CN109216553B - 一种CsSnI3掺杂有机太阳能电池及其制备方法 - Google Patents

一种CsSnI3掺杂有机太阳能电池及其制备方法 Download PDF

Info

Publication number
CN109216553B
CN109216553B CN201810824771.0A CN201810824771A CN109216553B CN 109216553 B CN109216553 B CN 109216553B CN 201810824771 A CN201810824771 A CN 201810824771A CN 109216553 B CN109216553 B CN 109216553B
Authority
CN
China
Prior art keywords
cssni
active layer
solar cell
organic solar
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810824771.0A
Other languages
English (en)
Other versions
CN109216553A (zh
Inventor
於黄忠
张弜
黄承稳
黄欣欣
巫祖萍
陈金雲
林卓耿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810824771.0A priority Critical patent/CN109216553B/zh
Publication of CN109216553A publication Critical patent/CN109216553A/zh
Application granted granted Critical
Publication of CN109216553B publication Critical patent/CN109216553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明公开一种CsSnI3掺杂有机太阳能电池及其制备方法。该电池包括阴极基底、电子传输层、活性层、空穴传输层以及阳极层;所述活性层由P3HT/PCBM与CsSnI3粉末掺杂而成。本发明的掺杂有机太阳能电池,通过在活性层中掺杂高电导率、高电荷分离以及较好的吸光性的CsSnI3粉末;首先,CsSnI3粉末具有较高的电导率,可以有效的提升有机太阳能电池的电荷传输效率;其次CsSnI3电荷分离能力优异,能提高活性层的电荷分离效率并减少电子空穴对的复合;最后CsSnI3有较强的可见光吸收范围,能增强活性层的吸光性,最终提高掺杂有机太阳能电池的光电转换效率。

Description

一种CsSnI3掺杂有机太阳能电池及其制备方法
技术领域
本发明涉及太阳能电池领域,尤其涉及一种掺杂有机太阳能电池及其制备方法。
背景技术
有机太阳能电池由于其原料来源广、加工容易、易于进行物理与化学改性、电池器件结构多样、价格便宜、环境友好等优点而受到广泛关注。但有机太阳能电池与传统无机硅太阳能电池相比,有机太阳能电池在光电转换效率较低,这限制了其进一步发展。
有机太阳能电池工作原理为:(1)光透过ITO电极照到活性层上,活性层吸收光子产生激子;激子扩散到给体/受体界面处;(2)受体中的激子将空穴转移到给体上,给体中的激子将电子转移到受体上,进而实现电荷分离;(3)电子和空穴分别顺着受体与给体向阴极与阳极扩散;(4)电子和空穴在阴极和阳极界面上分别被阴极和阳极收集,并由此产生光电流和光电压。
研究表明限制有机太阳能电池光电转换效率有两大因素:(1)激子的解离与电荷传输,由于有机物本身的特性导致激子分离效率低,激子扩散长度短,电荷传输效率低等;(2)有机太阳能电池的可见光吸收范围不够宽,导致仅吸收一部分太阳光。对此人们提出向有机活性层添加兼顾吸收、电荷分离以及电荷传输效率的材料;Gustaf等将Ir(ppy)3掺入P3HT:PCBM体系中制备的器件表现出优异的激子解离效率;Heeger等将金纳米晶体加入到P3HT:PCBM体系中发现活性层光吸收范围和电荷传输效率都得到有效提升;Huangzhong Yu等将 CuPc掺到P3HT:PCBM体系中发现活性层光吸收范围、激子解离效率和电荷传输效率都得到有效提升。
发明内容
本发明提供一种CsSnI3掺杂有机太阳能电池及其制备方法,即一种可以提高光电光电转换效率的掺杂有机太阳能电池。
本发明技术方案如下。
一种CsSnI3掺杂有机太阳能电池,包括阴极基底、电子传输层、活性层、空穴传输层以及阳极层;所述活性层由P3HT:PCBM与 CsSnI3粉末掺杂而成。
进一步地,所述阴极基底选自铟锡氧化物玻璃(ITO);所述电子传输层为ZnO;所述空穴传输层为MoOx;所述阳极层为银。
进一步地,所述活性层中CsSnI3粉末掺杂质量百分比为0.5~5%。
进一步地,所述CsSnI3粉末的粒径大小为10~100nm。
进一步地,所述CsSnI3材料制备方法为:等摩尔质量的CsI和 SnI2混合均匀并转移至真空玻璃管中,在管式炉中以550℃反应1小时左右,待冷却至室温即可获得黑色粉末CsSnI3
一种CsSnI3掺杂有机太阳能电池的制备方法,包括如下步骤:
步骤一、清洗阴极基底,并对所述阴极基底的阴极层表面进行表面处理;
步骤二、在经过步骤一表面处理过的所述阴极层表面依次旋涂电子传输层、活性层;所述活性层由P3HT/PCBM与CsSnI3粉末掺杂而成;
步骤三、在步骤二所述的活性层表面依次蒸镀空穴传输层以及阳极层;上述工艺步骤完成后,制得所述掺杂有机太阳能电池。
上述方法中,步骤一中,所述阴极基底处理包括:首先依次用洗洁精、去离子水、丙酮、无水乙醇、异丙醇各超声清洗15~20分钟;其次在70~80℃真空干燥箱中烘干;最后对所述清洗烘干的阴极基底表面进行10~15分钟的等离子表面处理。
上述方法中,步骤二中,所述电子传输层的制备方法如下:将 ZnO溶液旋涂在上述处理过的阴极基底表面上,转数为4000~5000 rpm,时间为30~40s;将旋涂完氧化锌的阴极基底进行退火处理,温度为180~200℃,时间为50~60分钟,电子传输层厚度为4~5nm。
上述方法中,步骤二中,所述活性层制备工艺为:首先将CsSnI3粉末研磨并分散在二氯苯溶剂中,将上述混合液超声分散,用0.22 μm的有机滤头过滤,并计算所述滤液浓度;其次将P3HT和PCBM 混合均匀后滴加上述CsSnI3滤液配置成质量浓度为20mg/ml的溶液,搅拌10~12小时,掺杂CsSnI3质量百分比为0.5~5%;最后在已旋涂电子传输层表面上旋涂活性层溶液,转数为800~1000rpm,时间为30~40s,活性层厚度为180~200nm;所述活性层旋涂完成后放置2~3 小时自然晾干,随后以100~150℃退火处理5~10分钟。
上述方法中,步骤三中,所述空穴传输层为MoOx,其厚度为 1~2nm;所述阳极层为银,其厚度为80~100nm。
本发明的掺杂有机太阳能电池,通过在活性层中掺杂高电导率、高电荷分离以及较好的吸光性的CsSnI3粉末;首先,CsSnI3粉末具有较高的电导率,可以有效的提升有机太阳能电池的电荷传输效率;其次CsSnI3电荷分离能力优异,能提高活性层的电荷分离效率并减少电子空穴对的复合;最后CsSnI3有较强的可见光吸收范围,能增强活性层的吸光性,最终提高掺杂有机太阳能电池的光电转换效率。
附图说明
图1为本发明的掺杂有机太阳能电池的结构示意图。
图2为掺杂有机太阳能电池器件的制备方法流程图。
图3为实施例1的太阳能器件的电流密度与电压关系图。
具体实施方式
本发明提供一种掺杂有机太阳能电池,如图1所示其包括阴极基底01、电子传输层02、活性层03、空穴传输层04以及阳极层05。所述阴极基底01为铟锡氧化物玻璃(ITO)。所述电子传输层02为氧化锌(ZnO),其厚度为5nm。所述活性层为由P3HT/PCBM与CsSnI3粉末掺杂而成,其中P3HT为聚3-己基噻吩,PCBM为[6,6]-苯基-C61- 丁酸甲酯;所述活性层中CsSnI3粉末掺杂质量百分比为0.5~5%, CsSnI3粉末粒径大小为10~200nm;所述CsSnI3 材料制备方法为:等摩尔质量的CsI和SnI2混合均匀并转移至真空玻璃管中,在管式炉中以550℃反应1小时左右,待冷却至室温即可获得黑色粉末CsSnI3 。所述活性层厚度为200nm左右。所述空穴传输层为所述空穴传输层为MoOx,其厚度为2nm。所述阳极层为银,其厚度为80~100nm。
上述掺杂有机太阳能电池的制备工艺如图2所示,包括如下步骤:
步骤1、依次用洗洁精、去离子水、丙酮、无水乙醇、异丙醇各超声清洗20分钟;此次在80℃真空干燥箱中烘干。
步骤2、对所述清洗烘干的阴极基底(ITO)表面进行10分钟的等离子表面处理,该处理方法利用微波下生成臭氧的强氧化性来清洗 ITO表面残留有机物等,同时可以使ITO表面氧空位提高,提高ITO 表面的功函数。
步骤3、在经过步骤2处理过的ITO表面旋涂ZnO溶液,在200℃条件下退火处理1小时形成电子传输层,其厚度为5nm。
步骤4、在上述电子传输层表面旋涂活性层溶液;所述活性层为由P3HT/PCBM与CsSnI3粉末掺杂而成,其中CsSnI3粉末掺杂质量百分比为0.5~5%,CsSnI3粉末粒径大小为10~200nm,所述活性层厚度为200nm左右。所述活性层制备工艺为:首先将CsSnI3粉末研磨并分散在二氯苯溶剂中,将上述混合液超声分散,用0.22μm的有机滤头过滤,并计算所述滤液浓度;其次将P3HT和PCBM混合均匀后滴加一定质量比的上述CsSnI3滤液配置成质量浓度为20mg/ml的溶液,搅拌12小时,掺杂CsSnI3质量百分比为0.5~5%;最后在电子传输层表面上旋涂活性层溶液,转数为1000rpm,时间为40s,活性层厚度为200nm左右;所述活性层旋涂完成后放置2~3小时自然晾干,随后以100~150℃退火处理5~10分钟。
步骤5、在上述活性层表面蒸镀空穴传输层MoOx,其厚度为2nm。
步骤6、在上述空穴传输层表面蒸镀阳极层银(Ag),其厚度为 80~100nm。上述步骤结束后得到掺杂有机太阳能电池。
下面结合附图,对本发明性能较优实施例进一步详细说明。
实施例1
本实施例1中的掺杂有机太阳能电池器件结构为: ITO/ZnO/P3HT:PCBM:CsSnI3/MoOx/Ag。
上诉掺杂有机太阳能电池的制备工艺流程如下:
步骤1、依次用洗洁精、去离子水、丙酮、无水乙醇、异丙醇各超声清洗20分钟;此次在80℃真空干燥箱中烘干。
步骤2、对所述清洗烘干的阴极基底(ITO)表面进行10分钟的等离子表面处理,该处理方法利用微波下生成臭氧的强氧化性来清洗 ITO表面残留有机物等,同时可以使ITO表面氧空位提高,提高ITO 表面的功函数。
步骤3、在经过步骤2处理过的ITO表面旋涂ZnO溶液,在200℃条件下退火处理1小时形成电子传输层,其厚度为5nm。
步骤4、在上述电子传输层表面旋涂活性层溶液;所述活性层为由P3HT/PCBM与CsSnI3粉末掺杂而成,其中CsSnI3粉末掺杂质量百分比为1%,CsSnI3粉末粒径大小为10~200nm,所述活性层厚度为 200nm左右。所述活性层制备工艺为:首先将CsSnI3粉末研磨并分散在二氯苯溶剂中,将上述混合液超声分散,用0.22μm的有机滤头过滤,并计算所述滤液浓度;其次将P3HT和PCBM(质量比为 20mg:20mg)混合均匀后滴加上述CsSnI3滤液配置成质量浓度为 20mg/ml的溶液,搅拌12小时,掺杂CsSnI3质量百分比为1%;最后在电子传输层表面上旋涂活性层溶液,转数为1000rpm,时间为40s,活性层厚度为200nm左右;所述活性层旋涂完成后放置2~3小时自然晾干,随后以100~150℃退火处理5~10分钟。
步骤5、在上述活性层表面蒸镀空穴传输层MoOx,其厚度为2nm。
步骤6、在上述空穴传输层表面蒸镀阳极层银,其厚度为 80~100nm。上述步骤结束后得到掺杂有机太阳能电池。
图3为实施例1的掺杂有机太阳能电池与比较例中未掺杂有机太阳能电池的电流密度与电压关系曲线图;其中曲线1为比较例中未掺杂有机太阳能电池(结构为:ITO/ZnO/P3HT:PCBM/MoOx/Ag)的电流密度与电压曲线,曲线2为实施例1的掺杂有机太阳能电池(结构为: ITO/ZnO/P3HT:PCBM:CsSnI3/MoOx/Ag)的电流密度与电压曲线;从附图3可以看出比较例中未掺杂有机太阳能电池其开路电压(Voc)为0.62V,短路电流密度(Jsc)为8.48mA/cm2;实施例1的掺杂有机太阳能电池其开路电压(Voc)为0.62V,短路电流密度(Jsc)为9.30 mA/cm2。这说明掺杂CsSnI3以后能有效提高电荷分离和电荷传输效率,从而提高短路电流密度。
表1
Figure GDA0002230402180000081
从表1可以发现,实施例1的短路电流密度(Jsc)从8.48mA/cm2提升到9.30mA/cm2,填充因子(FF)从58.73%提升到64.80%,这说明了掺杂CsSnI3以后的有机太阳能电池其吸收光的能力、激子分离效率以及载流子迁移率都有效提升了,从而使太阳能电池光电转换效率从3.09%提高到3.74%,转换效率提高了17%。
实施例2
本实施例2中的掺杂有机太阳能电池器件结构为: ITO/ZnO/P3HT:PCBM:CsSnI3/MoOx/Ag。
上诉掺杂有机太阳能电池的制备工艺流程如下:
步骤1、依次用洗洁精、去离子水、丙酮、无水乙醇、异丙醇各超声清洗20分钟;此次在80℃真空干燥箱中烘干。
步骤2、对所述清洗烘干的阴极基底(ITO)表面进行10分钟的等离子表面处理,该处理方法利用微波下生成臭氧的强氧化性来清洗ITO表面残留有机物等,同时可以使ITO表面氧空位提高,提高ITO 表面的功函数。
步骤3、在经过步骤2处理过的ITO表面旋涂ZnO溶液,在200℃条件下退火处理1小时形成电子传输层,其厚度为5nm。
步骤4、在上述电子传输层表面旋涂活性层溶液;所述活性层为由P3HT/PCBM与CsSnI3粉末掺杂而成,其中CsSnI3粉末掺杂质量百分比为0.5%,CsSnI3粉末粒径大小为10~200nm,所述活性层厚度为200nm左右。所述活性层制备工艺为:首先将CsSnI3粉末研磨并分散在二氯苯溶剂中,将上述混合液超声分散,用0.22μm的有机滤头过滤,并计算所述滤液浓度;其次将P3HT和PCBM(质量比为 20mg:20mg)混合均匀后滴加上述CsSnI3滤液配置成质量浓度为 20mg/ml的溶液,搅拌12小时,掺杂CsSnI3质量百分比为0.5%;最后在电子传输层表面上旋涂活性层溶液,转数为1000rpm,时间为40s,活性层厚度为200nm左右;所述活性层旋涂完成后放置2~3小时自然晾干,随后以100~150℃退火处理5~10分钟。
步骤5、在上述活性层表面蒸镀空穴传输层MoOx,其厚度为2nm。
步骤6、在上述空穴传输层表面蒸镀阳极层银,其厚度为 80~100nm。
上述步骤结束后得到掺杂有机太阳能电池。
实施例3
本实施例3中的掺杂有机太阳能电池器件结构为: ITO/ZnO/P3HT:PCBM:CsSnI3/MoOx/Ag。
上诉掺杂有机太阳能电池的制备工艺流程如下:
步骤1、依次用洗洁精、去离子水、丙酮、无水乙醇、异丙醇各超声清洗20分钟;此次在80℃真空干燥箱中烘干。
步骤2、对所述清洗烘干的阴极基底(ITO)表面进行10分钟的等离子表面处理,该处理方法利用微波下生成臭氧的强氧化性来清洗 ITO表面残留有机物等,同时可以使ITO表面氧空位提高,提高ITO 表面的功函数。
步骤3、在经过步骤2处理过的ITO表面旋涂ZnO溶液,在200℃条件下退火处理1小时形成电子传输层,其厚度为5nm。
步骤4、在上述电子传输层表面旋涂活性层溶液;所述活性层为由P3HT/PCBM与CsSnI3粉末掺杂而成,其中CsSnI3粉末掺杂质量百分比为3%,CsSnI3粉末粒径大小为10~200nm,所述活性层厚度为 200nm左右。所述活性层制备工艺为:首先将CsSnI3粉末研磨并分散在二氯苯溶剂中,将上述混合液超声分散,用0.22μm的有机滤头过滤,并计算所述滤液浓度;其次将P3HT和PCBM(质量比为 20mg:20mg)混合均匀后滴加上述CsSnI3滤液配置成质量浓度为 20mg/ml的溶液,搅拌12小时,掺杂CsSnI3质量百分比为3%;最后在电子传输层表面上旋涂活性层溶液,转数为1000rpm,时间为40s,活性层厚度为200nm左右;所述活性层旋涂完成后放置2~3小时自然晾干,随后以100~150℃退火处理5~10分钟。
步骤5、在上述活性层表面蒸镀空穴传输层MoOx,其厚度为2nm。
步骤6、在上述空穴传输层表面蒸镀阳极层银,其厚度为 80~100nm。
上述步骤结束后得到掺杂有机太阳能电池。
实施例4
本实施例4中的掺杂有机太阳能电池器件结构为: ITO/ZnO/P3HT:PCBM:CsSnI3/MoOx/Ag。
上诉掺杂有机太阳能电池的制备工艺流程如下:
步骤1、依次用洗洁精、去离子水、丙酮、无水乙醇、异丙醇各超声清洗20分钟;此次在80℃真空干燥箱中烘干。
步骤2、对所述清洗烘干的阴极基底(ITO)表面进行10分钟的等离子表面处理,该处理方法利用微波下生成臭氧的强氧化性来清洗 ITO表面残留有机物等,同时可以使ITO表面氧空位提高,提高ITO 表面的功函数。
步骤3、在经过步骤2处理过的ITO表面旋涂ZnO溶液,在200℃条件下退火处理1小时形成电子传输层,其厚度为5nm。
步骤4、在上述电子传输层表面旋涂活性层溶液;所述活性层为由P3HT/PCBM与CsSnI3粉末掺杂而成,其中CsSnI3粉末掺杂质量百分比为5%,CsSnI3粉末粒径大小为10~200nm,所述活性层厚度为 200nm左右。所述活性层制备工艺为:首先将CsSnI3粉末研磨并分散在二氯苯溶剂中,将上述混合液超声分散,用0.22μm的有机滤头过滤,并计算所述滤液浓度;其次将P3HT和PCBM(质量比为20mg:20mg)混合均匀后滴加上述CsSnI3滤液配置成质量浓度为 20mg/ml的溶液,搅拌12小时,掺杂CsSnI3质量百分比为5%;最后在电子传输层表面上旋涂活性层溶液,转数为1000rpm,时间为40s,活性层厚度为200nm左右;所述活性层旋涂完成后放置2~3小时自然晾干,随后以100~150℃退火处理5~10分钟。
步骤5、在上述活性层表面蒸镀空穴传输层MoOx,其厚度为2nm。
步骤6、在上述空穴传输层表面蒸镀阳极层银,其厚度为 80~100nm。
上述步骤结束后得到掺杂有机太阳能电池。
以上所述实施例仅代表了本发明的几种实施方式,其描述较为具体详细,但并不能因此理解为对本发明专利范围的限制。应指出的是,对于从事本领域的技术人员来说,在没有脱离本发明构思的前提下,还可以做出若干变化和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种CsSnI3掺杂有机太阳能电池,其特征在于,包括阴极基底(01)、电子传输层(02)、活性层(03)、空穴传输层(04)以及阳极层(05);所述活性层(03)由P3HT:PCBM与CsSnI3粉末掺杂而成;
所述活性层中CsSnI3粉末掺杂质量百分比为0.5~5%;
所述CsSnI3粉末的粒径大小为10~100nm。
2.根据权利要求1所述CsSnI3掺杂有机太阳能电池,其特征在于,所述阴极基底(01)选自铟锡氧化物玻璃(ITO);所述电子传输层(02)为ZnO;所述空穴传输层(04)为MoOx;所述阳极层(05)为银。
3.根据权利要求1 所述CsSnI3掺杂有机太阳能电池,其特征在于,所述CsSnI3材料制备方法为:等摩尔质量的CsI和SnI2混合均匀并转移至真空玻璃管中,在管式炉中以550℃反应1小时左右,待冷却至室温即可获得黑色粉末CsSnI3
4.一种CsSnI3掺杂有机太阳能电池的制备方法,其特征在于,包括如下步骤:
步骤一、清洗阴极基底,并对所述阴极基底的阴极层表面进行表面处理;
步骤二、在经过步骤一表面处理过的所述阴极层表面依次旋涂电子传输层、活性层;所述活性层由P3HT:PCBM与CsSnI3粉末掺杂而成;
步骤三、在步骤二所述的活性层表面依次蒸镀空穴传输层以及阳极层;上述工艺步骤完成后,制得所述掺杂有机太阳能电池。
5.根据权利要求4所述CsSnI3掺杂有机太阳能电池的制备方法,其特征在于,步骤一中,所述阴极基底处理包括:首先依次用洗洁精、去离子水、丙酮、无水乙醇、异丙醇各超声清洗15~20分钟;其次在70~80℃真空干燥箱中烘干;最后对所述清洗烘干的阴极基底表面进行10~15分钟的等离子表面处理。
6.根据权利要求4所述CsSnI3掺杂有机太阳能电池的制备方法,其特征在于,步骤二中,所述电子传输层的制备方法如下:将ZnO溶液旋涂在上述处理过的阴极基底表面上,转数为4000~5000 rpm,时间为30~40s;将旋涂完氧化锌的阴极基底进行退火处理,温度为180~200℃,时间为50~60分钟,电子传输层厚度为4~5nm。
7.根据权利要求4所述CsSnI3掺杂有机太阳能电池的制备方法,其特征在于,步骤二中,所述活性层制备工艺为:首先将CsSnI3粉末研磨并分散在二氯苯溶剂中,将上述混合液超声分散,用0.22μm的有机滤头过滤,并计算所述滤液浓度;其次将P3HT和PCBM混合均匀后滴加上述CsSnI3滤液配置成质量浓度为20mg/ml的溶液,搅拌10~12小时,掺杂CsSnI3质量百分比为0.5~5%;最后在已旋涂电子传输层表面上旋涂活性层溶液,转数为800~1000rpm,时间为30~40s,活性层厚度为180~200nm;所述活性层旋涂完成后放置2~3小时自然晾干,随后以100~150℃退火处理5~10分钟。
8.根据权利要求4所述CsSnI3掺杂有机太阳能电池的制备方法,其特征在于,步骤三中,所述空穴传输层为MoOx,其厚度为1~2nm;所述阳极层为银,其厚度为80~100nm。
CN201810824771.0A 2018-07-25 2018-07-25 一种CsSnI3掺杂有机太阳能电池及其制备方法 Active CN109216553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810824771.0A CN109216553B (zh) 2018-07-25 2018-07-25 一种CsSnI3掺杂有机太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810824771.0A CN109216553B (zh) 2018-07-25 2018-07-25 一种CsSnI3掺杂有机太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN109216553A CN109216553A (zh) 2019-01-15
CN109216553B true CN109216553B (zh) 2020-09-22

Family

ID=64990249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810824771.0A Active CN109216553B (zh) 2018-07-25 2018-07-25 一种CsSnI3掺杂有机太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109216553B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121984A1 (en) * 2016-01-12 2017-07-20 Sheffield Hallam University Photoactive polymer-perovskite composite materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064281A (zh) * 2010-11-03 2011-05-18 天津理工大学 一种以乙酸铯为阴极修饰层的有机光伏电池及其制备方法
CN105895726A (zh) * 2016-05-11 2016-08-24 徐翔星 含钙钛矿纳米晶下转换层的太阳能电池及其制备方法
CN106653927B (zh) * 2016-12-23 2018-01-02 济南大学 一种基于Cs2SnI6&CH3NH3PbI3体异质结的太阳能电池的制备方法
CN106654020B (zh) * 2017-01-24 2019-01-08 中国科学院上海硅酸盐研究所 体异质结钙钛矿薄膜及其制备方法和太阳能电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121984A1 (en) * 2016-01-12 2017-07-20 Sheffield Hallam University Photoactive polymer-perovskite composite materials

Also Published As

Publication number Publication date
CN109216553A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109904326B (zh) 一种MXene掺杂PEDOT:PSS为阳极修饰层材料的有机太阳能电池及其制备方法
Guo et al. Improvement of stability of ZnO/CH 3 NH 3 PbI 3 bilayer by aging step for preparing high-performance perovskite solar cells under ambient conditions
CN111682111B (zh) 以PBDB-T:ITIC:α-In2Se3为活性层的有机太阳能电池及其制备方法
CN110828671A (zh) 一种有机-无机阴极修饰层材料的有机太阳能电池及其制备方法
CN110844936A (zh) 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN105470399A (zh) 基于无掺杂有机空穴传输层的钙钛矿太阳能电池及制备方法
CN109065724B (zh) 一种Mo-二氧化钛-AgNWs柔性钙钛矿太阳能电池及其制备方法
CN108281553B (zh) 一种聚3,4-乙烯二氧噻吩包覆氧化钨纳米棒、制备方法及其应用
CN110676386B (zh) 一种高迁移率二维Bi2O2Se掺杂的三元太阳能电池及其制备方法
CN106410037A (zh) 一种基于有机小分子给体材料的双结太阳能电池器件及其制备方法
CN109301070B (zh) 一种Bi2OS2掺杂有机太阳能电池及其制备方法
CN109216563B (zh) 一种Cs2SnI6掺杂有机太阳能电池及其制备方法
CN109244241B (zh) 一种CSPbBr3掺杂有机太阳能电池及其制备方法
CN109216552B (zh) 一种Bi2O2S包覆的纳米棒阵列的制备方法与在太阳能电池的应用
CN113097388B (zh) 一种基于复合电子传输层的钙钛矿电池及其制备方法
CN114784193A (zh) 一种基于金属诱导有机界面层的有机光电器件及制备方法
CN109935697B (zh) 一种以In2Se3掺杂PEDOT:PSS为空穴传输层的有机太阳能电池及其制备方法
CN108682740A (zh) 钙钛矿电池及其制备方法
CN109216553B (zh) 一种CsSnI3掺杂有机太阳能电池及其制备方法
CN109935698B (zh) 一种以In2Se3为空穴传输层的有机太阳能电池及其制备方法
CN109244240B (zh) 一种CsGeI3掺杂有机太阳能电池及其制备方法
CN113394343B (zh) 一种背入射p-i-n结构钙钛矿太阳电池及其制备方法
CN110931643B (zh) 一种Ti3C2Tx掺杂ZnO为阴极修饰层材料的有机太阳能电池及其制备方法
CN109256469B (zh) 有机太阳能电池的活性层及其制备方法、有机太阳能电池及其制备方法
CN113903862A (zh) 基于苯硼酸衍生物修饰的SnO2钙钛矿太阳能电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant