CN109193752B - 含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法 - Google Patents

含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法 Download PDF

Info

Publication number
CN109193752B
CN109193752B CN201810957082.7A CN201810957082A CN109193752B CN 109193752 B CN109193752 B CN 109193752B CN 201810957082 A CN201810957082 A CN 201810957082A CN 109193752 B CN109193752 B CN 109193752B
Authority
CN
China
Prior art keywords
fan
random
grid
parameter adjustment
virtual inertia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810957082.7A
Other languages
English (en)
Other versions
CN109193752A (zh
Inventor
马静
张涌新
吴升进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201810957082.7A priority Critical patent/CN109193752B/zh
Publication of CN109193752A publication Critical patent/CN109193752A/zh
Application granted granted Critical
Publication of CN109193752B publication Critical patent/CN109193752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了属于电力系统稳定性分析技术领域的一种含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法。该方法是由包括顺序相连的信息采集模块、鲁棒随机优化参数调整计算模块和参数调整结果输出模块的处理系统实现的,包括信息采集、优化参数调整计算输出参数调整结果三个步骤,得到控制参数策变量集合;判断双馈风机是否为诱发低频振荡的原因,能够指导控制参数的优化;本发明应用参数优化策略后,风机的功角响应水平得到有效改善,并且风机不再向电网输送振荡能量,抑制风机并网系统的低频振荡。

Description

含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法
技术领域
本发明属于电力系统稳定性分析技术领域,特别是涉及电力系统,特别涉及一种含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法。
背景技术
传统双馈风机不具备惯量调节能力,通过引入虚拟惯量控制,可以使风电机组在系统频率变化时向电网释放一定的旋转动能或者从电网吸收一定的电能转化为旋转动能,提高其并网性能。虚拟惯量的引入虽然可在一定程度上改善受扰系统的惯量和频率特性,然而,虚拟惯量的动态特性以及与锁相环之间的相互作用将影响系统的小干扰稳定,此类风机大规模并网,将使系统发生功角失稳的可能性大大增加。
现有抑制大规模风电并网系统低频振荡的方法主要包括:附加阻尼控制,增设补偿装置,优化控制参数。附加阻尼控制是一种线性控制策略,其基本思路是将经过处理后的本地信息或广域信息附加到风机转子侧变流器以调整其控制策略,具有结构简单,易于应用的优势,然而,该方法的根本思想仍是基于确定性模型,面对具有不确定参数的时变系统,当运行条件改变时,其控制效果难以满足要求。增设补偿装置是一种非线性控制策略,能够增强风机的附加阻尼,弥补线性控制策略的不足,解决了含双馈风机的风电并网系统模型复杂,未知因素过多带来的问题,具有良好的鲁棒性,然而,该方法忽略了风机虚拟惯量对同步机之间阻尼特性的影响,且未充分考虑风机自身的控制环节参与平抑系统振荡的能力。优化控制参数方法从风机自身入手,无需附加装置,具有节约成本,易于实现的优势,然而,现有方法尚未考虑在提供频率支撑的条件下,如何保障系统功角稳定水平,且在利用风机内部关键控制参数平抑振荡方面的研究还很匮乏。
鉴于此,本发明提出一种含虚拟惯量的大规模双馈风机并网系统低频振荡控制参数优化方法及其系统。首先,建立双馈风机的动态能量模型,分析锁相环、虚拟惯量关键控制参数对动态能量流动的影响;在此基础上,考虑激励、扰动和运行参数的随机过程,构建振荡模式时变能量可靠性函数并定义随机稳定度指标,提出基于超平面空间的多约束min-max参数优化策略;最后,以IEEE 10机 39节点系统为例的仿真验证了该方法的有效性。
发明内容
本发明的目的是提供一种含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法,所述含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法是由包括顺序相连的信息采集模块、鲁棒随机优化参数调整计算模块和参数调整结果输出模块的处理系统实现的,其特征在于,该优化方法包括以下步骤:
步骤1,信息采集模块采集系统电压U、频率f、有功P、无功Q、随机激励 lect和随机扰动Rdst,锁相环和虚拟惯量控制参数的信息数据,并将信息数据发送至鲁棒随机优化参数调整计算模块;
步骤2,鲁棒随机优化参数调整计算模块利用来自信息采集模块的数据信息,结合建立的鲁棒随机优化参数调整模型及随机稳定度指标计算出能使随机稳定度指标,达到最优的风机锁相环和虚拟惯量控制参数,由此构成决策变量集合;
步骤3,参数调整结果输出模块输出鲁棒随机优化参数调整计算模块计算出的控制参数K构成的决策变量集合α;应用参数优化策略后,风机的功角响应水平得到有效改善,并且风机不再向电网输送振荡能量。
所述步骤2具体包括步骤:
步骤201:结合双馈风机动态能量模型,考虑锁相环和虚拟惯量控制对动态能量的影响,建立考虑锁相环和虚拟惯量控制作用的风机支路的动态能量表达式,
Figure GDA0002618628750000031
式(8)中Pe和Qe分别为风机有功、无功功率,
Figure GDA0002618628750000032
为风机并网点电压幅值对时间的导数,
Figure GDA0002618628750000033
为风机并网点电压相位对时间的导数,δg为风机发电机功角,id和 iq分别为直轴电流、交轴电流,ud和uq分别为直轴、交轴电压;
Figure GDA0002618628750000034
表示从双馈风机母线向电网注入的能量。通过分析原动系统注入电网的能量 Wgen=∫Peg与励磁系统注入电网的能量Wexc=∫(idduq-iqdud)的上升或下降趋势,判断双馈风机是否为诱发低频振荡的原因,能够指导控制参数的优化;
步骤202:在建立的考虑锁相环和虚拟惯量控制作用的风机支路的动态能量表达式基础上,考虑并网系统机理及扰动的随机因素,定义系统随机稳定度指标,最后考虑系统运行约束,建立鲁棒随机优化参数调整模型,
Figure GDA0002618628750000035
式中,J(K)为系统实际虚拟惯量,f
Figure GDA0002618628750000041
分别为频率f上下限,JΣ为系统总惯量,σ为随机激励,ξ为随机扰动,U为系统电压、P为系统有功、Q为系统无功、δ系统元件功角、ε为随机扰动变量集合,
Figure GDA0002618628750000042
为惯量满足频率约束的在线设定值,x'为潮流影响因素,P(x')=0为潮流等式约束;μ为超高维数函数;
步骤203:利用建立的鲁棒随机优化参数调整模型和信息采集模块的数据信息,求解控制参数K构成的决策变量集合α。
附图说明
图1是本发明提供的一种含虚拟惯量的大规模双馈风机并网系统低频振荡控制参数优化方法及其系统结构图。
图2是锁相环模型图。
图3是虚拟惯量模型图。
图4是新英格兰10机39节点系统模型图。
图5是情形1的同步发电机相对功角动态响应曲线图。
图6是情形1的双馈风机能量输出比较图。
图7是情形2的同步发电机相对功角动态响应曲线图。
图8是情形2的双馈风机能量输出比较图。
具体实施方式
下面结合附图,对本发明作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
图1是本发明提供的一种含虚拟惯量的大规模双馈风机并网系统低频振荡控制参数优化方法及其系统结构图,包括顺序相连的信息采集模块、鲁棒随机优化参数调整计算模块、参数调整结果输出模块。
锁相环对风机动态能量的影响
图2是锁相环模型图,双馈风机组通常采用锁相环控制来提供电网电压相角信息,通过追踪dq坐标轴的位置及角频率用于矢量解耦控制,如图2所示。其状态方程可表示为:
Figure GDA0002618628750000051
Figure GDA0002618628750000052
Figure GDA0002618628750000053
上式中:xPLL
Figure GDA0002618628750000054
分别为引入状态变量及其对时间的导数,usd为双馈风机定子电压d轴分量,usq为双馈风机定子电压q轴分量,
Figure GDA0002618628750000055
为锁相环输出相位的变化,是锁相环输出相位对时间的导数;ωs_PLL为锁相环测得的dq坐标系旋转角速度,KP_PLL和KI_PLL为锁相环的控制比例和积分增益。
锁相环采用定子电压定向控制,用于追踪电网相角信息,在完全追踪时,锁相环输出相位δPLL的变化等于电网电压相角θ的变化:
Figure GDA0002618628750000056
其中,
Figure GDA0002618628750000057
为锁相环输出相位的变化,
Figure GDA0002618628750000058
为电网电压相角的变化。
根据锁相环的工作原理,风机定子q轴的定向电压为:
usq=us sin(θ-δPLL) (5)
式中,us为定子电压。
小干扰时,θ-δPLL的值很小,故式(5)可近似为:
usq=us(θ-δPLL) (6)
根据式(3)-(6),可以得到电压相角θ的变化:
Figure GDA0002618628750000061
考虑到双馈风机的动态能量模型可以表示为:
Figure GDA0002618628750000062
式(8)中,
Figure GDA0002618628750000063
表示从双馈风机母线向电网注入的能量。通过分析原动系统注入电网的能量Wgen=∫Peg与励磁系统注入电网的能量 Wexc=∫(idduq-iqdud)的上升或下降趋势,可以判断双馈风机是否为诱发低频振荡的原因,能够指导控制参数的优化。
将式(7)代入式(8)中可得:原动系统注入电网的能量
Figure GDA0002618628750000064
由式(9)可知,锁相环通过控制电压相位的动态特性影响其动态能量。系统动态过程中,锁相环的比例控制参数KI_PLL和积分控制参数KP_PLL均会对动态能量产生影响,如果参数配合不当,有可能会诱发低频振荡。
虚拟惯量对风机动态能量的影响
图3为虚拟惯量模型图,引入惯量控制后风机能在系统频率变化时释放动能,使其虚拟出转动惯量。双馈风机在电网频率变化过程中可虚拟出的等效惯量为:
Figure GDA0002618628750000071
式中λ=Δωr/Δωs,为转速调节系数。ωr和ωs为转子角速度和系统同步角速度,Δωr和Δωs为其角速度增量。JDFIG为双馈风机的总转动惯量。
同时根据惯性时间常数的定义,可以得到此时双馈风机的等效虚拟惯性时间常数
Figure GDA0002618628750000072
式中,PDFIG为DFIG的额定容量,并且等效虚拟惯性时间常数与原风机惯性时间常数Hg的关系为
Figure GDA0002618628750000073
此时,表示风机轴系动态的双质量块运动方程中,发电机质量块的运动方程为:
Figure GDA0002618628750000074
式中,s为转差率,Ks为转差率相关参数,δs为转差率相关相位角,Dg为发电机阻尼,Pe为原始电磁功率,Pe′为考虑虚拟惯量后的电磁功率:Pe′=Pe+Pvir, Pvir为虚拟惯量控制输出的有功参考值。
虚拟惯量控制如图3所示,当系统频率降低时,引入与系统频率偏差比例以及微分相关的有功输出量Pvir,调整转子侧变换器的有功参考值Pref,从而释放风机转子动能,增加其出力,支撑系统的一部分惯性。虚拟惯量控制的数学表达式为:
Pvir=KP_virrefs)+KD_virs/dt (13)
式中,KP_vir,KD_vir为虚拟惯量的控制比例和微分增益,一般有KP_vir>0, KD_vir<0,ωs为系统同步角速度,ωref为参考角速度。
引入虚拟惯量控制后,风机的动态能量函数表达式为:
Figure GDA0002618628750000081
由式(14)可知,虚拟惯量控制通过调整风机出力影响其动态能量。系统动态过程中,虚拟惯量的比例控制参数KP_vir和积分控制参数KD_vir均会对动态能量产生影响,如果参数配合不当,有可能会诱发低频振荡。
鲁棒随机优化参数调整模型构建:
首先,提取式(14)风机动态能量中的振荡分量部分:
Figure GDA0002618628750000082
小干扰稳定分析中,双馈风机的无功功率对系统状态变量响应几乎为零,即ΔQe≈0,因此式(15)可进一步简化为:ΔW=∫[KP_virrefs)][KI_PLLxPLL+KP_PLLus(θ-δPLL)]dt+∫KI_vir[KI_PLLxPLL+KP_PLLus(θ-δPLL)]dωs (16)
风机并网过程伴随着大量随机性因素,这些随机因素会对并网系统的小干扰稳定性产生影响,因此参数优化策略需考虑这些随机因素。长期运行经验表明,风电并网系统激励、扰动和运行参数(lect、Rdst、K)随机分布分别可由维纳过程、马尔科夫过程、多维高斯过程描述,将它们引入ΔW映射:
ψ(ΔW)=f(lect,Rdst,K) (17)
式中,ψ(ΔW)为动态能量的概率分布。
进一步,可以获取某振荡模式下系统随机耗散能量稳定概率ΔWP。其在此基础上,构建振荡模式时变能量可靠性函数:
ΔWPh (18)
其中,h为能保证系统具有一定稳定裕度的随机动态能量函数边界值。
定义系统随机稳定度指标μ:
Figure GDA0002618628750000091
式中,ζ(ΔWP)为随机动态能量稳定概率。
考虑到式(19)中μ为超高维数函数,参数组合较多,难以解析表达,不利于在线参数调整。因此构建控制参数-动态能量超平面空间,将该函数映射到超平面空间,并转化为系统实际运行点与动态能量稳定边界之间超平面距离的求解问题:
Figure GDA0002618628750000092
式中,ν为能量在超平面空间的距离映射,ν(Wρ)表征了由能量链路传导至振荡源的动态能量映射在超平面空间的距离,ρ为根据能量分布及系统拓扑求解得到的能量链路因子,Wwi和Wgi分别为风力机和发电机动态能量中的振荡分量,ρwi和ρgi分别为风力机和发电机相关的能量链路因子,i表示运行点个数,n和m分别为风力机和发电机相关的运行点总数。由式(18)、(20)可知,随机稳定度指标μ需要满足条件
Figure GDA0002618628750000093
即大于维持系统稳定所需能量在超平面的距离H0
在随机变量使系统运行状况达到最恶劣的条件下,通过优化决策变量使随机稳定度指标达到最优,该问题为一类带约束的min-max优化问题,因此需要构建鲁棒随机优化参数调整模型:
Figure GDA0002618628750000101
式中,J(K)为系统实际虚拟惯量,f
Figure GDA0002618628750000102
分别为频率f上下限,JΣ为系统总惯量,σ为随机激励,ξ为随机扰动,U为系统电压、P为系统有功、Q为系统无功、δ系统元件功角、ε为随机扰动变量集合,
Figure GDA0002618628750000103
为惯量满足频率约束的在线设定值,x'为潮流影响因素,P(x')=0为潮流等式约束;
图4是新英格兰10机39节点系统模型图,将原系统中区域1内的G1机组用等容量双馈风机风电场替代,系统内其他机组和结构保持不变。
图5是情形1的各同步发电机G之间相对功角动态响应曲线图,图6是情形1的双馈风机能量输出比较图,其数情形1为线路B2-B3发生短路故障;图中虚线表示在未进行参数优化时的双馈风机锁相环和虚拟惯量控制参数;控制参数为KP_PLL=1pu,KI_PLL=330s-1,KP_vir=5pu,KD_vir=-10pu;图中实线表示优化后的风机控制参数,风机控制参数为K′P_PLL=2.3pu, K′I_PLL=465s-1,K′P_vir=7pu,K′D_vir=-60pu。由图5可知,应用参数优化策略后,系统能更快地趋于稳定,并且发电机相对功角距离平衡点的偏差更小。这说明该参数优化策略能够有效改善风机的功角响应水平,抑制风机并网系统的低频振荡。由图6可知,应用参数优化策略后,图6中下面的实线所示,风机输出到电网中的能量由正值变为负值,这说明双馈风机不再是诱发或加剧低频振荡的原因。
图7是情形2的同步发电机相对功角动态响应曲线图,情形2为母线B31发生短路故障。
图8是情形2的双馈风机能量输出比较图。与图5、图6情况类似,图中虚线表示在未进行参数优化时的双馈风机锁相环和虚拟惯量控制参数;控制参数为 KP_PLL=1pu,KI_PLL=330s-1,KP_vir=5pu,KD_vir=-10pu,优化后的风机控制参数为K′P_PLL=2.0pu,K′I_PLL=435s-1,K′P_vir=6.4pu,K′D_vir=-45pu。系统中各同步发电机G相对功角曲线以及风机输出动态能量如图7、图8所示。由图 7、图8可知,应用参数优化策略后,图7中实线所示,风机的功角响应水平得到有效改善,并且风机不再向电网输送振荡能量。

Claims (1)

1.一种含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法,所述含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法是由包括顺序相连的信息采集模块、鲁棒随机优化参数调整计算模块和参数调整结果输出模块的处理系统实现的,其特征在于,该优化方法包括以下步骤:
步骤1,信息采集模块采集系统电压U、频率f、有功P、无功Q、随机激励lect和随机扰动Rdst,锁相环和虚拟惯量控制参数的信息数据,并将信息数据发送至鲁棒随机优化参数调整计算模块;
步骤2,鲁棒随机优化参数调整计算模块利用来自信息采集模块的数据信息,结合建立的鲁棒随机优化参数调整模型及随机稳定度指标,计算出能使随机稳定度指标达到最优的风机锁相环和虚拟惯量控制参数,由此构成决策变量集合;具体包括步骤:
步骤201:结合双馈风机动态能量模型,考虑锁相环和虚拟惯量控制对动态能量的影响,建立考虑锁相环和虚拟惯量控制作用的风机支路的动态能量表达式,
Figure FDA0002484084620000011
式(8)中,Pe和Qe分别为风机有功、无功功率,
Figure FDA0002484084620000012
为风机并网点电压幅值对时间的导数,
Figure FDA0002484084620000013
为风机并网点电压相位对时间的导数,δg为风机发电机功角,id和iq分别为直轴电流、交轴电流,ud和uq分别为直轴、交轴电压;
Figure FDA0002484084620000014
表示从双馈风机母线向电网注入的能量;通过分析原动系统注入电网的能量Wgen=∫Peg与励磁系统注入电网的能量Wexc=∫(idduq-iqdud)的上升或下降趋势,判断双馈风机是否为诱发低频振荡的原因,能够指导控制参数的优化;
步骤202:在建立的考虑锁相环和虚拟惯量控制作用的风机支路的动态能量表达式基础上,考虑并网系统机理及扰动的随机因素,定义系统随机稳定度指标,最后考虑系统运行约束,建立鲁棒随机优化参数调整模型,
Figure FDA0002484084620000021
式中,J(K)为系统实际虚拟惯量,f为频率,f
Figure FDA0002484084620000023
分别为频率f的上下限,JΣ为系统总惯量,σ为随机激励,ξ为随机扰动,U为系统电压、P为系统有功、Q为系统无功、δ为系统元件功角,ε为随机扰动变量集合,
Figure FDA0002484084620000022
为惯量满足频率约束的在线设定值,x'为潮流影响因素,P(x')=0为潮流等式约束;μ为超高维数函数;
步骤203:利用建立的鲁棒随机优化参数调整模型和信息采集模块的数据信息,求解控制参数K构成的决策变量集合α;
步骤3,参数调整结果输出模块输出鲁棒随机优化参数调整计算模块计算出的控制参数K构成的决策变量集合α;应用参数优化策略后,风机的功角响应水平得到有效改善,并且风机不再向电网输送振荡能量。
CN201810957082.7A 2018-08-22 2018-08-22 含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法 Active CN109193752B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810957082.7A CN109193752B (zh) 2018-08-22 2018-08-22 含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810957082.7A CN109193752B (zh) 2018-08-22 2018-08-22 含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法

Publications (2)

Publication Number Publication Date
CN109193752A CN109193752A (zh) 2019-01-11
CN109193752B true CN109193752B (zh) 2021-01-08

Family

ID=64919444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810957082.7A Active CN109193752B (zh) 2018-08-22 2018-08-22 含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法

Country Status (1)

Country Link
CN (1) CN109193752B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725833A (zh) * 2019-03-22 2020-09-29 中国电力科学研究院有限公司 一种虚拟同步发电机转动惯量动态区间的计算方法和系统
CN110212513B (zh) * 2019-04-30 2023-07-14 华北电力大学(保定) 一种稳定直流微网母线电压波动的灵活虚拟电容控制方法
CN110417046B (zh) * 2019-06-04 2020-11-24 重庆大学 面向小干扰稳定提升的风电虚拟惯量优化配置方法
CN110417056B (zh) * 2019-07-30 2020-12-18 华北电力大学 双馈风机并网系统的设备级振荡源定位方法及其装置
CN110309625B (zh) * 2019-07-30 2021-09-07 华北电力大学 一种双馈风电并网系统的能量稳定域确定方法及系统
CN110299729B (zh) * 2019-07-30 2020-10-16 华北电力大学 一种双馈风电机组的稳定性评估方法及系统
CN110417054B (zh) * 2019-07-30 2020-10-16 华北电力大学 一种双馈风电并网系统稳定性调整系统及方法
CN110518631B (zh) * 2019-07-30 2020-11-20 华北电力大学 一种直驱风电机组的稳定性评估方法及系统
CN110492531B (zh) * 2019-08-06 2020-09-11 清华大学 考虑同步旋转惯量水平的电力系统调度运行方法及系统
CN111769575B (zh) * 2020-07-15 2021-09-28 华北电力大学 一种基于模态稳定域的风机参数优化振荡抑制系统及方法
CN113098057B (zh) * 2021-04-06 2022-10-11 广西大学 一种双馈风机参数的多目标高维多分数阶优化方法
CN115395564A (zh) * 2022-08-29 2022-11-25 东北电力大学 一种双馈风机详细能量函数构造及控制方法
CN117200350B (zh) * 2023-09-11 2024-03-26 国网江苏省电力有限公司电力科学研究院 一种多风机并网发电系统的阻尼贡献稳定评估方法及装置
CN117200260B (zh) * 2023-11-07 2024-03-12 国网江西省电力有限公司电力科学研究院 一种抑制电力系统低频振荡的方法及系统
CN117638978A (zh) * 2023-11-24 2024-03-01 国网江苏省电力有限公司电力科学研究院 风电并网系统振荡源定位方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2581917C (en) * 2004-10-01 2010-11-30 Repower Systems Ag Wind park with robust reactive power adjustment system and method for the operation thereof
CN106058922A (zh) * 2016-06-14 2016-10-26 华北电力大学 一种含虚拟惯量控制的双馈风电机组降阶仿真系统及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2581917C (en) * 2004-10-01 2010-11-30 Repower Systems Ag Wind park with robust reactive power adjustment system and method for the operation thereof
CN106058922A (zh) * 2016-06-14 2016-10-26 华北电力大学 一种含虚拟惯量控制的双馈风电机组降阶仿真系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"双馈风电机组虚拟惯量控制对系统小干扰稳定性的影响";马静等;《电力系统自动化》;20160825;第40卷(第16期);1-7 *

Also Published As

Publication number Publication date
CN109193752A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109193752B (zh) 含虚拟惯量双馈风机并网系统低频振荡控制参数优化方法
CN109217362B (zh) 一种双馈风机并网系统低频振荡扰动源定位系统及方法
Zhu et al. Virtual inertia control of DFIG-based wind turbines for dynamic grid frequency support
CN106786673B (zh) 双馈风机串补输电系统次同步谐振的抑制方法及装置
Errami et al. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG
CN109630354B (zh) 惯性控制下基于转换器控制的风机和同步机协同调频方法及系统
Zhang et al. A novel method for obtaining virtual inertial response of DFIG‐based wind turbines
CN109286200B (zh) 一种变速恒频风电机组的控制方法及其控制系统
CN112436558B (zh) 双馈风机虚拟同步励磁磁场控制方法及系统
CN112993991A (zh) 一种风机双通道阻尼控制低频振荡广域阻尼控制方法
CN110417047B (zh) 基于复转矩系数分析双馈风机ssci阻尼特性的方法
Wang et al. Stability of DC-link voltage control for paralleled DFIG-based wind turbines connected to weak AC grids
Mousavi et al. Observer-Based High-Order Sliding Mode Control of DFIG-Based Wind Energy Conversion Systems Subjected to Sensor Faults
CN112886611B (zh) 一种直驱风机并网系统的次同步振荡抑制方法
Zhang et al. Virtual inertia adaptive control strategy for DFIG wind turbines based on exponential function
CN113783183A (zh) 弱电网下双馈风机在故障穿越期间的暂态稳定性评估方法
CN113872190A (zh) 一种提高小信号系统计算效率的降维方法
Minka et al. Power Control of a DFIG Driving by Wind Turbine: Comparison Study Between ADRC and PI Controller
Oualah et al. Super-twisting sliding mode control for brushless doubly fed reluctance generator based on wind energy conversion system
Zhang et al. Research of coordination control system between nonlinear robust excitation control and governor power system stabilizer in multi-machine power system
Xie et al. Virtual inertia adaptive control strategy for DFIG wind turbines based on the improved Bang-Bang control
Chang et al. Overall control strategy for voltage-controlled PMSG-based wind turbines with frequency support
Debre et al. Analysis of DFIG based Wind Energy System with Grid Integration under normal and abnormal conditions
Marques Analysis of a dq stator flux stabilization method for the doubly-fed induction generator
Melhem et al. Frequency support and stability analysis for an integrated power system with wind farms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant