CN109215733B - 一种基于残基接触信息辅助评价的蛋白质结构预测方法 - Google Patents
一种基于残基接触信息辅助评价的蛋白质结构预测方法 Download PDFInfo
- Publication number
- CN109215733B CN109215733B CN201811000670.8A CN201811000670A CN109215733B CN 109215733 B CN109215733 B CN 109215733B CN 201811000670 A CN201811000670 A CN 201811000670A CN 109215733 B CN109215733 B CN 109215733B
- Authority
- CN
- China
- Prior art keywords
- population
- residue
- contact
- stage
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000000455 protein structure prediction Methods 0.000 title claims abstract description 13
- 238000011156 evaluation Methods 0.000 title claims abstract description 12
- 239000012634 fragment Substances 0.000 claims abstract description 15
- 230000006870 function Effects 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 4
- 241000687983 Cerobasis alpha Species 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 description 29
- 108090000623 proteins and genes Proteins 0.000 description 29
- 230000000694 effects Effects 0.000 description 4
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101000859758 Homo sapiens Cartilage-associated protein Proteins 0.000 description 2
- 101000916686 Homo sapiens Cytohesin-interacting protein Proteins 0.000 description 2
- 101000726740 Homo sapiens Homeobox protein cut-like 1 Proteins 0.000 description 2
- 101000761460 Homo sapiens Protein CASP Proteins 0.000 description 2
- 101000761459 Mesocricetus auratus Calcium-dependent serine proteinase Proteins 0.000 description 2
- 102100024933 Protein CASP Human genes 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012165 high-throughput sequencing Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种基于残基接触信息辅助评价的蛋白质结构预测方法,首先,利用Robetta和RaptorX‑Contact得到片段库和接触图;其次,在种群进化的两个阶段,以不同的方式利用接触图辅助评价构象;最后,通过聚类得到最终预测结果。本发明利用接触图信息,辅助评价构象,保留拓扑正确的构象,从而提高搜索效率,提高预测精度。本发明提供一种预测精度较高的基于残基接触信息辅助评价的蛋白质结构预测方法。
Description
技术领域
本发明涉及一种生物学信息学、智能优化、计算机应用领域,尤其涉及的是一种基于残基接触信息辅助评价的蛋白质结构预测方法。
背景技术
蛋白质结构是指蛋白质分子的空间结构。蛋白质主要由碳、氢、氧、氮等化学元素组成,是一类重要的生物大分子,所有蛋白质都是由20种不同氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。
由于高通量测序技术的快速发展,加之实验解析蛋白质三维结构技术(X射线晶体学、核磁共振光谱、电子显微镜以及冷冻电镜)耗时且代价昂贵,导致已知序列数目和解析出的蛋白质结构数目间的鸿沟呈指数增加。此外,生物学中心法则中的第二遗传密码和蛋白质折叠机理需要研究学者们进行探索。因此,在无全长模板的情况下(序列相似度<20%),利用计算机,结合优化算法,从氨基酸序列开始,从头预测蛋白质结构是一个研究方法。Anfinsen热力学假说表明:蛋白质的空间结构由氨基酸序列唯一确定;蛋白质的空间结构是稳定的;蛋白质的天然构象处于自由能最低点。根据Anfinsen原则,以计算机为工具,运用适当的算法,从氨基酸序列出发直接预测蛋白质的三维结构。
科学家提出了许多从头蛋白质结构预测方法,其预测精度在CASP比赛的推动下有了巨大的提高。Rosetta,QUARK在历届CASP赛事中表现突出。两者都采用片段组装技术,并构建了基于知识的力场模型。然而,目前的力场模型的精度不足以准确搜索到近天然态区域,导致预测精度降低。
因此,现有的基于能量函数的蛋白质结构预测方法高效构象空间搜索和预测精度方面存在着缺陷,需要改进。
发明内容
为了克服现有的基于能量函数的蛋白质结构预测方法高效构象空间搜索和预测精度方面的不足,本发明提供一种可以提高构象空间搜索效率的基于残基接触信息辅助评价的蛋白质结构预测方法。
本发明解决其技术问题所采用的技术方案是:
一种基于残基接触信息辅助评价的蛋白质结构预测方法,所述方法包括以下步骤:
1)给定输入序列信息,利用Robetta服务器(http://robetta.bakerlab.org/)获得该序列的片段库;
2)利用RaptorX-Contact(http://raptorx.uchicago.edu/ContactMap/)预测该序列的接触图,获得接触概率大于0.6的N个残基对,接触是指Cα-Cα欧氏距离小于接触概率表示为Pk,k∈{1,...,N};
3)初始化:种群规模NP,种群第一阶段和第二阶段最大迭代次数分别为G1,G2,根据输入序列,执行Rosetta Abinitio协议的第一与第二阶段NP次,产生初始构象种群P={C1,C2,...,CNP},其中CNP表示第NP个个体,记当前代数g=0;
4)进入种群进化第一阶段,过程如下:
4.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为9,得到候选个体Ci′;
4.2)根据N个残基对的接触概率分别计算Ci和Ci′的评分函数影响因子μ和μ′:
其中dk和dk′分别是Ci和Ci′的第k对残基间的Cα-Cα距离,μk和μk′是对应评分函数影响因子的分项;
4.3)根据能量函数Rosetta score3计算Ci和Ci′的能量值Escore3、E′score3:
4.4)利用评分影响因子计算Ci和Ci′基于接触的评分s=μEscore3,s′=μ′E′score3,并利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
4.5)遍历种群所有个体,得到下一代种群,令g=g+1;
5)累计学习种群残基对距离分布,过程如下:
5.2)计算种群在第k个残基对落入第B块区域的比例qk,B;
6)判断种群进化第一阶段是否结束,若g>G1,则执行下一步;否则返回步骤4);
8)进入种群进化第二阶段,过程如下:
8.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为3,得到候选个体Ci′;
8.2)利用残基距离分布Lk,B建立残基对距离辅助的评分函数:分别计算Ci和Ci′的k个残基对距离落入的区域,记为b1,b2,...,bm...,bk和b1′,b2′,...,bn′...,bk′,bm∈{1,2...,13},bn′∈{1,2...,13},m∈{1,2...,k},n∈{1,2...,k},该评分函数可以表示为:
其中w是接触信息贡献因子,0≤w≤1;
9)利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
10)遍历当前种群所有个体,得到下一代种群,令g=g+1;判断种群进化第一阶段是否结束,若g>G2,则执行下一步;否则返回步骤8);
11)利用聚类工具SPICKER对Metropolis准则接受的所有过程点聚类,以最大类的类心构象为最终预测结果。
本发明的技术构思为:首先,利用Robetta和RaptorX-Contact得到片段库和接触图;其次,在种群进化的两个阶段,以不同的方式利用接触图辅助评价构象;最后,通过聚类得到最终预测结果。
本发明的有益效果表现在:利用接触图信息,辅助评价构象,保留拓扑较优的构象,从而提高搜索效率,提高预测精度。
附图说明
图1是基于残基接触信息辅助评价的蛋白质结构预测方法的基本流程图。
图2是基于残基接触信息辅助评价的蛋白质结构预测方法对蛋白质1M6TA进行结构预测得到的三维结构图。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1和图2,一种基于残基接触信息辅助评价的蛋白质结构预测方法,包括以下步骤:
1)给定输入序列信息,利用Robetta服务器(http://robetta.bakerlab.org/)获得该序列的片段库;
2)利用RaptorX-Contact(http://raptorx.uchicago.edu/ContactMap/)预测该序列的接触图,获得接触概率大于0.6的N个残基对,接触是指Cα-Cα欧氏距离小于接触概率表示为Pk,k∈{1,...,N};
3)初始化:种群规模NP,种群第一阶段和第二阶段最大迭代次数分别为G1,G2,根据输入序列,执行Rosetta Abinitio协议的第一与第二阶段NP次,产生初始构象种群P={C1,C2,...,CNP},其中CNP表示第NP个个体,记当前代数g=0;
4)进入种群进化第一阶段,过程如下:
4.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为9,得到候选个体Ci′;
4.2)根据N个残基对的接触概率分别计算Ci和Ci′的评分函数影响因子μ和μ′:
其中dk和dk′分别是Ci和Ci′的第k对残基间的Cα-Cα距离,μk和μk′是对应评分函数影响因子的分项;
4.3)根据能量函数Rosetta score3计算Ci和Ci′的能量值Escore3、E′score3:
4.4)利用评分影响因子计算Ci和Ci′基于接触的评分s=μEscore3,s′=μ′E′score3,并利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
4.5)遍历种群所有个体,得到下一代种群,令g=g+1;
5)累计学习种群残基对距离分布,过程如下:
5.2)计算种群在第k个残基对落入第B块区域的比例qk,B;
6)判断种群进化第一阶段是否结束,若g>G1,则执行下一步;否则返回步骤4);
8)进入种群进化第二阶段,过程如下:
8.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为3,得到候选个体Ci′;
8.2)利用残基距离分布Lk,B建立残基对距离辅助的评分函数:分别计算Ci和Ci′的k个残基对距离落入的区域,记为b1,b2,...,bm...,bk和b1′,b2′,...,bn′...,bk′,bm∈{1,2...,13},bn′∈{1,2...,13},m∈{1,2...,k},n∈{1,2...,k},该评分函数可以表示为:
其中w是接触信息贡献因子,0≤w≤1;
9)利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
10)遍历当前种群所有个体,得到下一代种群,令g=g+1;判断种群进化第一阶段是否结束,若g>G2,则执行下一步;否则返回步骤8);
11)利用聚类工具SPICKER对Metropolis准则接受的所有过程点聚类,以最大类的类心构象为最终预测结果。
本实施例序列长度为106的α折叠蛋白质1DI2A为实施例,一种基于残基接触信息辅助评价的蛋白质结构预测方法,包括以下步骤:
1)给定输入序列信息,利用Robetta服务器(http://robetta.bakerlab.org/)获得该序列的片段库;
2)利用RaptorX-Contact(http://raptorx.uchicago.edu/ContactMap/)预测该序列的接触图,获得接触概率大于0.6的N=115个残基对,接触是指Cα-Cα欧氏距离小于接触概率表示为Pk,k∈{1,...,N};
3)初始化:种群规模NP=300,种群第一阶段和第二阶段最大迭代次数分别为G1=2000,G2=4000,根据输入序列,执行Rosetta Abinitio协议的第一与第二阶段NP次,产生初始构象种群P={C1,C2,...,CNP},其中CNP表示第NP个个体,记当前代数g=0;
4)进入种群进化第一阶段,过程如下:
4.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为9,得到候选个体Ci′;
4.2)根据N个残基对的接触概率分别计算Ci和Ci′的评分函数影响因子μ和μ′:
其中dk和dk′分别是Ci和Ci′的第k对残基间的Cα-Cα距离,μk和μk′是对应评分函数影响因子的分项;
4.3)根据能量函数Rosetta score3计算Ci和Ci′的能量值Escore3、E′score3:
4.4)利用评分影响因子计算Ci和Ci′基于接触的评分s=μEscore3,s′=μ′E′score3,并利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
4.5)遍历种群所有个体,得到下一代种群,令g=g+1;
5)累计学习种群残基对距离分布,过程如下:
5.2)计算种群在第k个残基对落入第B块区域的比例qk,B;
6)判断种群进化第一阶段是否结束,若g>G1,则执行下一步;否则返回步骤4);
8)进入种群进化第二阶段,过程如下:
8.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为3,得到候选个体Ci′;
8.2)利用残基距离分布Lk,B建立残基对距离辅助的评分函数:分别计算Ci和Ci′的k个残基对距离落入的区域,记为b1,b2,...,bm...,bk和b1′,b2′,...,bn′...,bk′,bm∈{1,2...,13},bn′∈{1,2...,13},m∈{1,2...,k},n∈{1,2...,k},该评分函数可以表示为:
其中w是接触信息贡献因子,0≤w≤1;
9)利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
10)遍历当前种群所有个体,得到下一代种群,令g=g+1;判断种群进化第一阶段是否结束,若g>G2,则执行下一步;否则返回步骤8);
11)利用聚类工具SPICKER对Metropolis准则接受的所有过程点聚类,以最大类的类心构象为最终预测结果。
以上说明是本发明以1M6TA蛋白质为实例所得出的预测效果,并非限定本发明的实施范围,在不偏离本发明基本内容所涉及范围的前提下对其做各种变形和改进,不应排除在本发明的保护范围之外。
Claims (1)
1.一种基于残基接触信息辅助评价的蛋白质结构预测方法,其特征在于,所述蛋白质结构预测方法包括以下步骤:
1)给定输入序列信息,利用Robetta服务器获得该序列的片段库;
3)初始化:种群规模NP,种群第一阶段和第二阶段最大迭代次数分别为G1,G2,根据输入序列,执行Rosetta Abinitio协议的第一与第二阶段NP次,产生初始构象种群P={C1,C2,...,CNP},其中CNP表示第NP个个体,记当前代数g=0;
4)进入种群进化第一阶段,过程如下:
4.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为9,得到候选个体C′i;
4.2)根据N个残基对的接触概率分别计算Ci和C′i的评分函数影响因子μ和μ′:
其中dk和d′k分别是Ci和C′i的第k对残基间的Cα-Cα距离,μk和μ′k是对应评分函数影响因子的分项;
4.3)根据能量函数Rosetta score3计算Ci和C′i的能量值Escore3、E′score3:
4.4)利用评分影响因子计算Ci和C′i基于接触的评分s=μEscore3,s′=μ′E′score3,并利用Metropolis准则概率接受,若接受,则令Ci=C′i;
4.5)遍历种群所有个体,得到下一代种群,令g=g+1;
5)累计学习种群残基对距离分布,过程如下:
5.2)计算种群在第k个残基对落入第B块区域的比例qk,B;
6)判断种群进化第一阶段是否结束,若g>G1,则执行下一步;否则返回步骤4);
8)进入种群进化第二阶段,过程如下:
8.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为3,得到候选个体C′i;
8.2)利用残基距离分布Lk,B建立残基对距离辅助的评分函数:分别计算Ci和Ci′的k个残基对距离落入的区域,记为b1,b2,...,bm...,bk和b1′,b2′,...,bn′...,bk′,bm∈{1,2...,13},bn′∈{1,2...,13},m∈{1,2...,k},n∈{1,2...,k},该评分函数表示为:
其中w是接触信息贡献因子,0≤w≤1;
9)利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
10)遍历当前种群所有个体,得到下一代种群,令g=g+1;判断种群进化第一阶段是否结束,若g>G2,则执行下一步;否则返回步骤8);
11)利用聚类工具SPICKER对Metropolis准则接受的所有过程点聚类,以最大类的类心构象为最终预测结果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811000670.8A CN109215733B (zh) | 2018-08-30 | 2018-08-30 | 一种基于残基接触信息辅助评价的蛋白质结构预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811000670.8A CN109215733B (zh) | 2018-08-30 | 2018-08-30 | 一种基于残基接触信息辅助评价的蛋白质结构预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109215733A CN109215733A (zh) | 2019-01-15 |
CN109215733B true CN109215733B (zh) | 2021-05-18 |
Family
ID=64985342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811000670.8A Active CN109215733B (zh) | 2018-08-30 | 2018-08-30 | 一种基于残基接触信息辅助评价的蛋白质结构预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109215733B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110120244B (zh) * | 2019-03-28 | 2021-02-26 | 浙江工业大学 | 一种基于接触图的蛋白质结构比对方法 |
CN110163243B (zh) * | 2019-04-04 | 2021-04-06 | 浙江工业大学 | 基于接触图与模糊c均值聚类的蛋白质结构域划分方法 |
CN111180004B (zh) * | 2019-11-29 | 2021-08-03 | 浙江工业大学 | 一种多元接触信息的子种群策略蛋白质结构预测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101231677A (zh) * | 2007-11-30 | 2008-07-30 | 中国科学院合肥物质科学研究院 | 基于序列谱中心和遗传优化处理的残基间的远程相互作用预测方法 |
CN106778059A (zh) * | 2016-12-19 | 2017-05-31 | 浙江工业大学 | 一种基于Rosetta局部增强的群体蛋白质结构预测方法 |
CN107633159A (zh) * | 2017-08-21 | 2018-01-26 | 浙江工业大学 | 一种基于距离相似度的蛋白质构象空间搜索方法 |
CN109086569A (zh) * | 2018-09-18 | 2018-12-25 | 武汉深佰生物科技有限公司 | 蛋白质互作方向与调控关系的预测方法 |
-
2018
- 2018-08-30 CN CN201811000670.8A patent/CN109215733B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101231677A (zh) * | 2007-11-30 | 2008-07-30 | 中国科学院合肥物质科学研究院 | 基于序列谱中心和遗传优化处理的残基间的远程相互作用预测方法 |
CN106778059A (zh) * | 2016-12-19 | 2017-05-31 | 浙江工业大学 | 一种基于Rosetta局部增强的群体蛋白质结构预测方法 |
CN107633159A (zh) * | 2017-08-21 | 2018-01-26 | 浙江工业大学 | 一种基于距离相似度的蛋白质构象空间搜索方法 |
CN109086569A (zh) * | 2018-09-18 | 2018-12-25 | 武汉深佰生物科技有限公司 | 蛋白质互作方向与调控关系的预测方法 |
Non-Patent Citations (2)
Title |
---|
基于Monte Carlo局部增强的多模态优化算法;陈先跑 等;《计算机科学》;20150630;第42卷(第6A期);第61-66页 * |
基于并行粒子群优化算法的蛋白质二级结构预测;周文刚 等;《周口师范学院学报》;20140930;第31卷(第5期);第109-113页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109215733A (zh) | 2019-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113593631B (zh) | 一种预测蛋白质-多肽结合位点的方法及系统 | |
Senior et al. | Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13) | |
CN107609342B (zh) | 一种基于二级结构空间距离约束的蛋白质构象搜索方法 | |
CN109215733B (zh) | 一种基于残基接触信息辅助评价的蛋白质结构预测方法 | |
CN112585686A (zh) | 确定蛋白结构的机器学习 | |
CN109215732B (zh) | 一种基于残基接触信息自学习的蛋白质结构预测方法 | |
CN106021990B (zh) | 一种将生物基因以特定的性状进行分类与自我识别的方法 | |
CN109360599B (zh) | 一种基于残基接触信息交叉策略的蛋白质结构预测方法 | |
CN106503484A (zh) | 一种基于抽象凸估计的多阶段差分进化蛋白质结构预测方法 | |
CN106650305B (zh) | 一种基于局部抽象凸支撑面的多策略群体蛋白质结构预测方法 | |
CN106055920B (zh) | 一种基于阶段性多策略副本交换的蛋白质结构预测方法 | |
CN109409496A (zh) | 一种基于蚁群算法改进的ldtw序列相似度量方法 | |
CN109360596B (zh) | 一种基于差分进化局部扰动的蛋白质构象空间优化方法 | |
Zhang et al. | Predicting linear B-cell epitopes by using sequence-derived structural and physicochemical features | |
CN117976035A (zh) | 一种融合特征的深度学习网络的蛋白质sno位点预测方法 | |
KR20230125038A (ko) | 단백질 구조 임베딩에 조건화된 생성형 모델을 사용한단백질 아미노산 서열 예측 | |
Yu et al. | SOMRuler: a novel interpretable transmembrane helices predictor | |
CN109378034B (zh) | 一种基于距离分布估计的蛋白质预测方法 | |
CN109300506B (zh) | 一种基于特定距离约束的蛋白质结构预测方法 | |
CN109390035B (zh) | 一种基于局部结构比对的蛋白质构象空间优化方法 | |
Aydin et al. | Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks | |
CN109300505B (zh) | 一种基于有偏采样的蛋白质结构预测方法 | |
WO2022146631A1 (en) | Protein structure prediction | |
CN110718267B (zh) | 一种基于多模态构象空间采样的蛋白质结构预测方法 | |
CN109411013B (zh) | 一种基于个体特定变异策略的群体蛋白质结构预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |