFe2O4 heterostructured nanosheets towards performance-enhanced water oxidation reaction | |
Lu et al. | Co-doped NixPy loading on Co3O4 embedded in Ni foam as a hierarchically porous self-supported electrode for overall water splitting | |
Fu et al. | Sepaktakraw-like catalyst Mn-doped CoP enabling ultrastable electrocatalytic oxygen evolution at 100 mA· cm− 2 in alkali media | |
Ji et al. | Anchoring nitrogen-doped Co2P nanoflakes on NiCo2O4 nanorod arrays over nickel foam as high-performance 3D electrode for alkaline hydrogen evolution | |
CN115472845B (zh) | 基于钯镍合金纳米片电催化剂的可充放电锌空电池及其制备方法 | |
Yu et al. | An efficient Ni–P amorphous alloy electrocatalyst with a hierarchical structure toward borohydride oxidation | |
Zhang et al. | Electrodeposited platinum with various morphologies on carbon paper as efficient and durable self-supporting electrode for methanol and ammonia oxidation reactions | |
Ma et al. | In situ construction and post-electrolysis structural study of porous Ni 2 P@ C nanosheet arrays for efficient water splitting | |
Lu et al. | Atomically dispersed Fe-NC catalyst with densely exposed Fe-N4 active sites for enhanced oxygen reduction reaction | |
CN109225256A (zh) | 硼氢化钠醇解制氢催化剂 | |
CN109317163A (zh) | 硼氢化钠醇解制氢催化剂的制备方法 | |
Sun et al. | Combination of ZIF-67 derived hollow porous Co9S8 nanocages and MWCNTs for electrochemical hydrogen storage applications | |
Hou et al. | Nano-control synthesis the porous network of NiCoP and F doped NiCo2Al-LDHs@ ZnFeAl-LDHs nanosheets as superior catalyst for efficient overall water splitting | |
Mei et al. | Convenient construction of porous dendritic Cu-doped Ni@ PPy/stainless steel mesh electrode for oxidation of methanol and urea | |
Wang et al. | Nanoarchitectonics of bacterial cellulose with nickel-phosphorous alloy as a binder-free electrode for efficient hydrogen evolution reaction in neutral solution | |
Tian et al. | Post-decorated synthesis of metal-organic frameworks derived Ni/Ni3S2@ CN electrocatalyst for efficient hydrogen evolution | |
Chang et al. | One-step synthesis of PtNi anchored on TiO2 nanotube arrays for methanol oxidation | |
Ma et al. | Manganese, iron co-doped Ni2P nanoflowers as a powerful electrocatalyst for oxygen evolution reaction | |
Fan et al. | Synthesis of Mo2C@ MWCNTs and its application in improving the electrochemical hydrogen storage properties of Co0. 9Cu0. 1Si alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230113 Address after: 043499 West side of Taizitan Yutang Courtyard, Lechang Town, Quwo County, Linfen City, Shanxi Province Patentee after: Shanxi Hongying New Material Manufacturing Co.,Ltd. Address before: 210000 room 152, No. 100, Tuanjie Road, Nanjing Software Park (West District), high tech Development Zone, Pukou District, Nanjing, Jiangsu Province Patentee before: NANJING BOXING TECHNOLOGY Co.,Ltd. |