CN109216876B - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
CN109216876B
CN109216876B CN201810998334.0A CN201810998334A CN109216876B CN 109216876 B CN109216876 B CN 109216876B CN 201810998334 A CN201810998334 A CN 201810998334A CN 109216876 B CN109216876 B CN 109216876B
Authority
CN
China
Prior art keywords
antenna radiator
antenna
electronic device
display screen
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810998334.0A
Other languages
Chinese (zh)
Other versions
CN109216876A (en
Inventor
胡莎莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN201810998334.0A priority Critical patent/CN109216876B/en
Publication of CN109216876A publication Critical patent/CN109216876A/en
Application granted granted Critical
Publication of CN109216876B publication Critical patent/CN109216876B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components

Abstract

An embodiment of the present application provides an electronic device, including: radio frequency transceiving modules are arranged in the first shell and the second shell and comprise a plurality of signal sources; the first part comprises a first non-display area, and the orthographic projection of the first antenna radiator on the first display screen is positioned in the first non-display area; the second part comprises a second non-display area, and the orthographic projection of the second antenna radiator on the second display screen is positioned in the second non-display area; the first antenna radiator and the second antenna radiator are respectively electrically connected with the two signal sources, and the first antenna radiator and the second antenna radiator are arranged on two opposite sides of the first shell and the second shell in the vertical direction of the folding axis when the first shell and the second shell are in the folded state. In the electronic device provided by the embodiment of the application, the multiple antenna radiators can form an MIMO antenna, so that the stability of the electronic device in communication with a base station or other electronic devices can be improved, and the interference between the antennas can be reduced.

Description

Electronic device
Technical Field
The present application relates to the field of communications technologies, and in particular, to an electronic device.
Background
With the development of electronic technology, electronic devices such as smart phones play an increasingly important role in the life of people. The user can realize various functions of communication, shopping, entertainment and the like through the electronic equipment.
When the electronic device communicates with the base station or other electronic devices, it needs to transmit an uplink signal to the outside through the antenna and receive a downlink signal from the outside, thereby implementing data interaction with the base station or other electronic devices.
Currently, with the communication requirements of electronic devices and the diversification of supportable communication frequency bands, a plurality of antenna radiators are required to be arranged on the electronic devices to realize communication with a base station or other electronic devices.
Disclosure of Invention
The embodiment of the application provides an electronic device, which can improve the communication stability of the electronic device and reduce the interference between antennas.
An embodiment of the present application provides an electronic device, including:
the radio frequency transceiver module comprises a plurality of signal sources, the signal sources are used for generating radio frequency signals, a first antenna radiating body is arranged in the first shell, and the first antenna radiating body is electrically connected with the two signal sources;
the second shell is connected with the first shell through a rotating shaft, a radio frequency transceiver module is arranged in the second shell, the radio frequency transceiver module comprises a plurality of signal sources, the signal sources are used for generating radio frequency signals, a second antenna radiating body is arranged in the second shell, and the second antenna radiating body is electrically connected with the two signal sources;
a first display screen including a first portion and a second portion rotatably coupled to the first portion, the first portion is mounted on the first housing, the second portion is mounted on the second housing, the first portion includes a first display area and a first non-display area surrounding the first display area, an orthographic projection of the first antenna radiator on the first display screen is located within the first non-display area, the second portion includes a second display area and a second non-display area surrounding the second display area, an orthographic projection of the second antenna radiator on the first display screen is located within the second non-display area, the first antenna radiator and the second antenna radiator are arranged on two opposite sides of the first shell and the second shell in the vertical direction of the folding axis when the first shell and the second shell are in the folded state.
The electronic equipment that this application embodiment provided includes: radio frequency transceiving modules are arranged in the first shell and the second shell and comprise a plurality of signal sources; the first part comprises a first non-display area, and the orthographic projection of the first antenna radiator on the first display screen is positioned in the first non-display area; the second part comprises a second non-display area, and the orthographic projection of the second antenna radiator on the second display screen is positioned in the second non-display area; the first antenna radiator and the second antenna radiator are respectively electrically connected with the two signal sources, and the first antenna radiator and the second antenna radiator are arranged on two opposite sides of the first shell and the second shell in the vertical direction of the folding axis when the first shell and the second shell are in the folded state. In the electronic device provided by the embodiment of the application, the plurality of antenna radiators can form an MIMO antenna, and the first antenna radiator and the second antenna radiator are relatively isolated from each other, so that the stability of the electronic device in communication with a base station or other electronic devices can be improved, and the interference between the antennas can be reduced.
Drawings
In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings used in the description of the embodiments will be briefly introduced below. It is obvious that the drawings in the following description are only some embodiments of the application, and that for a person skilled in the art, other drawings can be derived from them without inventive effort.
Fig. 1 is a first structural schematic diagram of an electronic device according to an embodiment of the present application.
Fig. 2 is a rear view of the electronic device shown in fig. 1.
Fig. 3 is a second structural schematic diagram of an electronic device according to an embodiment of the present application.
Fig. 4 is a third schematic structural diagram of an electronic device according to an embodiment of the present application.
Fig. 5 is a fourth schematic structural diagram of an electronic device according to an embodiment of the present application.
Fig. 6 is a fifth structural schematic diagram of an electronic device according to an embodiment of the present application.
Fig. 7 is a sixth schematic structural diagram of an electronic device according to an embodiment of the present application.
Fig. 8 is a seventh structural schematic diagram of an electronic device according to an embodiment of the present application.
Fig. 9 is an eighth structural schematic diagram of an electronic device according to an embodiment of the present application.
Detailed Description
The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. It is to be understood that the embodiments described are only a few embodiments of the present application and not all embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present application.
In the description of the present application, the terms "first", "second" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or implying any number of technical features indicated. Thus, features defined as "first", "second", may explicitly or implicitly include one or more of the described features. In the description of the present application, "a plurality" means two or more unless specifically limited otherwise.
The following disclosure provides many different embodiments or examples for implementing different features of the application. In order to simplify the disclosure of the present application, specific example components and arrangements are described below. Of course, they are merely examples and are not intended to limit the present application. Moreover, the present application may repeat reference numerals and/or letters in the various examples, such repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. In addition, examples of various specific processes and materials are provided herein, but one of ordinary skill in the art may recognize applications of other processes and/or use of other materials.
The embodiment of the application provides electronic equipment. The electronic device may be a smart phone, a tablet computer, or other devices, and may also be a game device, an AR (Augmented Reality) device, an automobile, a data storage device, an audio playing device, a video playing device, a notebook, a desktop computing device, or other devices.
Referring to fig. 1, fig. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure. The electronic device 100 includes a first housing 10, a second housing 20, a hinge 30, a first display 40, a circuit board 50, and a battery 60.
Wherein, the first housing 10 and the second housing 20 are rotatably connected. The first casing 10 and the second casing 20 may include a display screen, a middle frame, a circuit board, a rear cover, and the like, which are stacked.
The first housing 10 and the second housing 20 are connected by the rotation shaft 30. That is, the first housing 10 is connected to the rotation shaft 30, and the second housing 20 is also connected to the rotation shaft 30. So that the first and second housings 10 and 20 can rotate about the rotation shaft 30. The material of the rotating shaft 30 may include plastic or metal. The first housing 10 and the second housing 20 may be wound around the rotating shaft 30.
The first display 40 may be used to display images, text, etc. to form a display surface of the electronic device 100. The first Display 40 may be a Liquid Crystal Display (LCD) or an Organic Light-Emitting Diode (OLED) Display.
The first display 40 includes a first portion 41 and a second portion 42. The first portion 41 and the second portion 42 can both realize a display function. The first portion 41 is connected to the second portion 42. The junction of the first portion 41 and the second portion 42 is a flexible screen, i.e. the junction of the first portion 41 and the second portion 42 can be bent. Wherein, the connection can be used for displaying information or not. In some embodiments, the first display screen 40 may be a flexible screen.
The first portion 41 is mounted on the first housing 10, and the second portion 42 is mounted on the second housing 20. Thus, when the first and second housings 10 and 20 rotate around the rotation shaft 30, the first and second portions 41 and 42 of the first display 40 can rotate around the rotation shaft 30 at the same time. When the first casing 10 and the second casing 20 rotate to the same plane, the first portion 41 and the second portion 42 of the first display screen 40 are also located on the same plane, so that a larger screen display effect can be achieved.
In some embodiments, the first and second housings 10 and 20 rotate around the rotation axis 30 in two ways. The first mode is a fold-in mode, in which the first casing 10 and the second casing 20 are both rotated along the side facing the display surface of the first display 40, that is, they can be rotated to a state where the first portion 41 and the second portion 42 of the first display 40 are attached to each other.
With continued reference to fig. 1, a circuit board 50 may be mounted inside the first housing 10. The circuit board 50 and the first portion 41 of the first display 40 may be stacked, that is, the circuit board 50 may be disposed below the first portion 41 of the first display 40.
The circuit board 50 may be a motherboard of the electronic device 100. The circuit board 50 is provided with a ground point to ground the circuit board 50. A processor is integrated on the circuit board 50. One, two or more of the functional components such as a motor, a microphone, a speaker, a receiver, an earphone interface, a universal serial bus interface (USB interface), a camera, a distance sensor, an ambient light sensor, and a gyroscope may also be integrated on the circuit board 50. Meanwhile, the first display screen 40 may be electrically connected to the circuit board 50.
In some embodiments, display control circuitry is disposed on circuit board 50. The display control circuit outputs a control signal to the first display screen 40 to control the first display screen 40 to display information.
The battery 60 may be mounted inside the second housing 20. The battery 60 and the second portion 42 of the first display 40 may be stacked, that is, the battery 60 may be disposed below the second portion 42 of the first display 40.
The battery 60 may be electrically connected to the circuit board 50 to enable the battery 60 to power the electronic device 100. The circuit board 50 may be provided thereon with a power management circuit. The power management circuit is used to distribute the voltage provided by the battery 60 to the various electronic components in the electronic device 100.
Referring also to fig. 2, wherein fig. 2 is a rear view of the electronic device 100 shown in fig. 1. In some embodiments, electronic device 100 also includes a back cover 70. Wherein the rear cover 70 is mounted on the first housing 10. The rear cover 70 and the first portion 41 of the first display screen 40 are respectively disposed on two opposite sides of the first casing 10, for example, on the front and rear sides of the first casing 10. Thus, the first portion 41 and the rear cover 70 of the first display screen 40 may serve as a front case and a rear case of the first housing 10, respectively.
In some embodiments, the rear cover 70 may also be mounted on the second housing 20. The rear cover 70 and the second portion 42 of the first display screen 40 are disposed at opposite sides of the second housing 20, respectively.
The rear cover 70 may be integrally formed. In the molding process of the rear cover 70, a rear camera hole, a fingerprint film set mounting hole, and the like may be formed on the rear cover 70.
In some embodiments, the electronic device 100 also includes a second display screen 80. Wherein the second display screen 80 is mounted on the second housing 20. The second display screen 80 and the second portion 42 of the first display screen 40 are respectively disposed on two opposite sides of the second casing 20, for example, on the front and rear sides of the second casing 20. Thus, the second portion 42 of the first display 40 and the second display 80 can be respectively used as a front case and a rear case of the second housing 10.
In some embodiments, the second display screen 80 may also be mounted on the first housing 10. The second display screen 80 and the first portion 41 of the first display screen 40 are respectively disposed at two opposite sides of the first casing 10.
The second Display screen 80 may also be a Liquid Crystal Display (LCD) or an Organic Light-Emitting Diode (OLED) Display screen. The second display 80 may also be used to display images, text, etc.
For example, when the first and second housings 10 and 20 rotate around the rotation axis 30 to a closed state, that is, when the first portion 41 and the second portion 42 of the first display 40 are attached to each other, the second display 80 may serve as a display of the electronic device 100. At this time, the first display 40 may maintain the off state.
The second way of rotating the first and second housings 10 and 20 around the rotation shaft 30 is to fold the housings outward. Both the first casing 10 and the second casing 20 rotate along a side of the display surface away from the first display 40, that is, can rotate to a state where the rear cover 70 and the second display 80 are attached to each other.
In addition, in some embodiments, a middle frame structure may be disposed inside each of the first casing 10 and the second casing 20. The middle frame structure is used for providing a supporting function for the electronic components inside the first casing 10 and the second casing 20.
For example, the circuit board 50 and other electronic components in the first housing 10 may be disposed on a middle frame structure inside the first housing 10. The battery 60 and other electronic components in the second housing 20 may be disposed on a mid-frame structure inside the second housing 20.
In some embodiments, as shown in fig. 3, the first portion 41 of the first display screen 40 includes a first display area 411 and a first non-display area 412 surrounding the first display area 411. The first display area 411 is used to implement the display function of the first portion 41, and is used to display information such as images and texts. The first non-display area 412 may be used to set a functional component. The first non-display area 412 may include areas located at upper and lower portions of the first display area 411. Alternatively, the first non-display area 412 may be disposed around the first display area 411. In addition, the first non-display area 412 may further include a bezel of the first display screen 40. That is, the first non-display area 412 of the first display 40 may include a portion in the same plane as the first display area 411, and may further include a frame of the first display 40.
In the embodiment of the present application, the second portion 42 of the first display screen 40 includes a second display area 421 and a second non-display area 422 surrounding the second display area 421. The second display area 421 is used for implementing a display function of the second portion 42, and is used for displaying information such as images and texts. The second non-display area 422 may be used to set functional components. The second non-display area 422 may include areas located at upper and lower portions of the second display area 421. Alternatively, the second non-display area 422 may be disposed around the second display area 421. In addition, the second non-display area 422 may further include a bezel of the first display screen 40. That is, the second non-display area 422 of the first display screen 40 may include a portion in the same plane as the second display area 421, and may further include a frame of the first display screen 40.
In the embodiment of the present application, at least one first antenna radiator 90 is disposed in the first housing 10. The orthographic projection of said at least one first antenna radiator 90 on said first display screen 40 is located in a first non-display area 412 of said first portion 41. Wherein the number of the first antenna radiators 90 is at least one. Each of the first antenna radiators 90 may be disposed at intervals. The specifications (e.g., length, width, material, etc.) of each of the first antenna radiators 90 may be the same or different. The material of the first antenna radiator 90 may include metal, for example, aluminum alloy, magnesium alloy, and the like.
In the embodiment of the present application, at least one second antenna radiator 93 is disposed in the second casing 20. The orthographic projection of the at least one second antenna radiator 93 on the first display screen 40 is located in the second non-display area 422 of the second portion 42. The number of the second antenna radiators 93 is at least one. Each of the second antenna radiators 93 may be disposed at intervals. The specifications (e.g., length, width, material, etc.) of the antenna radiators 93 may be the same or different. The material of the antenna radiator 90 may include metal, for example, aluminum alloy, magnesium alloy, and the like.
The first antenna radiator 90 and the second antenna radiator 93 are both configured to receive and transmit radio frequency signals. That is, each of the antenna radiators 90 and the second antenna radiator 93 may be used for transmitting radio frequency signals, receiving radio frequency signals, or both transmitting and receiving radio frequency signals. The first antenna radiator 90 and the second antenna radiator 93 may form a MIMO (Multiple-Input Multiple-Output) antenna. Thus, the electronic device 100 can communicate with a base station or other electronic devices through the first antenna radiator 90 and the second antenna radiator 93.
Wherein a clearance area may be reserved under the first non-display area 412 of the first portion 41 and the second non-display area 422 of the second portion 42 of the first display screen 40, wherein no ground plane is provided, or wherein only antenna-related elements are provided. Accordingly, the first antenna radiator 90 and the second antenna radiator 93 may radiate radio frequency signals to the outside through the clearance area or receive radio frequency signals from the outside. In the embodiment, when a first antenna radiator 90 is disposed in the first casing 10 and the orthographic projection of the first antenna radiator 90 on the first display screen 40 is located in the first non-display area 412 of the first portion 41, a second antenna radiator 93 is disposed in the second casing, and the orthographic projection of the second antenna radiator 93 on the first display screen 40 is located in the second non-display area 422 of the second portion 42. The clearance area of the antenna radiator can be increased, and the stability of the antenna radiator in receiving and transmitting radio-frequency signals is improved. And the first antenna radiator 90 and the second antenna radiator 93 are disposed on opposite sides of the first casing 10 and the second casing 20 in the folding state in the vertical direction of the folding axis, so that interference between the first antenna radiator 90 and the second antenna radiator 93 can be reduced.
It should be noted that when the orthographic projection of the first antenna radiator 90 on the first display screen 40 is located in the first non-display area 412 of the first portion 41, it means that the first antenna radiator 90 is disposed on the first portion 41 of the first display screen 40 or below the first portion 41 of the first display screen 40. When the orthographic projection of the second antenna radiator 93 on the first display screen 40 is located in the second non-display area 422 of the second portion 42, it means that the second antenna radiator 93 is disposed on the second portion 42 of the first display screen 40 or below the second portion 42 of the first display screen 40.
The first antenna radiator 90 may be disposed on the front or back surface of the first portion 41 of the first display screen 40, or below the first portion 41 of the first display screen 40. For example, the antenna radiator 90 may be attached to the back of the first portion 41 of the first display screen 40; the antenna radiator 90 may also be disposed on the circuit board 50 below the first portion 41 of the first display screen 40; alternatively, the antenna radiator 90 may also be disposed on the middle frame structure below the first portion 41 of the first display screen 40; alternatively, the antenna radiator 90 may be disposed on an inner side surface of the rear cover 70. It is only necessary that the orthographic projection of the first antenna radiator 90 on the first display screen 40 is located in the first non-display area 411. The second antenna radiator 93 may be disposed on the front or back of the second portion 42 of the first display screen 40, or may be disposed under the second portion 42 of the first display screen 40. For example, the second antenna radiator 93 may be attached to the back of the second portion 42 of the first display screen 40; the second antenna radiator 93 may also be disposed on the circuit board 50 below the second portion 42 of the first display 40; alternatively, the antenna radiator 90 may also be disposed on the middle frame structure below the second portion 42 of the first display screen 40; alternatively, the second antenna radiator 93 may be disposed on an inner side surface of the rear cover 70. It is only necessary that the orthographic projection of the second antenna radiator 93 on the first display screen 40 is located in the second non-display area 422.
In some embodiments, as shown in fig. 4, the first portion 41 and the second portion 42 of the first display 40 are a unitary structure, and the first portion 41 is rotatably connected to the second portion 42. The first portion 41 of the first display screen 40 includes a first side 41D, a third side 41A, a second side 41B, and a fourth side 41C connected in sequence. The second portion 42 includes a sixth side 41E, a fifth side 41F and a seventh side 41G connected in sequence. The third side 41A and the fourth side 41C are connected to the second side 41B. The third side 41A and the fourth side 41C may be respectively located at the upper end and the lower end of the first casing 10, and the second side 41B may be located at an end of the first casing 10 opposite to the rotating shaft 30. That is, the first portion 41 includes a first side 41D connected to the second portion 42, a second side 41B opposite to the first side 41D, and a third side 41A and a fourth side 41C adjacent to the second side 41B, wherein the third side 41A is opposite to the fourth side 41C.
The sixth side 41E and the seventh side 41G are connected to the fifth side 41F. The sixth side 41E and the seventh side 41G may be located at the upper end and the lower end of the second casing 20, respectively, and the fifth side 41F may be located at the end of the second casing 20 opposite to the rotating shaft 30. That is, the second portion 42 includes a first side 41D connected to the first portion 42, a fifth side 41F opposite to the first side 41D, and a sixth side 41E and a seventh side 41G adjacent to the fifth side 41F, wherein the sixth side 41E and the seventh side 41G are opposite to each other.
The first non-display area 412 of the first portion 41 of the first display screen 40 includes a first area 412A, a second area 412B, and a third area 412C. The first region 412A, the second region 412B, and the third region 412C are connected in sequence. That is, the first non-display area 412 surrounds the first display area 411 at this time. The first area 412A is located on the third side edge 41A, the second area 412B is located on the second side edge 41B, and the third area 412C is located on the fourth side edge 41C.
Said second non-display area 422 of the second portion 41 of the first display screen 40 comprises a fourth area 412E, a fifth area 412F, a sixth area 412G. The fourth region 412E, the fifth region 412F, and the sixth region 412G are sequentially connected. That is, the second non-display area 422 surrounds the second display area 421 at this time. The fourth area 412E is located on the sixth side 41E, the fifth area 412F is located on the fifth side 41F, and the sixth area 412G is located on the seventh side 41G.
Wherein the first area 412A of the first part 41 is provided with 2 first antenna radiators 90 and the second area 412B is provided with 2 first antenna radiators 90. The sixth area 412G of the second portion 42 is provided with 2 second antenna radiators 93.
In some embodiments, as shown in fig. 5, the second region 412B of the first portion 41 is provided with 2 first antenna radiators 90 and the third region 412C is provided with 2 first antenna radiators 90. The fourth region 412E of the second portion 42 is provided with 2 second antenna radiators 93. The 6 antenna radiators are arranged at intervals. The 6 antenna radiators may have the same or different specifications (e.g., length, width, material, etc.). The 6 antenna radiators may form a MIMO (Multiple-Input Multiple-Output) antenna, wherein there may be a plurality of antenna radiators for simultaneously transmitting and receiving radio frequency signals, and the 6 antenna radiators are all disposed in different regions, and when the first portion 41 and the second portion 42 are overlapped, the different regions are also maintained, so that interference between the antennas is greatly reduced.
In some embodiments, as shown in fig. 6, the first region 412A of the first portion 41 is provided with 2 first antenna radiators 90. The fifth area 412F of the second portion 42 is provided with 2 second antenna radiators 93 and the sixth area 412G is provided with 2 second antenna radiators 93. The 6 antenna radiators are arranged at intervals. The 6 antenna radiators may have the same or different specifications (e.g., length, width, material, etc.). The 6 antenna radiators may form a MIMO antenna, wherein there may be a plurality of antenna radiators for simultaneously transmitting and receiving radio frequency signals, and the 6 antenna radiators are all disposed in different areas, and when the first portion 41 and the second portion 42 are overlapped, the different areas are also maintained, so that interference between the antennas is greatly reduced.
In some embodiments, as shown in fig. 7, the third region 412C of the first portion 41 is provided with 2 first antenna radiators 90. The fourth area 412E of the second portion 42 is provided with 2 second antenna radiators 93 and the fifth area 412F is provided with 2 second antenna radiators 93. The 6 antenna radiators are arranged at intervals. The 6 antenna radiators may have the same or different specifications (e.g., length, width, material, etc.). The 6 antenna radiators may form a MIMO antenna, wherein there may be a plurality of antenna radiators for simultaneously transmitting and receiving radio frequency signals, and the 6 antenna radiators are all disposed in different areas, and when the first portion 41 and the second portion 42 are overlapped, the different areas are also maintained, so that interference between the antennas is greatly reduced.
In some embodiments, as shown in fig. 8, 4 first antenna radiators 90 are disposed on the first non-display area 412 of the first portion 41. The second non-display area 422 of the second portion 42 is shown with 4 second antenna radiators 93. The first antenna radiator 90 and the second antenna radiator 93 are disposed on opposite sides of the first casing 10 and the second casing 20 in a direction perpendicular to the folding axis when the casings are folded. The 8 antenna radiators are arranged at intervals. The 8 antenna radiators may have the same or different specifications (e.g., length, width, material, etc.). The 8 antenna radiators may form a MIMO antenna, wherein there may be a plurality of antenna radiators for simultaneously transmitting and receiving radio frequency signals, and the 8 antenna radiators are all disposed in different areas, and when the first portion 41 and the second portion 42 are overlapped, the different areas are also maintained, so that interference between the antennas is greatly reduced.
In some embodiments, as shown in fig. 9, the electronic device 100 further comprises a radio frequency transceiver module 91. Wherein, the radio frequency transceiver module 91 may be disposed in the first casing 10 of the electronic device 100, and may also be disposed in the second casing 20. For example, the rf transceiver module 91 may be disposed on the circuit board 50 within the first housing 10. In some other embodiments, the rf transceiver module 91 may also be disposed in the second casing 20, for example, an rf signal processing circuit may be disposed in the second casing 20, and the rf transceiver module 91 may be disposed on the rf signal processing circuit.
The radio frequency transceiver module 91 includes a plurality of signal sources 911. The plurality of signal sources 911 may be controlled by a processor of the electronic device 100. Each of the signal sources 911 is for generating a radio frequency signal. Each antenna radiator is electrically connected to two of the signal sources 911.
In some embodiments, as shown in fig. 9, the plurality of antenna radiators includes a first antenna radiator 90 and a second antenna radiator 93. The number of the first antenna radiators 90 may be one or more. The number of the second antenna radiators 93 may be one or more. For example, the number of first antenna radiators 90 may be 2, 3, or more. For example, the number of the second antenna radiators 93 may be 2, 3, or more. Each of the first antenna radiators 90 is electrically connected to two of the signal sources 911. Two signal sources 911 connected to the same first antenna radiator 90 are used to generate radio frequency signals of different frequency bands. Each of the second antenna radiators 93 is electrically connected to two of the signal sources 911. Two signal sources 911 electrically connected to the same second antenna radiator 93 are used to generate rf signals of different frequency bands.
Two feeding points 901 and 902 may be disposed on each of the first antenna radiators 90. Each feed point is electrically connected to one of the signal sources 911. Thus, two signal sources 911 can feed electric signals to the first antenna radiator 90 through different feeding points, respectively. Therefore, the first antenna radiator 90 may implement multiplexing to simultaneously transmit and/or receive two radio frequency signals of different frequency bands to the outside, so that the number of antenna radiators in the electronic device 100 may be reduced.
Further, a ground point 903 is provided between the two feeding points 901, 902 of each of the first antenna radiators 90. The grounding point 903 is grounded to realize grounding of the first antenna radiator 90. For example, the ground point 903 may be electrically connected to a ground point on the circuit board 50 in the electronic device 100. Thereby, the isolation between the electrical signals fed from the two feeding points 901, 902 can be realized to ensure the isolation between the radio frequency signals of two different frequency bands transmitted and/or received by the first antenna radiator 90.
Two feeding points 931, 932 may be disposed on each of the second antenna radiators 93. Each feed point is electrically connected to one of the signal sources 911. Thus, two signal sources 911 can feed electric signals to the second antenna radiator 93 through different feeding points, respectively. Therefore, the second antenna radiator 93 can implement multiplexing to simultaneously transmit and/or receive two radio frequency signals of different frequency bands to the outside, so that the number of antenna radiators in the electronic device 100 can be reduced.
Furthermore, a ground point 933 is provided between the two feeding points 931, 932 of each of the second antenna radiators 93. The ground point 933 is grounded to realize grounding of the second antenna radiator 93. For example, the ground point 933 can be electrically connected to a ground point on the circuit board 50 in the electronic device 100. Accordingly, the isolation between the electrical signals fed from the two feeding points 931 and 932 can be achieved, so as to ensure the isolation between the radio frequency signals of two different frequency bands transmitted and/or received by the second antenna radiator 93.
In some embodiments, a plurality of the signal sources 911 may be used to generate radio frequency signals at different frequencies. For example, one or more of The plurality of signal sources 911 may be used to generate a 4G (The 4th Generation Mobile Communication Technology, fourth Generation Mobile Communication Technology) signal. One or more of The plurality of signal sources 911 may also be used to generate a 5G (The 5th Generation Mobile Communication Technology, fifth Generation Mobile Communication Technology) signal. Therefore, the plurality of antenna radiators can be used for transceiving 4G signals and can also be used for transceiving 5G signals.
In some embodiments, each of the first antenna radiator 90 and the second antenna radiator 93 is configured to receive and transmit radio frequency signals in a first frequency range or a second frequency range. The radio frequency signal of the first frequency range is a 4G signal, and the radio frequency signal of the second frequency range is a 5G signal. The highest frequency in the first frequency range is less than the lowest frequency in the second frequency range. That is, each of the antenna radiators 90 may be configured to transceive 4G signals and 5G signals.
In some embodiments, the first frequency range includes 615MHz (megahertz) to 4200 MHz. The second frequency range includes 4.4GHz (gigahertz) to 30 GHz.
In some embodiments, as shown in fig. 9, the first housing 10 and the second housing 20 are provided with grounding points 92. For example, the ground point 92 may be a ground point provided on the circuit board 50. Each of the first antenna radiator 90 and the second antenna radiator 93 is electrically connected to the ground point 92. Thus, each of the first and second antenna radiators 90 and 93 may constitute a signal loop.
As can be seen from the above, the electronic device provided in the embodiment of the present application includes that the first housing and the second housing are both provided with the radio frequency transceiver module, and the radio frequency transceiver module includes a plurality of signal sources; the first part comprises a first non-display area, and the orthographic projection of the first antenna radiator on the first display screen is positioned in the first non-display area; the second part comprises a second non-display area, and the orthographic projection of the second antenna radiator on the second display screen is positioned in the second non-display area; the first antenna radiator and the second antenna radiator are respectively electrically connected with the two signal sources, and the first antenna radiator and the second antenna radiator are arranged on two opposite sides of the first shell and the second shell in the vertical direction of the folding axis when the first shell and the second shell are in the folded state. In the electronic device provided by the embodiment of the application, the plurality of antenna radiators can form an MIMO antenna, and the first antenna radiator and the second antenna radiator are relatively isolated from each other, so that the stability of the electronic device in communication with a base station or other electronic devices can be improved, and the interference between the antennas can be reduced.
The electronic device provided by the embodiment of the application is described in detail above. The principles and implementations of the present application are described herein using specific examples, which are presented only to aid in understanding the present application. Meanwhile, for those skilled in the art, according to the idea of the present application, there may be variations in the specific embodiments and the application scope, and in summary, the content of the present specification should not be construed as a limitation to the present application.

Claims (12)

1. An electronic device, comprising:
the antenna comprises a first shell, wherein a radio frequency transceiving module is arranged in the first shell, the radio frequency transceiving module comprises a plurality of signal sources, the signal sources are used for generating radio frequency signals, at least one first antenna radiating body is arranged in the first shell, each first antenna radiating body is provided with two first feeding points and a first grounding point, the first grounding point is arranged between the two first feeding points, and the first grounding point is grounded; each first feed point is electrically connected with one signal source, and the two signal sources electrically connected with the same first antenna radiator are used for generating radio frequency signals of different frequency bands;
the second shell is connected with the first shell through a rotating shaft, a radio frequency transceiver module is arranged in the second shell, the radio frequency transceiver module comprises a plurality of signal sources, the signal sources are used for generating radio frequency signals, at least one second antenna radiator is arranged in the second shell, each second antenna radiator is provided with two second feeding points and a second grounding point, the second grounding point is arranged between the two second feeding points, and the second grounding points are grounded; each second feed point is electrically connected with one signal source, and the two signal sources electrically connected with the same second antenna radiator are used for generating radio frequency signals of different frequency bands;
the first display screen comprises a first portion and a second portion, the first portion is connected with the second portion of the first portion in a rotatable mode, the first portion is installed on the first shell, the second portion is installed on the second shell, the first portion comprises a first display area and a first non-display area surrounding the first display area, each first antenna radiator is located in an orthographic projection on the first display screen is located in the first non-display area, the second portion comprises a second display area and a second non-display area surrounding the second display area, each second antenna radiator is located in an orthographic projection on the first display screen is located in the second non-display area, each first antenna radiator and any one second antenna radiator are arranged at intervals, each first antenna radiator and any one second antenna radiator are arranged on the first shell and the second shell in a folding mode The relative both sides of the vertical direction of folding axis during the state to make first casing with when the second casing is in folded state, each first antenna radiator with arbitrary one the second antenna radiator does not overlap.
2. The electronic device according to claim 1, wherein the first portion and the second portion are integrally configured, the first portion includes a first side connected to the second portion, a second side opposite to the first side, and a third side and a fourth side adjacent to the second side, the third side and the fourth side are disposed opposite to each other, the first non-display region includes a first region, a second region, and a third region, the first region is located at the third side, the second region is located at the second side, and the third region is located at the fourth side.
3. The electronic device according to claim 2, wherein the second portion includes a first side connected to the first portion, a fifth side opposite to the first side, and a sixth side and a seventh side adjacent to the fifth side, the sixth side being disposed opposite to the seventh side, the second non-display area includes a fourth area, a fifth area, and a sixth area, the fourth area is located on the sixth side, the fifth area is located on the fifth side, and the sixth area is located on the seventh side.
4. The electronic device of claim 3, wherein the first antenna radiator is disposed on the first region and the second antenna radiator is disposed on the sixth region.
5. The electronic device of claim 3, wherein the first antenna radiator is disposed on the third region and the second antenna radiator is disposed on the fourth region.
6. The electronic device according to claim 3, wherein the first non-display area is provided with at least two first antenna radiators, and the second non-display area is provided with at least two second antenna radiators.
7. The electronic device of any of claims 1-6, wherein each of the first antenna radiator and the second antenna radiator is configured to transceive radio frequency signals in a first frequency range or a second frequency range, and wherein a highest frequency in the first frequency range is less than a lowest frequency in the second frequency range.
8. The electronic device of claim 7, wherein the first frequency range comprises 615MHz to 4200MHz, and wherein the second frequency range comprises 4.4GHz to 30 GHz.
9. The electronic device of any of claims 1-6, further comprising a second display screen mounted on the first housing, the second display screen and the first portion of the first display screen being disposed on opposite sides of the first housing, respectively.
10. The electronic device of any of claims 1-6, further comprising a second display screen mounted on the second housing, the second display screen and the second portion of the first display screen being disposed on opposite sides of the second housing, respectively.
11. The electronic device according to any one of claims 1 to 6, further comprising a rear cover mounted on the second housing, the rear cover and the second portion of the first display screen being disposed on opposite sides of the second housing, respectively.
12. The electronic device according to any one of claims 1 to 6, further comprising a rear cover mounted on the first housing, the rear cover and the first portion of the first display screen being disposed on opposite sides of the first housing, respectively.
CN201810998334.0A 2018-08-29 2018-08-29 Electronic device Active CN109216876B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810998334.0A CN109216876B (en) 2018-08-29 2018-08-29 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810998334.0A CN109216876B (en) 2018-08-29 2018-08-29 Electronic device

Publications (2)

Publication Number Publication Date
CN109216876A CN109216876A (en) 2019-01-15
CN109216876B true CN109216876B (en) 2021-03-23

Family

ID=64985289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810998334.0A Active CN109216876B (en) 2018-08-29 2018-08-29 Electronic device

Country Status (1)

Country Link
CN (1) CN109216876B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065246A (en) * 2018-10-16 2020-04-23 株式会社村田製作所 Communication device
CN111613873B (en) * 2019-02-22 2022-11-25 华为技术有限公司 Antenna device and electronic apparatus
CN112018495B (en) * 2019-05-31 2022-12-27 Oppo广东移动通信有限公司 Electronic device
CN112103621B (en) * 2019-06-17 2023-05-30 Oppo广东移动通信有限公司 Electronic equipment
CN110350294B (en) * 2019-06-30 2021-10-22 RealMe重庆移动通信有限公司 Wearable electronic equipment
WO2021000196A1 (en) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 Antenna module for use in folding screen terminal and terminal
CN110277642B (en) * 2019-07-15 2021-02-02 青岛海信移动通信技术股份有限公司 Mobile terminal
CN110581907B (en) * 2019-08-27 2021-07-20 Oppo广东移动通信有限公司 Electronic equipment and sound transmission method thereof
CN112448132B (en) * 2019-09-03 2023-04-07 RealMe重庆移动通信有限公司 Wearable electronic equipment
CN110718760B (en) * 2019-10-24 2020-12-25 珠海格力电器股份有限公司 Antenna unit and folding screen terminal device
CN112751160B (en) * 2019-10-31 2021-10-15 华为技术有限公司 Foldable electronic device
CN112886178B (en) * 2019-11-29 2023-05-09 RealMe重庆移动通信有限公司 Wearable electronic equipment
CN111211402B (en) * 2020-03-23 2021-05-25 RealMe重庆移动通信有限公司 Wearable electronic equipment
CN112736404B (en) * 2020-12-24 2023-12-08 维沃移动通信有限公司 Electronic equipment
CN114696093A (en) * 2020-12-30 2022-07-01 华为技术有限公司 Antenna device and electronic apparatus
CN112993545B (en) * 2021-02-05 2023-06-16 维沃移动通信有限公司 Folding electronic device
CN112993546B (en) * 2021-02-05 2023-12-15 维沃移动通信有限公司 Electronic equipment
CN113922058A (en) * 2021-09-24 2022-01-11 青岛海信移动通信技术股份有限公司 Electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154339A (en) * 2006-09-25 2008-04-02 佛山市顺德区顺达电脑厂有限公司 Interlocking switch device of screen and antenna
CN104994194B (en) * 2015-07-13 2018-01-26 广东欧珀移动通信有限公司 It is a kind of to use the flexible screen mobile terminal being wirelessly transferred
US10224606B2 (en) * 2015-07-30 2019-03-05 Samsung Electro-Mechanics Co., Ltd. Electronic device with multi-band antenna for supporting carrier aggregation using non-segmented conductive border member
KR102164704B1 (en) * 2015-11-13 2020-10-12 삼성전자주식회사 Electronic device with metal frame antenna
CN105406176B (en) * 2015-12-09 2018-09-04 广东欧珀移动通信有限公司 A kind of mobile terminal antenna system and mobile terminal
KR102553887B1 (en) * 2016-06-01 2023-07-11 삼성전자주식회사 Foldable electronic device
WO2018093358A1 (en) * 2016-11-16 2018-05-24 Hewlett-Packard Development Company, L.P. Antennas selection based on sensors
CN107919521B (en) * 2017-12-28 2020-07-17 Oppo广东移动通信有限公司 Antenna device and terminal equipment

Also Published As

Publication number Publication date
CN109216876A (en) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109216876B (en) Electronic device
CN108321495B (en) Antenna assembly, antenna device and electronic equipment
CN103947039B (en) There is the antenna of folded monopole and loop pattern
CN108470977B (en) Antenna assembly, antenna device and electronic equipment
CN112018495B (en) Electronic device
CN108321494B (en) Antenna device and electronic apparatus
CN109244675B (en) Shell assembly and electronic equipment
CN104604024A (en) Distributed loop speaker enclosure antenna
CN109244674B (en) Shell assembly and electronic equipment
CN108923119A (en) Electronic equipment
CN110676557B (en) Electronic device
CN109167169B (en) Electronic device
CN109167150B (en) Electronic device
CN108712536A (en) Electronic equipment
CN108448228B (en) Antenna assembly and electronic equipment
CN108965523A (en) Electronic equipment
CN112768904B (en) Antenna radiator, antenna assembly and electronic equipment
CN109167854B (en) Electronic device
CN109167152B (en) Electronic device
CN109244667B (en) Electronic device
CN112103624B (en) Antenna device and electronic apparatus
CN110875963A (en) Electronic device
CN109216866B (en) Electronic device
CN112448145B (en) Electronic equipment
WO2020001186A1 (en) Electronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant