CN109215733A - 一种基于残基接触信息辅助评价的蛋白质结构预测方法 - Google Patents

一种基于残基接触信息辅助评价的蛋白质结构预测方法 Download PDF

Info

Publication number
CN109215733A
CN109215733A CN201811000670.8A CN201811000670A CN109215733A CN 109215733 A CN109215733 A CN 109215733A CN 201811000670 A CN201811000670 A CN 201811000670A CN 109215733 A CN109215733 A CN 109215733A
Authority
CN
China
Prior art keywords
population
residue
stage
contact
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811000670.8A
Other languages
English (en)
Other versions
CN109215733B (zh
Inventor
张贵军
谢腾宇
孙科
周晓根
郝小虎
王柳静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201811000670.8A priority Critical patent/CN109215733B/zh
Publication of CN109215733A publication Critical patent/CN109215733A/zh
Application granted granted Critical
Publication of CN109215733B publication Critical patent/CN109215733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于残基接触信息辅助评价的蛋白质结构预测方法,首先,利用Robetta和RaptorX‑Contact得到片段库和接触图;其次,在种群进化的两个阶段,以不同的方式利用接触图辅助评价构象;最后,通过聚类得到最终预测结果。本发明利用接触图信息,辅助评价构象,保留拓扑正确的构象,从而提高搜索效率,提高预测精度。本发明提供一种预测精度较高的基于残基接触信息辅助评价的蛋白质结构预测方法。

Description

一种基于残基接触信息辅助评价的蛋白质结构预测方法
技术领域
本发明涉及一种生物学信息学、智能优化、计算机应用领域,尤其涉及的是一种基于残基接触信息辅助评价的蛋白质结构预测方法。
背景技术
蛋白质结构是指蛋白质分子的空间结构。蛋白质主要由碳、氢、氧、氮等化学元素组成,是一类重要的生物大分子,所有蛋白质都是由20种不同氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。
由于高通量测序技术的快速发展,加之实验解析蛋白质三维结构技术(X射线晶体学、核磁共振光谱、电子显微镜以及冷冻电镜)耗时且代价昂贵,导致已知序列数目和解析出的蛋白质结构数目间的鸿沟呈指数增加。此外,生物学中心法则中的第二遗传密码和蛋白质折叠机理需要研究学者们进行探索。因此,在无全长模板的情况下(序列相似度<20%),利用计算机,结合优化算法,从氨基酸序列开始,从头预测蛋白质结构是一个研究方法。Anfinsen热力学假说表明:蛋白质的空间结构由氨基酸序列唯一确定;蛋白质的空间结构是稳定的;蛋白质的天然构象处于自由能最低点。根据Anfinsen原则,以计算机为工具,运用适当的算法,从氨基酸序列出发直接预测蛋白质的三维结构。
科学家提出了许多从头蛋白质结构预测方法,其预测精度在CASP比赛的推动下有了巨大的提高。Rosetta,QUARK在历届CASP赛事中表现突出。两者都采用片段组装技术,并构建了基于知识的力场模型。然而,目前的力场模型的精度不足以准确搜索到近天然态区域,导致预测精度降低。
因此,现有的基于能量函数的蛋白质结构预测方法高效构象空间搜索和预测精度方面存在着缺陷,需要改进。
发明内容
为了克服现有的基于能量函数的蛋白质结构预测方法高效构象空间搜索和预测精度方面的不足,本发明提供一种可以提高构象空间搜索效率的基于残基接触信息辅助评价的蛋白质结构预测方法。
本发明解决其技术问题所采用的技术方案是:
一种基于残基接触信息辅助评价的蛋白质结构预测方法,所述方法包括以下步骤:
1)给定输入序列信息,利用Robetta服务器(http://robetta.bakerlab.org/)获得该序列的片段库;
2)利用RaptorX-Contact(http://raptorx.uchicago.edu/ContactMap/)预测该序列的接触图,获得接触概率大于0.6的N个残基对,接触是指Cα-Cα欧氏距离小于接触概率表示为Pk,k∈{1,...,N};
3)初始化:种群规模NP,种群第一阶段和第二阶段最大迭代次数分别为G1,G2,根据输入序列,执行Rosetta Abinitio协议的第一与第二阶段NP次,产生初始构象种群P={C1,C2,...,CNP},其中CNP表示第NP个个体,记当前代数g=0;
4)进入种群进化第一阶段,过程如下:
4.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为9,得到候选个体Ci′;
4.2)根据N个残基对的接触概率分别计算Ci和Ci′的评分函数影响因子μ和μ′:
其中dk和dk′分别是Ci和Ci′的第k对残基间的Cα-Cα距离,μk和μk′是对应评分函数影响因子的分项;
4.3)根据能量函数Rosetta score3计算Ci和Ci′的能量值Escore3、E′score3
4.4)利用评分影响因子计算Ci和Ci′基于接触的评分s=μEscore3,s′=μ′E′score3,并利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
4.5)遍历种群所有个体,得到下一代种群,令g=g+1;
5)累计学习种群残基对距离分布,过程如下:
5.1)残基对间距离离散化:根据第k个残基对的Cα-Cα欧氏距离dk,满足为间隔将dk离散化为13个区域,每个区域对应相应的距离范围,规则如下:
表示向下取整,B表示区域索引号,B∈{1,...,13};
5.2)计算种群在第k个残基对落入第B块区域的比例qk,B
5.3)学习当前种群的残基对的距离分布:当g=1,令其中w是学习保守因子,0≤w≤1;
6)判断种群进化第一阶段是否结束,若g>G1,则执行下一步;否则返回步骤4);
7)记第一阶段最终学习得到的残基对距离分布为Lk,B,并记g=0;
8)进入种群进化第二阶段,过程如下:
8.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为3,得到候选个体Ci′;
8.2)利用残基距离分布Lk,B建立残基对距离辅助的评分函数:分别计算Ci和Ci′的k个残基对距离落入的区域,记为b1,b2,...,bm...,bk和b1′,b2′,...,bn′...,bk′,bm∈{1,2...,13},bn′∈{1,2...,13},m∈{1,2...,k},n∈{1,2...,k},该评分函数可以表示为:
其中w是接触信息贡献因子,0≤w≤1;
9)利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
10)遍历当前种群所有个体,得到下一代种群,令g=g+1;判断种群进化第一阶段是否结束,若g>G2,则执行下一步;否则返回步骤8);
11)利用聚类工具SPICKER对Metropolis准则接受的所有过程点聚类,以最大类的类心构象为最终预测结果。
本发明的技术构思为:首先,利用Robetta和RaptorX-Contact得到片段库和接触图;其次,在种群进化的两个阶段,以不同的方式利用接触图辅助评价构象;最后,通过聚类得到最终预测结果。
本发明的有益效果表现在:利用接触图信息,辅助评价构象,保留拓扑较优的构象,从而提高搜索效率,提高预测精度。
附图说明
图1是基于残基接触信息辅助评价的蛋白质结构预测方法的基本流程图。
图2是基于残基接触信息辅助评价的蛋白质结构预测方法对蛋白质1M6TA进行结构预测得到的三维结构图。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1和图2,一种基于残基接触信息辅助评价的蛋白质结构预测方法,包括以下步骤:
1)给定输入序列信息,利用Robetta服务器(http://robetta.bakerlab.org/)获得该序列的片段库;
2)利用RaptorX-Contact(http://raptorx.uchicago.edu/ContactMap/)预测该序列的接触图,获得接触概率大于0.6的N个残基对,接触是指Cα-Cα欧氏距离小于接触概率表示为Pk,k∈{1,...,N};
3)初始化:种群规模NP,种群第一阶段和第二阶段最大迭代次数分别为G1,G2,根据输入序列,执行Rosetta Abinitio协议的第一与第二阶段NP次,产生初始构象种群P={C1,C2,...,CNP},其中CNP表示第NP个个体,记当前代数g=0;
4)进入种群进化第一阶段,过程如下:
4.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为9,得到候选个体Ci′;
4.2)根据N个残基对的接触概率分别计算Ci和Ci′的评分函数影响因子μ和μ′:
其中dk和dk′分别是Ci和Ci′的第k对残基间的Cα-Cα距离,μk和μk′是对应评分函数影响因子的分项;
4.3)根据能量函数Rosetta score3计算Ci和Ci′的能量值Escore3、E′score3
4.4)利用评分影响因子计算Ci和Ci′基于接触的评分s=μEscore3,s′=μ′E′score3,并利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
4.5)遍历种群所有个体,得到下一代种群,令g=g+1;
5)累计学习种群残基对距离分布,过程如下:
5.1)残基对间距离离散化:根据第k个残基对的Cα-Cα欧氏距离dk,满足为间隔将dk离散化为13个区域,每个区域对应相应的距离范围,规则如下:
表示向下取整,B表示区域索引号,B∈{1,...,13};
5.2)计算种群在第k个残基对落入第B块区域的比例qk,B
5.3)学习当前种群的残基对的距离分布:当g=1,令其中w是学习保守因子,0≤w≤1
6)判断种群进化第一阶段是否结束,若g>G1,则执行下一步;否则返回步骤4);
7)记第一阶段最终学习得到的残基对距离分布为Lk,B,并记g=0;
8)进入种群进化第二阶段,过程如下:
8.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为3,得到候选个体Ci′;
8.2)利用残基距离分布Lk,B建立残基对距离辅助的评分函数:分别计算Ci和Ci′的k个残基对距离落入的区域,记为b1,b2,...,bm...,bk和b1′,b2′,...,bn′...,bk′,bm∈{1,2...,13},bn′∈{1,2...,13},m∈{1,2...,k},n∈{1,2...,k},该评分函数可以表示为:
其中w是接触信息贡献因子,0≤w≤1;
9)利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
10)遍历当前种群所有个体,得到下一代种群,令g=g+1;判断种群进化第一阶段是否结束,若g>G2,则执行下一步;否则返回步骤8);
11)利用聚类工具SPICKER对Metropolis准则接受的所有过程点聚类,以最大类的类心构象为最终预测结果。
本实施例序列长度为106的α折叠蛋白质1DI2A为实施例,一种基于残基接触信息辅助评价的蛋白质结构预测方法,包括以下步骤:
1)给定输入序列信息,利用Robetta服务器(http://robetta.bakerlab.org/)获得该序列的片段库;
2)利用RaptorX-Contact(http://raptorx.uchicago.edu/ContactMap/)预测该序列的接触图,获得接触概率大于0.6的N=115个残基对,接触是指Cα-Cα欧氏距离小于接触概率表示为Pk,k∈{1,...,N};
3)初始化:种群规模NP=300,种群第一阶段和第二阶段最大迭代次数分别为G1=2000,G2=4000,根据输入序列,执行Rosetta Abinitio协议的第一与第二阶段NP次,产生初始构象种群P={C1,C2,...,CNP},其中CNP表示第NP个个体,记当前代数g=0;
4)进入种群进化第一阶段,过程如下:
4.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为9,得到候选个体Ci′;
4.2)根据N个残基对的接触概率分别计算Ci和Ci′的评分函数影响因子μ和μ′:
其中dk和dk′分别是Ci和Ci′的第k对残基间的Cα-Cα距离,μk和μk′是对应评分函数影响因子的分项;
4.3)根据能量函数Rosetta score3计算Ci和Ci′的能量值Escore3、E′score3
4.4)利用评分影响因子计算Ci和Ci′基于接触的评分s=μEscore3,s′=μ′E′score3,并利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
4.5)遍历种群所有个体,得到下一代种群,令g=g+1;
5)累计学习种群残基对距离分布,过程如下:
5.1)残基对间距离离散化:根据第k个残基对的Cα-Cα欧氏距离dk,满足为间隔将dk离散化为13个区域,每个区域对应相应的距离范围,规则如下:
表示向下取整,B表示区域索引号,B∈{1,...,13};
5.2)计算种群在第k个残基对落入第B块区域的比例qk,B
5.3)学习当前种群的残基对的距离分布:当g=1,令其中w是学习保守因子,0≤w≤1;
6)判断种群进化第一阶段是否结束,若g>G1,则执行下一步;否则返回步骤4);
7)记第一阶段最终学习得到的残基对距离分布为Lk,B,并记g=0;
8)进入种群进化第二阶段,过程如下:
8.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为3,得到候选个体Ci′;
8.2)利用残基距离分布Lk,B建立残基对距离辅助的评分函数:分别计算Ci和Ci′的k个残基对距离落入的区域,记为b1,b2,...,bm...,bk和b1′,b2′,...,bn′...,bk′,bm∈{1,2...,13},bn′∈{1,2...,13},m∈{1,2...,k},n∈{1,2...,k},该评分函数可以表示为:
其中w是接触信息贡献因子,0≤w≤1;
9)利用Metropolis准则概率接受,若接受,则令Ci=Ci′;
10)遍历当前种群所有个体,得到下一代种群,令g=g+1;判断种群进化第一阶段是否结束,若g>G2,则执行下一步;否则返回步骤8);
11)利用聚类工具SPICKER对Metropolis准则接受的所有过程点聚类,以最大类的类心构象为最终预测结果。
以序列长度为106的α折叠蛋白质1M6TA为实施例,运用以上方法得到了该蛋白质的近天然态构象,最小均方根偏差为预测结构如图2所示。
以上说明是本发明以1M6TA蛋白质为实例所得出的预测效果,并非限定本发明的实施范围,在不偏离本发明基本内容所涉及范围的前提下对其做各种变形和改进,不应排除在本发明的保护范围之外。

Claims (1)

1.一种基于残基接触信息辅助评价的蛋白质结构预测方法,其特征在于,所述蛋白质结构预测方法包括以下步骤:
1)给定输入序列信息,利用Robetta服务器获得该序列的片段库;
2)利用RaptorX-Contact预测该序列的接触图,获得接触概率大于0.6的N个残基对,接触是指Cα-Cα欧氏距离小于接触概率表示为Pk,k∈{1,...,N};
3)初始化:种群规模NP,种群第一阶段和第二阶段最大迭代次数分别为G1,G2,根据输入序列,执行Rosetta Abinitio协议的第一与第二阶段NP次,产生初始构象种群P={C1,C2,...,CNP},其中CNP表示第NP个个体,记当前代数g=0;
4)进入种群进化第一阶段,过程如下:
4.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为9,得到候选个体C′i
4.2)根据N个残基对的接触概率分别计算Ci和C′i的评分函数影响因子μ和μ′:
其中dk和d′k分别是Ci和C′i的第k对残基间的Cα-Cα距离,μk和μ′k是对应评分函数影响因子的分项;
4.3)根据能量函数Rosetta score3计算Ci和C′i的能量值Escore3、E′score3
4.4)利用评分影响因子计算Ci和C′i基于接触的评分s=μEscore3,s′=μ′E′score3,并利用Metropolis准则概率接受,若接受,则令Ci=C′i
4.5)遍历种群所有个体,得到下一代种群,令g=g+1;
5)累计学习种群残基对距离分布,过程如下:
5.1)残基对间距离离散化:根据第k个残基对的Cα-Cα欧氏距离dk,满足为间隔将dk离散化为13个区域,每个区域对应相应的距离范围,规则如下:
表示向下取整,B表示区域索引号,B∈{1,...,13};
5.2)计算种群在第k个残基对落入第B块区域的比例qk,B
5.3)学习当前种群的残基对的距离分布:当g=1,令其中w是学习保守因子,0≤w≤1;
6)判断种群进化第一阶段是否结束,若g>G1,则执行下一步;否则返回步骤4);
7)记第一阶段最终学习得到的残基对距离分布为Lk,B,并记g=0;
8)进入种群进化第二阶段,过程如下:
8.1)对种群所有个体Ci,i∈{1,...,NP}进行片段组装,片段长度为3,得到候选个体C′i
8.2)利用残基距离分布Lk,B建立残基对距离辅助的评分函数:分别计算Ci和Ci′的k个残基对距离落入的区域,记为b1,b2,...,bm...,bk和b1′,b2′,...,bn′...,bk′,bm∈{1,2...,13},bn′∈{1,2...,13},m∈{1,2...,k},n∈{1,2...,k},该评分函数可以表示为:
其中w是接触信息贡献因子,0≤w≤1;
9)利用Metropolis准则概率接受,若接受,则令Ci=C′i
10)遍历当前种群所有个体,得到下一代种群,令g=g+1;判断种群进化第一阶段是否结束,若g>G2,则执行下一步;否则返回步骤8);
11)利用聚类工具SPICKER对Metropolis准则接受的所有过程点聚类,以最大类的类心构象为最终预测结果。
CN201811000670.8A 2018-08-30 2018-08-30 一种基于残基接触信息辅助评价的蛋白质结构预测方法 Active CN109215733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811000670.8A CN109215733B (zh) 2018-08-30 2018-08-30 一种基于残基接触信息辅助评价的蛋白质结构预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811000670.8A CN109215733B (zh) 2018-08-30 2018-08-30 一种基于残基接触信息辅助评价的蛋白质结构预测方法

Publications (2)

Publication Number Publication Date
CN109215733A true CN109215733A (zh) 2019-01-15
CN109215733B CN109215733B (zh) 2021-05-18

Family

ID=64985342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811000670.8A Active CN109215733B (zh) 2018-08-30 2018-08-30 一种基于残基接触信息辅助评价的蛋白质结构预测方法

Country Status (1)

Country Link
CN (1) CN109215733B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120244A (zh) * 2019-03-28 2019-08-13 浙江工业大学 一种基于接触图的蛋白质结构比对方法
CN110163243A (zh) * 2019-04-04 2019-08-23 浙江工业大学 一种基于接触图与模糊c均值聚类的蛋白质结构域划分方法
CN111180004A (zh) * 2019-11-29 2020-05-19 浙江工业大学 一种多元接触信息的子种群策略蛋白质结构预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231677A (zh) * 2007-11-30 2008-07-30 中国科学院合肥物质科学研究院 基于序列谱中心和遗传优化处理的残基间的远程相互作用预测方法
CN106778059A (zh) * 2016-12-19 2017-05-31 浙江工业大学 一种基于Rosetta局部增强的群体蛋白质结构预测方法
CN107633159A (zh) * 2017-08-21 2018-01-26 浙江工业大学 一种基于距离相似度的蛋白质构象空间搜索方法
CN109086569A (zh) * 2018-09-18 2018-12-25 武汉深佰生物科技有限公司 蛋白质互作方向与调控关系的预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231677A (zh) * 2007-11-30 2008-07-30 中国科学院合肥物质科学研究院 基于序列谱中心和遗传优化处理的残基间的远程相互作用预测方法
CN106778059A (zh) * 2016-12-19 2017-05-31 浙江工业大学 一种基于Rosetta局部增强的群体蛋白质结构预测方法
CN107633159A (zh) * 2017-08-21 2018-01-26 浙江工业大学 一种基于距离相似度的蛋白质构象空间搜索方法
CN109086569A (zh) * 2018-09-18 2018-12-25 武汉深佰生物科技有限公司 蛋白质互作方向与调控关系的预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周文刚 等: "基于并行粒子群优化算法的蛋白质二级结构预测", 《周口师范学院学报》 *
陈先跑 等: "基于Monte Carlo局部增强的多模态优化算法", 《计算机科学》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120244A (zh) * 2019-03-28 2019-08-13 浙江工业大学 一种基于接触图的蛋白质结构比对方法
CN110163243A (zh) * 2019-04-04 2019-08-23 浙江工业大学 一种基于接触图与模糊c均值聚类的蛋白质结构域划分方法
CN111180004A (zh) * 2019-11-29 2020-05-19 浙江工业大学 一种多元接触信息的子种群策略蛋白质结构预测方法
CN111180004B (zh) * 2019-11-29 2021-08-03 浙江工业大学 一种多元接触信息的子种群策略蛋白质结构预测方法

Also Published As

Publication number Publication date
CN109215733B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN109215733A (zh) 一种基于残基接触信息辅助评价的蛋白质结构预测方法
CN109215732A (zh) 一种基于残基接触信息自学习的蛋白质结构预测方法
CN112732864B (zh) 一种基于稠密伪查询向量表示的文档检索方法
CN103617203B (zh) 基于查询驱动的蛋白质-配体绑定位点预测方法
CN109360599A (zh) 一种基于残基接触信息交叉策略的蛋白质结构预测方法
CN105760710A (zh) 一种基于两阶段差分进化算法的蛋白质结构预测方法
CN104615911A (zh) 基于稀疏编码及链学习预测膜蛋白beta-barrel跨膜区域的方法
CN106503486A (zh) 一种基于多阶段子群协同进化策略的差分进化蛋白质结构从头预测方法
CN105468934B (zh) 一种基于Bolzmann概率密度函数的蛋白质残基间距离模型构建方法
CN112116949A (zh) 基于三元组损失的蛋白质折叠识别方法
Ni et al. A novel ensemble pruning approach based on information exchange glowworm swarm optimization and complementarity measure
Wang et al. Gcmapcrys: integrating graph attention network with predicted contact map for multi-stage protein crystallization propensity prediction
Aydin et al. Constructing structural profiles for protein torsion angle prediction
EP4272215A1 (en) Protein structure prediction
Esmat et al. A parallel hash‐based method for local sequence alignment
CN109390035A (zh) 一种基于局部结构比对的蛋白质构象空间优化方法
Ou et al. Recent advances in features generation for membrane protein sequences: From multiple sequence alignment to pre‐trained language models
Subramanian et al. Statistical compression of protein folding patterns for inference of recurrent substructural themes
Liu et al. Discovery of deep order-preserving submatrix in DNA microarray data based on sequential pattern mining
Nie et al. Evolution-guided large language model is a predictor of virus mutation trends
ABU-HASHEM et al. INVESTIGATION STUDY: AN INTENSIVE ANALYSIS FOR MSA LEADING METHODS.
CN115662509B (zh) 基于图神经网的表观遗传靶点预测的分类方法及装置
CN110556161B (zh) 一种基于构象多样性采样的蛋白质结构预测方法
CN112381331B (zh) 一种利用基于时间权重的相似集合算法的大气预报方法
Zhao et al. Research on protein structure prediction and folding based on novel remote homologs recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant