CN109202028A - 一种高延伸凸缘钢板及其制备方法 - Google Patents

一种高延伸凸缘钢板及其制备方法 Download PDF

Info

Publication number
CN109202028A
CN109202028A CN201811050227.1A CN201811050227A CN109202028A CN 109202028 A CN109202028 A CN 109202028A CN 201811050227 A CN201811050227 A CN 201811050227A CN 109202028 A CN109202028 A CN 109202028A
Authority
CN
China
Prior art keywords
steel plate
cooling
stretch flange
flange formability
high stretch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811050227.1A
Other languages
English (en)
Other versions
CN109202028B (zh
Inventor
吴润
梁文
吴腾
吴志方
刘斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201811050227.1A priority Critical patent/CN109202028B/zh
Publication of CN109202028A publication Critical patent/CN109202028A/zh
Application granted granted Critical
Publication of CN109202028B publication Critical patent/CN109202028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明涉及一种高延伸凸缘钢板及其制备方法。其技术方案是,所述高延伸凸缘钢板的化学成分及其质量百分含量是:C为0.02~0.04%,Si为0.05~0.15%,Mn为1.30~1.60%,P≤0.013%,S≤0.003%,Nb为0.05~0.07%,Ti≤0.002%,N≤0.004%,Als为0.010~0.030%,O为0.001~0.002%,其余为铁和不可避免的杂质。所述制备方法的步骤是:冶炼;精炼;连铸;加热;粗轧和精轧;层流冷却;卷取。本发明工艺简单,所制备的高延伸凸缘钢板强度与延伸凸缘性能稳定、抗疲劳性能良好和抗拉强度高。所制制品为单一的准多边形铁素体组织,抗拉强度Rm≥600MPa,延伸率A≥20%,扩孔率80%的成型合格率为100%;疲劳性能≥95万次;钢卷整卷的强度波动≤30MPa。

Description

一种高延伸凸缘钢板及其制备方法
技术领域
本发明属于延伸凸缘钢板技术领域。具体涉及一种高延伸凸缘钢板及其制备方法。
背景技术
铁素体/马氏体双相钢具有良好的强度-塑性匹配、初始加工硬化速率高、良好的烘烤硬化性能,但在成形过程中易在开孔部位开裂,延伸凸缘成形性能不够好,且在闪光焊接后,易在热影响区发生马氏体相回火软化,不适合轮辐、轮惘及底盘的生产。
在此基础上开发的铁素体/贝氏体双相钢,具有良好的延伸凸缘性能,也称高延伸凸缘钢。高延伸凸缘钢在闪光焊接后热影响区的硬度高于基体,在后续加工时不会出现软化现象,因此更适合于制造如汽车底盘等要求延伸性能良好的部件。
高延伸凸缘钢最常见的生产方式为三段式冷却(即“水冷+空冷+水冷”),如“延伸特性、延伸凸缘特性及拉伸疲劳特性优良的高强度热轧钢板及其制造方法”(CN101443467B)、“延伸凸缘性和耐疲劳特性优良的高强度热轧钢板及其制造方法”(CN102918173B)、“一种高延伸凸缘性能热轧双相钢薄板及其制造方法”(CN102918173A)的专利技术,卷取温度为400℃左右,得到F+B组织。但三段式冷却模式以及400℃左右的卷取温度很难在大生产线稳定实现(空冷时间和温度很难稳定控制;400℃左右的卷取,钢板表面残留的水渍难以蒸发或水蒸汽过大,容易引起测温器测量失误),导致用户在加工过程中常常因为性能波动而开裂,或最终用户在使用过程中提前失效。
此外,金属在凝固过程中,因为各元素偏析程度不同,在铸坯中心部位会发生元素的偏聚,使铸坯中心的合金元素浓度达到平均浓度的十倍以上,亦造成成品性能不稳定。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供一种工艺简单的高延伸凸缘钢板的制备方法,该方法制备的产品强度和延伸凸缘性能稳定、抗疲劳性能良好和抗拉强度高。
为实现上述目的,本发明采用的技术方案是:
所述高延伸凸缘钢板的化学成分及其质量百分含量是:C为0.02~0.04%,Si为0.05~0.15%,Mn为1.30~1.60%,P≤0.013%,S≤0.003%,Nb为0.05~0.07%,Ti≤0.002%,N≤0.004%,Als为0.010~0.030%,O为0.001~0.002%,其余为铁和不可避免的杂质。
上述化学成分同时满足如下关系:
[%C]-0.13×[%Nb]<0.031;
0.005<[%Als]-1.13×([%O]-0.5×[%Ti])<0.030;
[%Ti]-2[%O]<0。
所述高延伸凸缘钢板制备方法的步骤是:
1)冶炼、精炼
按照权利要求1所述高延伸凸缘钢板的化学成分进行冶炼,精炼,Si-Ca处理;
精炼过程中加石灰和Al丸;所述Si-Ca处理的Ca/S为1.0~3.0。
2)连铸
连铸坯的厚度为160~210mm;电磁搅拌采用正反向交替搅拌模式,交替时间为20~40s,电磁搅拌电流为200~300A,电磁搅拌频率为5~10Hz;连铸过程的冷却水量Φ:
Φ=k1×V×D1/2 (1)
式(1)中:Φ表示连铸过程的冷却水量,L/min;
k1表示连铸过程冷却水量的修正系数,L/mm3/2,k1为0.24;
V表示连铸坯的拉速,mm/min,V为1200~1500;
D表示连铸坯的厚度,mm。
3)加热
第二加热段和均热段的加热温度为1160~1200℃。
4)粗轧和精轧
粗轧温度:1060~1000℃;
精轧的终轧温度:820~880℃。
5)层流冷却
层流冷却为“水冷+空冷”的两段式冷却,层流冷却的水冷速率为60~100℃/s,层流冷却的水冷终冷温度T终冷
T终冷=(660~680)-k2×a1/2 (2)
式(2)中:T终冷表示层流冷却终冷温度,℃;
a表示成品钢板厚度,mm;
k2表示终冷温度修正系数,℃/mm1/2;k2为10。
层流冷却的空冷速率为5~8℃/s,层流冷却的空冷时间为5~10s。
6)卷取
卷取温度为580~620℃。
所述制备方法获得的高延伸凸缘钢板的金相组织为单一的准多边形铁素体组织。
所述制备方法获得的高延伸凸缘钢板的厚度a为2.0~6.0mm;力学性能:屈服强度ReL≥500MPa,抗拉强度Rm≥600MPa,延伸率A≥20%,扩孔率80%的成型合格率为100%;加工成零件经台架试验,疲劳性能≥95万次;钢卷整卷的强度波动≤30MPa,疲劳性能波动<2万次。
由于采用上述技术方案,本发明制备的高延伸凸缘钢板所具有以下积极效果:
C:本发明采用低碳含量,即可保证Nb的充分析出,又能避免生成珠光体。
Si:本发明以硅作为脱氧剂,所采用的硅的质量百分含量为0.05~0.15%,即能脱氧又能保证钢板表面质量。
Mn:本发明采用的锰的质量百分含量为1.30~1.60%,起到细化铁素体晶粒的作用,对推迟珠光体转变的效果好。
P和S:磷和硫作为钢中有害夹杂对钢的冷成型性能和延伸凸缘性能、焊接性及抗疲劳裂纹扩展特性具有巨大的损害作用;本发明从降低生产成本和提高产品质量出发,将磷含量控制在≤0.013%和硫含量控制在≤0.003%,使磷和硫对延伸凸缘和成型性能的影响降到尽可能低的水平。
Nb:本发明采用的铌的质量百分含量为0.05~0.07%,能发挥细晶强化和沉淀强化作用,有利于提高钢板强度。
Ti和N:本发明采用的钛的质量百分含量≤0.002%,采用的氮的质量百分含量≤0.003%,防止钢中生成大尺寸TiN夹杂。
Als和O:本发明采用的酸溶铝的质量百分含量为0.01~0.03%,采用的氧的质量百分含量为0.001~0.002%。能有效减少钢中氧化物夹杂数量,而微量的O防止TiN的生成;而Al的存在,能防止O含量过高。
本发明采用的制备方法具有以下积极效果:
本发明在精炼过程添加石灰和Al丸,在渣/钢界面形成CaS固体,使S含量控制在0.003%以内,且Ca/S为1.0~3.0;本发明采用的Si-Ca处理:一方面可以进一步纯洁钢液,另一方面对钢中硫化物进行变性处理,使之变成不可变形的、稳定细小的球状硫化物,提高制品的延伸凸缘和疲劳性能。
本发明的连铸采用薄铸坯、大水量强冷冷却模式。使铸坯芯部冷速大大提高,降低凝固后期TiN夹杂的生成。电磁搅拌采用正反向交替搅拌模式,使连铸器中的钢液混合均匀,降低凝固末期元素的偏析含量,从而降低中心偏析以及大尺寸夹杂物的生成。本发明的制品中夹杂物A(硫化物)、C(硅酸盐)、D(球状氧化物)均≤1.5级,B(氧化铝)≤2级,且所有类型夹杂物之和≤6级。
本发明将加热温度设定为1160~1200℃,即可保证Nb的固溶,也可防止奥氏体晶粒异常长大。
本发明采用终轧温度为820~880℃,将加大制品在非再结晶奥氏体区的变形,增加变形奥氏体中的位错,促进得到细晶粒转变组织,加强了细晶强化,提高了制品的强度。
本发明采用的层流冷却工艺为“水冷+空冷”两段式冷却,层流冷却水冷速率为60~100℃/s,水冷终冷温度T终冷(℃)=(660~680)-10×d1/2;通过钢板在辊道上的运行进行空冷,空冷速率为5~8℃/s,空冷时间5~10s。能有效防止高温段析出的第二相粒子长大,增加析出强化效果,降低钢板的内应力。
本发明采用卷取温度为580~620℃,能促使第二相NbC的弥散析出,提高细晶和析出的双重作用,增加铁素体基体强度。
因此,所制备的高延伸凸缘钢板具有如下显著进步和特点:
一、本发明所得制品为单一准多边形铁素体组织,有利于提高变形过程中微观组织的协调能力,避免了制品中因两相组织在变形过程中不协调而在两相界面产生裂纹,从而具有良好的延伸凸缘性能。
二、本发明采取“水冷+空冷”两段式冷却方式和600℃左右的卷取温度,使生产过程简单、可控,工艺命中率高。
三、本发明在连铸过程采用电磁搅拌,减轻元素偏析;通过Nb的细晶和析出强化等双重作用,提高了铁素体的基体强度;降低钢中的S、N、Ti、O含量,对硫化物、氮化物和氧化物等夹杂的数量、形态和尺寸进行控制,提高制品的延伸凸缘和疲劳性能。
四、本发明制得的厚度为2.0~6.0mm的高延伸凸缘钢板经检测:屈服强度ReL≥500MPa;抗拉强度Rm≥600MPa;延伸率A≥20%;扩孔率80%合格率为100%;加工成零件经台架试验,疲劳性能≥95万次;且整卷的强度波动≤30MPa,疲劳性能波动<2万次。
因此,本发明工艺简单,所制备的高延伸凸缘钢板强度与延伸凸缘性能稳定、抗疲劳性能良好和抗拉强度高。
附图说明
图1为本发明制备的一种高延伸凸缘钢板的金相组织结构图;
图2为图1所示高延伸凸缘钢板的透射电镜照片;
图3为图1所示高延伸凸缘钢板的卷取工艺温度。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的详细说明,并非对其保护范围的限定。
实施例1~10
一种高延伸凸缘钢板及其制备方法。各实施例所述高延伸凸缘钢板的化学成分及其质量百分含量如表1所示。表1所示化学成分的质量百分含量同时满足如下关系:
[%C]-0.13×[%Nb]<0.031;
0.005<[%Als]-1.13×([%O]-0.5×[%Ti])<0.030;
[%Ti]-2[%O]<0。
本具体实施方式所述高延伸凸缘钢板制备方法的工艺是:冶炼—精炼—连铸(电磁搅拌)—加热—粗轧—精轧—层流冷却—卷取。
本具体实施方式的各实施例所述高延伸凸缘钢板制备方法的主要工艺技术参数见下表2。
本具体实施方式的各实施例制得的所述高延伸凸缘钢板的性能检测结果见下表3。
本具体实施方式的各实施例和对比例不同部位的性能检测结果见下表4。
表1各实施例所述高延伸凸缘钢板化学成分的质量百分含量
表2各实施例所述高延伸凸缘钢板制备方法的主要工艺参数
表3各实施例制得的所述高延伸凸缘钢板的性能检测结果
表4各实施例和对比例不同部位的性能检测结果
由表3可知,本具体实施方式得到的高延伸凸缘钢板具有较高的强度,良好的成型性能和疲劳性能,工艺命中率高,性能稳定。本具体实施方式较对比例1和2的扩孔合格率高6~7%、疲劳性能高18~24万次。由表4来可知,本具体实施方式所得的高延伸凸缘钢板的整卷(头部、中部和尾部)强度波动≤30MPa,疲劳性能波动<2万次;而对比例1的整卷(头部、中部和尾部)强度波动达到50MPa,扩孔合格率波动为10%,疲劳性能波动>11万次。
图1为实施例1制得的一种高延伸凸缘钢板的金相组织结构图;图2为图1所示高延伸凸缘钢板的透射电镜照片;图3为图1所示高延伸凸缘钢板的卷取工艺温度。从图1可知,所制制品得到了准多边形铁素体的单一组织;从图2可知,所制制品得到了弥散的第二相析出;从图3可知,本实施例的工艺曲线非常稳定,±20℃的命中率高达99%。
本具体实施方式所制备的高延伸凸缘钢板具有如下显著进步和特点:
一、本具体实施方式所得制品为单一准多边形铁素体组织,有利于提高变形过程中微观组织的协调能力,避免了制品中因两相组织在变形过程中不协调而在两相界面产生裂纹,从而具有良好的延伸凸缘性能。
二、本具体实施方式采取“水冷+空冷”两段式冷却方式和600℃左右的卷取温度,使生产过程简单、可控,工艺命中率高。
三、本具体实施方式在连铸过程采用电磁搅拌,减轻元素偏析;通过Nb的细晶和析出强化等双重作用,提高了铁素体的基体强度;降低钢中的S、N、Ti、O含量,对硫化物、氮化物和氧化物等夹杂的数量、形态和尺寸进行控制,提高制品的延伸凸缘和疲劳性能。
四、本具体实施方式制得的厚度为2.0~6.0mm的高延伸凸缘钢板经检测:屈服强度ReL≥500MPa;抗拉强度Rm≥600MPa;延伸率A≥20%;扩孔率80%合格率为100%;加工成零件经台架试验,疲劳性能≥95万次;且整卷的强度波动≤30MPa,疲劳性能波动<2万次。
因此,本具体实施方式工艺简单,所制备的高延伸凸缘钢板强度与延伸凸缘性能稳定、抗疲劳性能良好和抗拉强度高。

Claims (4)

1.一种高延伸凸缘钢板,其特征在于所述高延伸凸缘钢板的化学成分及其质量百分含量是:C为0.02~0.04%,Si为0.05~0.15%,Mn为1.30~1.60%,P≤0.013%,S≤0.003%,Nb为0.05~0.07%,Ti≤0.002%,N≤0.004%,Als为0.010~0.030%,O为0.001~0.002%,其余为铁和不可避免的杂质;
上述化学成分同时满足如下关系:
[%C]-0.13×[%Nb]<0.031,
0.005<[%Als]-1.13×([%O]-0.5×[%Ti])<0.030,
[%Ti]-2[%O]<0。
2.如权利要求1所述高延伸凸缘钢板的制备方法,其特征在于所述制备方法的步骤是:
1)冶炼、精炼
按照权利要求1所述高延伸凸缘钢板的化学成分进行冶炼,精炼,Si-Ca处理;所述Si-Ca处理时的Ca/S为1.0~3.0;
2)连铸
连铸坯的厚度为160~210mm;电磁搅拌采用正反向交替搅拌模式,交替时间为20~40s,电磁搅拌电流为200~300A,电磁搅拌频率为5~10Hz;连铸过程的冷却水量Φ:
Φ=k1×V×D1/2 (1)
式(1)中:Φ表示连铸过程的冷却水量,L/min,
k1表示连铸过程冷却水量的修正系数,L/mm3/2,k1为0.24,
V表示连铸坯的拉速,mm/min,V为1200~1500,
D表示连铸坯的厚度,mm;
3)加热
第二加热段和均热段的加热温度为1160~1200℃;
4)粗轧和精轧
粗轧温度:1060~1000℃;
精轧的终轧温度:820~880℃;
5)层流冷却
层流冷却为“水冷+空冷”的两段式冷却,层流冷却的水冷速率为60~100℃/s,层流冷却的水冷终冷温度T终冷
T终冷=(660~680)-k2×a1/2 (2)
式(2)中:T终冷表示层流冷却终冷温度,℃,
a表示成品钢板厚度,mm,
k2表示终冷温度修正系数,℃/mm1/2;k2为10;
层流冷却的空冷速率为5~8℃/s,层流冷却的空冷时间为5~10s;
6)卷取
卷取温度为580~620℃。
3.如权利要求2所述的高延伸凸缘钢板及其制备方法,其特征在于所述制备方法获得的高延伸凸缘钢板的金相组织为单一的准多边形铁素体组织。
4.如权利要求2所述的高延伸凸缘钢板及其制备方法,其特征在于所述制备方法获得的高延伸凸缘钢板的厚度a为2.0~6.0mm,力学性能:屈服强度ReL≥500MPa,抗拉强度Rm≥600MPa,延伸率A≥20%,扩孔率80%的成型合格率为100%;加工成零件经台架试验,疲劳性能≥95万次;钢卷整卷的强度波动≤30MPa,疲劳性能波动<2万次。
CN201811050227.1A 2018-09-10 2018-09-10 一种高延伸凸缘钢板及其制备方法 Active CN109202028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811050227.1A CN109202028B (zh) 2018-09-10 2018-09-10 一种高延伸凸缘钢板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811050227.1A CN109202028B (zh) 2018-09-10 2018-09-10 一种高延伸凸缘钢板及其制备方法

Publications (2)

Publication Number Publication Date
CN109202028A true CN109202028A (zh) 2019-01-15
CN109202028B CN109202028B (zh) 2020-03-10

Family

ID=64987349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811050227.1A Active CN109202028B (zh) 2018-09-10 2018-09-10 一种高延伸凸缘钢板及其制备方法

Country Status (1)

Country Link
CN (1) CN109202028B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080357A (zh) * 2010-09-06 2013-05-01 杰富意钢铁株式会社 延伸凸缘性优良的高强度冷轧钢板及其制造方法
CN104388820A (zh) * 2014-11-17 2015-03-04 武汉钢铁(集团)公司 一种具有良好延伸凸缘性高强度热轧带钢及生产方法
KR20160073494A (ko) * 2014-12-16 2016-06-27 주식회사 포스코 소부경화능이 우수한 고버링성 고강도 열연강판 및 이의 제조방법
CN105849295A (zh) * 2013-12-26 2016-08-10 Posco公司 焊接性和去毛刺性优异的热轧钢板及其制备方法
CN107109568A (zh) * 2014-12-25 2017-08-29 杰富意钢铁株式会社 用于深井用导体套管的高强度厚壁电阻焊钢管及其制造方法和深井用高强度厚壁导体套管
CN107406937A (zh) * 2015-03-06 2017-11-28 杰富意钢铁株式会社 高强度钢板及其制造方法
CN107723608A (zh) * 2017-10-13 2018-02-23 武汉科技大学 一种大压下高扩孔率热轧贝氏体双相钢及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080357A (zh) * 2010-09-06 2013-05-01 杰富意钢铁株式会社 延伸凸缘性优良的高强度冷轧钢板及其制造方法
CN105849295A (zh) * 2013-12-26 2016-08-10 Posco公司 焊接性和去毛刺性优异的热轧钢板及其制备方法
CN104388820A (zh) * 2014-11-17 2015-03-04 武汉钢铁(集团)公司 一种具有良好延伸凸缘性高强度热轧带钢及生产方法
KR20160073494A (ko) * 2014-12-16 2016-06-27 주식회사 포스코 소부경화능이 우수한 고버링성 고강도 열연강판 및 이의 제조방법
CN107109568A (zh) * 2014-12-25 2017-08-29 杰富意钢铁株式会社 用于深井用导体套管的高强度厚壁电阻焊钢管及其制造方法和深井用高强度厚壁导体套管
CN107406937A (zh) * 2015-03-06 2017-11-28 杰富意钢铁株式会社 高强度钢板及其制造方法
CN107723608A (zh) * 2017-10-13 2018-02-23 武汉科技大学 一种大压下高扩孔率热轧贝氏体双相钢及其制备方法

Also Published As

Publication number Publication date
CN109202028B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
CN108823507B (zh) 一种抗拉强度800MPa级热镀锌高强钢及其减量化生产方法
CN104726773B (zh) 具有良好的‑50℃低温韧性正火型高强度压力容器钢板及其制造方法
WO2016095721A1 (zh) 一种屈服强度900~1000MPa级调质高强钢及制造方法
CN105274432B (zh) 600MPa级高屈强比高塑性冷轧钢板及其制造方法
CN101649420B (zh) 一种高强度高韧性低屈强比钢、钢板及其制造方法
CN104264064B (zh) 一种特厚规格q690高强度结构钢板及其制造方法
CN106282831B (zh) 一种高强度集装箱用耐大气腐蚀钢及其制造方法
JP2009035814A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
CN105925912B (zh) 抗拉强度780MPa级含钒冷轧双相钢及其制备方法
CN108315639A (zh) 一种高韧性600MPa级汽车大梁钢及其生产方法
CN113106327B (zh) 一种高耐蚀带钢及其制造方法
CN101736199A (zh) 高强度冷成型焊接结构用热轧带钢及其制造方法
CN107747039A (zh) 一种高扩孔性能冷轧双相钢及其制备方法
CN106636911A (zh) 用薄板坯直接轧制的900MPa级热轧薄钢板及其制造方法
CN105803334A (zh) 抗拉强度700MPa级热轧复相钢及其生产方法
CN105925905A (zh) Nb-Ti系780MPa级热轧双相钢及其生产方法
CN102234742A (zh) 一种直缝焊管用钢板及其制造方法
CN105695869A (zh) 屈服强度450MPa级桥梁用热轧钢板及其制造方法
CN107267875A (zh) 一种屈服强度≥700MPa铁路集装箱用耐候钢及生产方法
CN106756514A (zh) 一种高强度正火型特厚建筑结构用钢板及其生产方法
JP3879440B2 (ja) 高強度冷延鋼板の製造方法
CN112410671A (zh) 一种采用复相组织生产轮辋用钢的生产方法
CN111321340A (zh) 一种屈服强度450MPa级热轧钢板及其制造方法
JP2002363685A (ja) 低降伏比高強度冷延鋼板
CN109202028A (zh) 一种高延伸凸缘钢板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant