CN109201055A - 一种钒银掺杂的钛纳米管催化剂及其制备方法和应用 - Google Patents

一种钒银掺杂的钛纳米管催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN109201055A
CN109201055A CN201710542111.9A CN201710542111A CN109201055A CN 109201055 A CN109201055 A CN 109201055A CN 201710542111 A CN201710542111 A CN 201710542111A CN 109201055 A CN109201055 A CN 109201055A
Authority
CN
China
Prior art keywords
doping
vanadium
titanium
catalyst
nano tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710542111.9A
Other languages
English (en)
Inventor
李泽壮
刘经伟
杨爱武
张�诚
柏基业
方晓江
刘丽娟
王英武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Yangzi Petrochemical Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Sinopec Yangzi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Yangzi Petrochemical Co Ltd filed Critical China Petroleum and Chemical Corp
Priority to CN201710542111.9A priority Critical patent/CN109201055A/zh
Publication of CN109201055A publication Critical patent/CN109201055A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/682Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钒银掺杂的钛纳米管催化剂,用于催化甲苯气相氧化制苯甲醛。该催化剂的组成为:质量分数为0~6%的Ag2O,质量分数为1~12%的V2O5,其余为TiO2;催化剂的比表面积为350~600m2/g,孔容为0.4~0.7cm3/g,孔径为4~7nm。催化剂的制备先采用溶胶凝胶法制备银掺杂的钛纳米管,再采用浸渍法将钒负载在银掺杂的钛纳米管上。所提供的钒银掺杂钛纳米管催化剂反应活性和选择性较高,且稳定性较好。反应5h后,苯甲醛的选择性最高可达96.7%,苯甲醛收率最高可达26.9%,碳氧化物选择性低于9%,具有良好的工业化应用前景。

Description

一种钒银掺杂的钛纳米管催化剂及其制备方法和应用
技术领域
本发明属于钛纳米材料制备技术领域,具体涉及一种钒银掺杂的钛纳米管催化剂、制备方法及其应用。
背景技术
苯甲醛是一种重要的精细化学品。国内苯甲醛的生产主要采用甲苯氯化水解工艺,该工艺要用到氯气、强酸和强碱,环境污染严重,国外已经禁止用该工艺生产苯甲醛。同时该工艺生产的苯甲醛产品中含有微量氯,产品不能在化妆品、食品和医药等领域应用,而对产品脱氯成本高昂。甲苯液相氧化制苯甲酸的过程中可以副产无氯苯甲醛。国内石家庄炼化分公司是国内最大的采用该工艺生产无氯苯甲醛的厂家,苯甲醛年产量不到5000吨。2013年湖南弘润化工有限公司采用该工艺开工建设了一套年产5万吨苯甲酸的装置,年副产苯甲醛125 吨。但该工艺苯甲醛产品的选择性较低,不到10%,产量不能满足国内市场的需求。同时该工艺用醋酸作溶剂,溴化物助剂,设备腐蚀严重。日本三菱化学公司1988年建成了世界上第一套2Agt/a生产规模的苯甲酸气相催化加氢制苯甲醛的工业化装置。但该工艺没有后续应用报道。原因可能是由于苯甲酸市场价格较高,装置的经济性较差;同时该工艺以Cr修饰的 ZrO2为催化剂,而Cr可致癌,所以限制了催化剂的应用。
目前国内外处于探索阶段的无氯苯甲醛合成工艺包括:甲苯气相氧化法、苯甲醇氧化法和苯乙烯氧化法等。由于苯甲醇和苯乙烯的市场价格较高,因此采用这两种原料建成的工业化装置不具市场竞争力;而甲苯价格低廉且供应量充足,因此开发甲苯气相氧化制苯甲醛工艺比较具有市场前景。该工艺存在的主要问题是苯甲醛的收率较低,且甲苯容易发生深度氧化生成碳氧化物。
钒基催化剂是研究最多的一种甲苯气相氧化催化剂。研究表明相对SiO2、Al2O3、ZrO2、活性炭等载体,以TiO2负载钒物种时催化剂有更佳的反应性能。沈俭一等发现向V2O5催化剂中引入Ag助剂,可以形成V-Ag-O晶相,可以降低催化剂的表面酸性和提高催化剂的氧化还原能力,从而增强了催化剂的反应性能,反应温度340℃、空速8.9L/(g.h)条件下,引入Ag 助剂后,甲苯的转化率由2.4%提高至5.3%,苯甲醛选择性由62%提高至91%(Applied Catalysis A,2007年第330卷第117~126页)。沈俭一等还发现将V-Ag负载在TiO2上,可以增强催化剂的氧化还原能力,提高甲苯转化率(Catal Lett,2009年第128卷第373~378页)。但已报到的以TiO2为载体负载V的甲苯气相氧化催化剂中,TiO2主要以无定型颗粒形式存在,比表面积较小,而较低的比表面积降低了单层分散的活性V物种数量,从而限制了催化剂的反应活性。
发明内容
本发明要解决的问题在于,现有的用于催化甲苯气相氧化制备苯甲醛的催化剂活性低,使用现有的催化剂,甲苯的转化率和苯甲醛的选择性低,苯甲醛的产率得不到明显的提高。
本发明旨在提供一种有较大比表面积的钒银掺杂钛纳米管催化剂,以增加催化剂表面单层活性钒物种的数量,从而提高催化剂催化甲苯气相氧化制苯甲醛的反应性能。
本发明的目的之一是提供一种制备钒银掺杂钛纳米管催化剂,该催化剂的组成为:质量分数为0~6%的Ag2O,质量分数为1%~12%的V2O5,其余为TiO2;催化剂的比表面积为 350~600m2/g,孔容为0.4~0.7cm3/g,孔径为4~7nm。
苯甲醛的收率与催化剂可利用的表面积和孔径分布的变化密切相关。添加适量的Ag2O 后,改善了催化剂的孔结构参数,小孔减少,中孔增多,使反应物分子可以到达的孔的体积增大,提高了催化剂的内表面利用率,大大改善了分子的扩散和催化性能。当孔径较小时,产物苯甲醛的扩散阻力较大,在孔内的停留时间相对较长,从而引起深度氧化等副反应的发生,生成二氧化碳,孔径愈大,催化剂的有效因子也愈大,因而催化剂表现出较好的活性。但是当Ag2O含量太高时,过多的Ag2O覆盖了反应的活性,使比表面积和孔容降低,因而活性反而下降。
本发明的目的之一是提供一种制备钒银掺杂钛纳米管催化剂的方法,先采用溶胶凝胶法制备银掺杂的钛纳米管,再采用浸渍法将钒负载在银掺杂的钛纳米管上;该制备方法具体包括如下步骤:
(1)将有机钛前躯体、无水乙醇和冰醋酸配置成混合溶液A,将无水乙醇与硝酸银配置成混合溶液B;
(2)将A溶液缓慢滴加到混合溶液B中,室温下搅拌、老化后得到透明凝胶,烘干、煅烧后得到银掺杂的钛纳米管;
(3)将钒盐与无水乙醇配置成混合溶液C,将所制得的银掺杂的钛纳米管加入到溶液C,搅拌烘干,煅烧后得到钒银掺杂的钛纳米管催化剂。
将有机钛前躯体在无水乙醇中,在冰醋酸作用下,进行水解、缩合化学反应,与硝酸银充分混合,在溶液中形成溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶;凝胶经过干燥、煅烧固化制备出含银的钛纳米管。将含银的钛纳米管与钒盐的无水乙醇混合,此时含银的钛纳米管作为载体,使钒盐溶液吸附或贮存在载体毛细管中,通过烘干除去过剩的溶液,经煅烧活化得到钒银掺杂的钛纳米管催化剂。
上述步骤(1)中的有机钛前驱体为钛酸四丁酯、钛酸四丙酯、钛酸四乙酯、钛酸四异丙酯、钛酸四异丁酯或钛酸四叔丁酯。
进一步地,步骤(1)所的混合溶液A中,有机钛前躯体、无水乙醇和冰醋酸的摩尔比为1:8~15:0.5~1.5。
混合溶液B中的硝酸银与无水乙醇的摩尔比为1:50~100,所述的硝酸银的添加量与有机钛前躯体的摩尔比为0~0.05:1。当目标催化剂中无Ag2O存在时,即无需加入混合溶液B。
上述步骤(2)中搅拌时间为1~2h;老化时间为6~9h;烘干温度为120~150℃,烘干时间为3~5h;煅烧温度为450~600℃,煅烧时间为4~6h。
上述步骤(3)所述的钒盐为偏钒酸铵、醋酸氧钒或草酸氧钒;C溶液中钒盐与无水乙醇的摩尔比为1:10~20;所述的钒盐添加量与有机钛前躯体的摩尔比为0.0108~0.129﹕1。
进一步地,上述步骤(3)中烘干温度为80~100℃;煅烧温度为450~600℃,煅烧时间为 4~6h。
本发明的目的之三是提供一种所制备催化剂在催化甲苯气相氧化制苯甲醛中的应用,具体包括如下步骤:将催化剂装填在固定床反应器内,150~300℃氮气气氛下煅烧1~2h,然后升温至反应温度340~440℃,并切换成反应气,反应气的组成为甲苯蒸气的体积分数为2~4%,氧气的体积分数为5~10%,其余为氮气,反应气的空速为1x103~2x103h-1。反应物及产物通过气相色谱仪检测。
本发明提供的钒银掺杂钛纳米管催化剂反应活性和选择性较高,且稳定性较好。反应5h 后,苯甲醛的选择性最高可达96.7%,苯甲醛收率最高可达26.9%,碳氧化物一氧化碳和二氧化碳总选择性低于9%,具有良好的工业化应用前景。
具体实施方式
为了更好地理解本发明,下面结合实施例对本发明进行进一步的阐明。
实施例1:
将0.1mol钛酸四丁酯、1.5mol无水乙醇和0.15mol冰醋酸配置成混合溶液A。将0.005mol 硝酸银和0.25mol无水乙醇配置成混合溶液B。将A溶液缓慢滴加到B溶液中,室温下搅拌 2h,老化9h后得到透明凝胶,150℃烘干5h,600℃煅烧6h后得到银掺杂的钛纳米管。将0.0129mol偏钒酸铵与0.129mol无水乙醇配置成混合溶液C,将所制得的银掺杂的钛纳米管加入到溶液C,100℃搅拌烘干,600℃煅烧6h后得到钒银掺杂的钛纳米管催化剂。催化剂组成为Ag2O的质量分数为6%,V2O5的质量分数为12%,其余为TiO2。催化剂的比表面积为350m2/g,孔容0.4cm3/g,孔径7nm。
将1mL所制得的催化剂装填在固定床反应器内,300℃氮气气氛下煅烧2h,然后升温至反应温度340℃,并切换成反应气,反应气的组成为甲苯蒸气的体积分数为2%,氧气的体积分数为5%,其余为氮气,反应气的空速为1x103h-1。反应物及产物通过气相色谱仪检测。反应5h后,甲苯的转化率为19.9%,苯甲醛的选择性为96.7%,苯甲醛收率为19.2%,碳氧化物的选择性为7.1%。
实施例2:
将0.1mol钛酸四丁酯、0.8mol无水乙醇和0.05mol冰醋酸配置成混合溶液A。将0.003mol 硝酸银和0.3mol无水乙醇配置成混合溶液B。将A溶液缓慢滴加到B溶液中,室温下搅拌 1h,老化6h后得到透明凝胶,120℃烘干3h,500℃煅烧4h后得到银掺杂的钛纳米管。将 0.008mol醋酸氧钒与0.16mol无水乙醇配置成混合溶液C,将所制得的银掺杂的钛纳米管加入到溶液C,80℃搅拌烘干,500℃煅烧4h后得到钒银掺杂的钛纳米管催化剂。催化剂组成为Ag2O的质量分数为3.8%,V2O5的质量分数为8%,其余为TiO2。催化剂的比表面积为460m2/g,孔容0.57cm3/g,孔径6.1nm。
将1mL所制得的催化剂装填在固定床反应器内,300℃氮气气氛下煅烧2h,然后升温至反应温度420℃,并切换成反应气,反应气的组成为甲苯蒸气的体积分数为2%,氧气的体积分数为5%,其余为氮气,反应气的空速为1x103h-1。反应物及产物通过气相色谱仪检测。反应5h后,甲苯的转化率为34.2%,苯甲醛的选择性为78.6%,苯甲醛收率为26.9%,碳氧化物的选择性为8.1%。
实施例3:
将1mL实施例2所制得的催化剂装填在固定床反应器内,150℃氮气气氛下煅烧2h,然后升温至反应温度440℃,并切换成反应气,反应气的组成为甲苯蒸气的体积分数为2%,氧气的体积分数为10%,其余为氮气,反应气的空速为1x103h-1。反应物及产物通过气相色谱仪检测。反应5h后,甲苯的转化率为41.3%,苯甲醛的选择性为58.7%,苯甲醛收率为24.2%,碳氧化物的选择性为9%。
实施例4:
将1mL实施例2所制得的催化剂装填在固定床反应器内,150℃氮气气氛下煅烧1h,然后升温至反应温度420℃,并切换成反应气,反应气的组成为甲苯蒸气的体积分数为4%,氧气的体积分数为5%,其余为氮气,反应气的空速为2x103h-1。反应物及产物通过气相色谱仪检测。反应5h后,甲苯的转化率为26.7%,苯甲醛的选择性为81.2%,苯甲醛收率为21.7%,碳氧化物的选择性为8.1%。
实施例5:
将0.1mol钛酸四丁酯、0.8mol无水乙醇和0.05mol冰醋酸配置成混合溶液,室温下搅拌 1h,老化6h后得到透明凝胶,120℃烘干3h,500℃煅烧4h后得到钛纳米管。将0.008mol醋酸氧钒与0.16mol无水乙醇配置成混合溶液C,将所制得的银掺杂的钛纳米管加入到溶液C, 80℃搅拌烘干,500℃煅烧4h后得到钒掺杂的钛纳米管催化剂。催化剂组成为V2O5的质量分数为8.3%,其余为TiO2。催化剂的比表面积为510m2/g,孔容0.62cm3/g,孔径5.7nm。
将1mL所制得的催化剂装填在固定床反应器内,300℃氮气气氛下煅烧2h,然后升温至反应温度420℃,并切换成反应气,反应气的组成为甲苯蒸气的体积分数为2%,氧气的体积分数为5%,其余为氮气,反应气的空速为1x103h-1。反应物及产物通过气相色谱仪检测。反应5h后,甲苯的转化率为29.9%,苯甲醛的选择性为75.3%,苯甲醛收率为22.5%,碳氧化合物的选择性为7.8%。碳氧化物的选择性为7.3%。
实施例6:
将0.1mol钛酸四丁酯、1.1mol无水乙醇和0.09mol冰醋酸配置成混合溶液A。将0.002mol 硝酸银和0.16mol无水乙醇配置成混合溶液B。将A溶液缓慢滴加到B溶液中,室温下搅拌 1.5h,老化8h后得到透明凝胶,140℃烘干4h,500℃煅烧4h后得到银掺杂的钛纳米管。将 0.01mol醋酸氧钒与0.15mol无水乙醇配置成混合溶液C,将所制得的银掺杂的钛纳米管加入到溶液C,90℃搅拌烘干,500℃煅烧5h后得到钒银掺杂的钛纳米管催化剂。催化剂组成为 Ag2O的质量分数为2.5%,V2O5的质量分数为10%,其余为TiO2。催化剂的比表面积为 478m2/g,孔容0.59cm3/g,孔径6.0nm。
将1mL所制得的催化剂装填在固定床反应器内,280℃氮气气氛下煅烧2h,然后升温至反应温度420℃,并切换成反应气,反应气的组成为甲苯蒸气的体积分数为2%,氧气的体积分数为5%,其余为氮气,反应气的空速为1x103h-1。反应物及产物通过气相色谱仪检测。反应5h后,甲苯的转化率为31.1%,苯甲醛的选择性为81.1%,苯甲醛收率为25.2%,碳氧化合物的选择性为8.3%。
上述实施例仅仅是较佳的实施例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。凡依本发明申请专利范围的内容所作的等效变化与修饰,都应作为本发明的技术范畴。

Claims (10)

1.一种钒银掺杂的钛纳米管催化剂,其特征在于:该催化剂的组成为:质量分数为0~6%的Ag2O,质量分数为1%~12%的V2O5,其余为TiO2;催化剂的比表面积为350~600m2/g,孔容为0.4~0.7cm3/g,孔径为4~7nm。
2.如权利要求1所述的一种钒银掺杂的钛纳米管催化剂的制备方法,其特征在于先采用溶胶凝胶法制备银掺杂的钛纳米管,再采用浸渍法将钒负载在银掺杂的钛纳米管上;具体包括如下步骤:
(1)将有机钛前躯体、无水乙醇和冰醋酸配置成混合溶液A,将无水乙醇与硝酸银配置成混合溶液B;
(2)将A溶液缓慢滴加到B溶液中,室温下搅拌、老化后得到透明凝胶,烘干、煅烧后得到银掺杂的钛纳米管;
(3)将钒盐与无水乙醇配置成混合溶液C,将所制得的银掺杂的钛纳米管加入到溶液C,搅拌烘干,煅烧后得到钒银掺杂的钛纳米管催化剂。
3.如权利要求2所述的钒银掺杂的钛纳米管催化剂的制备方法,其特征在于:步骤(1)中有机钛前驱体为钛酸四丁酯、钛酸四丙酯、钛酸四乙酯、钛酸四异丙酯、钛酸四异丁酯或钛酸四叔丁酯。
4.如权利要求2所述的钒银掺杂的钛纳米管催化剂的制备方法,其特征在于:步骤(1)所述的混合溶液A中,有机钛前躯体、无水乙醇、冰醋酸的摩尔比为1:8~15:0.5~1.5。
5.如权利要求2所述的钒银掺杂的钛纳米管催化剂的制备方法,其特征在于,步骤(1)中B溶液中的硝酸银与无水乙醇的摩尔比为1:50~100,所述的硝酸银的添加量与有机钛前躯体的摩尔比为0~0.05:1。
6.如权利要求2所述的钒银掺杂的钛纳米管催化剂的制备方法,其特征在于:步骤(2)中搅拌时间为1~2h;老化时间为6~9h;烘干温度为120~150℃,烘干时间为3~5h;煅烧温度为450~600℃,煅烧时间为4~6h。
7.如权利要求2所述的钒银掺杂的钛纳米管催化剂的制备方法,其特征在于:步骤(3)所述的钒盐为偏钒酸铵、醋酸氧钒或草酸氧钒;C溶液中钒盐与无水乙醇的摩尔比为1:10~20;所述的钒盐添加量与有机钛前躯体的摩尔比为0.0108~0.129﹕1。
8.如权利要求2所述的钒银掺杂的钛纳米管催化剂的制备方法,其特征在于:步骤(3)中烘干温度为80~100℃;煅烧温度为450~600℃,煅烧时间为4~6h。
9.权利要求1-8任一所述钒银掺杂的钛纳米管催化剂在催化甲苯气相氧化制苯甲醛中的应用。
10.根据权利要求9所述的钒银掺杂的钛纳米管催化剂的应用,其特征在于,使用该催化剂催化甲苯气相氧化制苯甲醛具体包括以下步骤:将催化剂装填在固定床反应器内,150~300℃氮气气氛下煅烧1~2h,然后升温至反应温度340~440℃,并切换成反应气,反应气的组成为甲苯蒸气的体积分数为2~4%,氧气的体积分数为5~10%,其余为氮气,反应气的空速为1×103~2×103h-1
CN201710542111.9A 2017-07-05 2017-07-05 一种钒银掺杂的钛纳米管催化剂及其制备方法和应用 Pending CN109201055A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710542111.9A CN109201055A (zh) 2017-07-05 2017-07-05 一种钒银掺杂的钛纳米管催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710542111.9A CN109201055A (zh) 2017-07-05 2017-07-05 一种钒银掺杂的钛纳米管催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109201055A true CN109201055A (zh) 2019-01-15

Family

ID=64993096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710542111.9A Pending CN109201055A (zh) 2017-07-05 2017-07-05 一种钒银掺杂的钛纳米管催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109201055A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112452326A (zh) * 2020-11-25 2021-03-09 常州大学 铜黑钛催化剂的制备方法及其在选择性催化氧化脱硝中的应用
CN114700076A (zh) * 2022-04-14 2022-07-05 大连理工大学 一种用于甲苯气相氧化制备苯甲醛的钒银铈催化剂、制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792437A (zh) * 2005-12-02 2006-06-28 厦门大学 纳米二氧化钛负载银纳米粒子的方法
US20090098005A1 (en) * 2007-10-11 2009-04-16 Hyundai Motor Company Method of manufacture Ni-doped TiO2 nanotube-shaped powder and sheet film comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792437A (zh) * 2005-12-02 2006-06-28 厦门大学 纳米二氧化钛负载银纳米粒子的方法
US20090098005A1 (en) * 2007-10-11 2009-04-16 Hyundai Motor Company Method of manufacture Ni-doped TiO2 nanotube-shaped powder and sheet film comprising the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
M. ABDULLAH ET AL.: "Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview", 《RENEWABLE AND SUSTAINABLE ENERGY REVIEWS》 *
YEAN LINGPANG ET AL.: "Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution", 《SEPARATION AND PURIFICATION TECHNOLOGY》 *
方奕文等: "Ag改性TiO2催化剂的制备、表征及其甲苯气相光催化降解性能", 《分子催化》 *
王亚云等: "TiO2纳米管制备修饰及应用研究进展", 《新技术新工艺》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112452326A (zh) * 2020-11-25 2021-03-09 常州大学 铜黑钛催化剂的制备方法及其在选择性催化氧化脱硝中的应用
CN112452326B (zh) * 2020-11-25 2024-01-23 常州大学 铜黑钛催化剂的制备方法及其在选择性催化氧化脱硝中的应用
CN114700076A (zh) * 2022-04-14 2022-07-05 大连理工大学 一种用于甲苯气相氧化制备苯甲醛的钒银铈催化剂、制备方法及其应用

Similar Documents

Publication Publication Date Title
Védrine Importance, features and uses of metal oxide catalysts in heterogeneous catalysis
Rezaei et al. Green and selective oxidation of cyclohexane over vanadium pyrophosphate supported on mesoporous KIT-6
Oliveira et al. Limonene oxidation over V2O5/TiO2 catalysts
Burri et al. Influence of SBA-15 support on CeO2–ZrO2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO2
CN107890867B (zh) 一种灰色Pd/TiO2纳米线光催化剂及其制备方法和应用
Somekh et al. Selective visible light aerobic photocatalytic oxygenation of alkanes to the corresponding carbonyl compounds
CN109759041A (zh) 一种中空片状结构二氧化钛纳米管光催化材料及其制备方法
CN109201055A (zh) 一种钒银掺杂的钛纳米管催化剂及其制备方法和应用
CN108452805A (zh) 一种用于光解水产氢的NiTiO3/TiO2催化剂及其制备方法和用途
Ding et al. Modification of catalytic properties of Hollandite manganese oxide by Ag intercalation for oxidative acetalization of ethanol to diethoxyethane
CN102658128B (zh) 制备有序介孔Pd-TiO2非均相催化剂的方法及其应用
Zamora et al. Acetone gas phase condensation on alkaline metals doped TiO2 sol–gel catalysts
CN103537301A (zh) 用于甲醇氧化联产甲缩醛和甲酸甲酯的催化剂及其制法和应用
US9873653B2 (en) Heterogeneous catalyst for production of 3-hydroxypropionic acid from allyl alcohol, and method for preparation of 3-hydroxypropionic acid from allyl alcohol using the same
CN109201037A (zh) 一种钒钾掺杂的钛纳米管催化剂及其制备方法和应用
CN104557785A (zh) 一种多相催化环氧化苯乙烯联合制备环氧苯乙烷和苯甲醛的方法
Tangestaninejad et al. Olefin epoxidation with H2O2 catalyzed by vanadium-containing polyphosphomolybdates immobilized on TiO2 nanoparticles under different conditions
Wang et al. A mild simple method for liquid-phase selective catalytic oxidation of toluene with ozone over CeO2 promoted sulfated TiO2
CN100420662C (zh) 环己烷选择氧化制备环己酮和环己醇的方法
CN102757374A (zh) 一种叔丁醇的氧化方法
CN109012662B (zh) 一种光催化苯甲醇氧化催化剂的制备方法
KR101157203B1 (ko) 피셔-트롭시 합성반응용 코발트 촉매
CN109821571A (zh) 一种高活性氯化氢氧化催化剂的制备方法
CN112517021B (zh) 钴掺杂改性的二氧化锡催化剂、制备方法及其应用
CN107876040A (zh) 甲醇乙醇一步合成异丁醛的催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190115

RJ01 Rejection of invention patent application after publication