CN109179376A - 乳胶海绵制备多孔碳纳米材料的方法 - Google Patents

乳胶海绵制备多孔碳纳米材料的方法 Download PDF

Info

Publication number
CN109179376A
CN109179376A CN201810990643.3A CN201810990643A CN109179376A CN 109179376 A CN109179376 A CN 109179376A CN 201810990643 A CN201810990643 A CN 201810990643A CN 109179376 A CN109179376 A CN 109179376A
Authority
CN
China
Prior art keywords
latex foam
porous carbon
carbon nanomaterial
ethyl alcohol
koh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810990643.3A
Other languages
English (en)
Inventor
张旺
柴华
孔玉玉
刁国旺
朴元哲
韩景
余自洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201810990643.3A priority Critical patent/CN109179376A/zh
Publication of CN109179376A publication Critical patent/CN109179376A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种乳胶海绵制备多孔碳纳米材料的方法。所述方法按乳胶海绵、KOH与乙醇的质量比为1:1:1~2:1:2,将乳胶海绵粉末和KOH加入乙醇中,均匀混合后,100~150℃下加热除去乙醇,然后在惰性气体的保护下,将乳胶海绵进行分段煅烧,产物用盐酸洗涤去除杂质,再水和乙醇洗至中性,得到多孔碳纳米材料。本发明以丰富易得的乳胶海绵为原料,降低成本,不仅实现了乳胶海绵废料的回收利用,而且降低了废料对环境的污染,制备的多孔碳纳米材料比表面积高,其作电极材料组装的超级电容器具有较高的比电容,在1mol.L‑1H2SO4中比电容达460F.g‑1

Description

乳胶海绵制备多孔碳纳米材料的方法
技术领域
本发明属于能源材料制备技术领域,涉及一种乳胶海绵制备多孔碳纳米材料的方法。
背景技术
乳胶海绵是一种以天然橡胶为主要原料的具有多泡孔结构的海绵制品,具有高弹性,高透气性、绿色环保等特点,广泛应用于座椅、沙发、床垫等家居产品和体育器材。目前乳胶海绵的处理方法都比较粗糙,大多是将其作为填充物处理。如果将海绵废料制备成具有良好电化学性能的多孔碳材料并应用于超级电容器以及锂离子电池中,将会使乳胶海绵废料的价值得到最大化开发利用。
目前多采用生物质材料制备多孔碳纳米材料,例如:Ping Cheng等人将香菇分别用H3PO4以及KOH活化来制备多孔碳纳米材料,该材料在水系以及有机电解质分别表现出优异的电化学性能,分别为306F.g-1和149F.g-1(Cheng Ping,et al.Hierarchically porouscarbon by activation of shiitake mushroom for capacitive en ergystorage.Carbon 93(2015):315-324.);Yuhe Cao等人将玉米秸秆芯用KOH活化之后在管式炉中煅烧制备的多孔碳纳米材料在6mol.L-1的KOH中具有323F.g-1的比电容(Cao,Yuhe,etal."Hierarchical porous activated carbon for supercapacitor derived from cornstalk core by potassium hydroxide activation."Electrochimica Acta 212(2016):839-847.);Lijing Xie等人将柳絮用KOH活化后高温煅烧制备多孔碳纳米材料,制备的多孔碳纳米材料在6mol.L-1的KOH中具有优异的电化学性能为292F.g-1(Xie Lijing,et al."Hierarchical Porous Carbon Microtubes Derived from Willow Catkins forSupercapacitor Application."Journal of Materials Chemistry A 4.5(2015):1637-1646.)。
发明内容
针对乳胶海绵废料回收再利用技术中的不足,本发明提供一种乳胶海绵制备多孔碳纳米材料的方法。该方法利用乳胶海绵废料制备具有高比表面积和较高比电容的多孔碳纳米材料。
本发明的技术方案如下:
乳胶海绵制备多孔碳纳米材料的方法,具体步骤如下:
按乳胶海绵、KOH与乙醇的质量比为1:1:1~2:1:2,将乳胶海绵粉末和KOH加入乙醇中,均匀混合后,100~150℃下加热除去乙醇,然后在惰性气体的保护下,将乳胶海绵进行分段煅烧,第一段煅烧温度为300~500℃,煅烧保温时间为1~3h,第二段煅烧温度为600~900℃,煅烧保温时间为1~3h,煅烧结束后,自然冷却,产物用盐酸洗涤去除杂质,再水和乙醇洗至中性,烘干,得到多孔碳纳米材料。
优选地,所述的乙醇浓度为95%。
优选地,所述的盐酸浓度为10~50%。通过盐酸洗涤去除材料中的杂质。不同浓度的盐酸腐蚀性不同,选择该浓度既可以去除杂质又不破坏制备出材料的性能,从而制备出最佳形貌以及最佳电化学性能的复合材料。
优选地,所述的惰性气体为氮气或氩气,惰性气体保护下能够防止材料制备过程中的氧化,并降低生产成本。
优选地,所述的分段煅烧过程中,升温速率为3~10℃/min。
与现有技术相比,本发明具有以下优点:
(1)以丰富易得的乳胶海绵为原料,降低成本,不仅实现了乳胶海绵废料的回收利用,而且降低了废料对环境的污染;
(2)本发明通过控制乳胶海绵、KOH与乙醇的质量比,以及水和乙醇的去除方式,使KOH与乳胶海绵充分混合,制备具有良好的多孔性和电容性能的多孔碳材料,比电容达460F.g-1,在超级电容器领域具有重要的实用价值和良好的应用前景。
附图说明
图1为实施例1制得的多孔碳纳米材料的扫描电镜图。
图2为实施例1制得的多孔碳纳米材料的循环伏安曲线。
图3为实施例1制得的多孔碳纳米材料的充放电曲线图。
图4为实施例2制得的多孔碳纳米材料的扫描电镜图。
图5为实施例2制得的多孔碳纳米材料的循环伏安曲线。
图6为实施例2制得的多孔碳纳米材料的充放电曲线图。
图7为对比例1制得的多孔碳纳米材料的扫描电镜图。
图8为对比例1制得的多孔碳纳米材料的循环伏安曲线。
图9为对比例1制得的多孔碳纳米材料的充放电曲线图。
图10为对比例2制得的多孔碳纳米材料的扫描电镜图。
图11为对比例2制得的多孔碳纳米材料的循环伏安曲线。
图12为对比例2制得的多孔碳纳米材料的充放电曲线图。
图13为对比例3制得的多孔碳纳米材料的扫描电镜图。
图14为对比例3制得的多孔碳纳米材料的循环伏安曲线。
图15为对比例3制得的多孔碳纳米材料的充放电曲线图。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
实施例1
将1g乳胶海绵粉末和1g KOH加入1g95%乙醇中,超声混合均匀后,将混合溶液在油浴中以110℃加热,去除水和乙醇,然后在氮气保护下置于管式炉中煅烧,先在300℃煅烧2.0h,再在900℃煅烧0.5h,升温速率为5℃/min;将制得的产物用1mol/L的HCl洗涤去除杂质,用水和乙醇多次离心洗涤,在60℃烘箱中干燥,得到多孔碳纳米材料。
图1为实施例1制得的多孔碳纳米材料的扫描电镜图,从图中可以看出多孔碳纳米片为薄片状多孔结构。图2为实施例1制得的多孔碳纳米材料的循环伏安曲线。图3为实施例1制得的多孔碳纳米材料的充放电曲线图。从曲线可知,多孔碳纳米材料的比电容为460F/g,具有较高的比电容量。
实施例2
将2g乳胶海绵粉末和1g KOH加入2g95%乙醇中,超声混合均匀后,将混合溶液在油浴中以110℃加热,去除水和乙醇,然后在氮气保护下置于管式炉中煅烧,先在300℃煅烧2.0h,再在900℃煅烧0.5h,升温速率为5℃/min;将制得的产物用1mol/L的HCl洗涤去除杂质,用水和乙醇多次离心洗涤,在60℃烘箱中干燥,得到多孔碳纳米材料。
图4为实施例2制得的多孔碳纳米材料的扫描电镜图。图5为实施例2制得的多孔碳纳米材料的循环伏安曲线。图6为实施例2制得的多孔碳纳米材料的充放电曲线图。从曲线中可知所制备材料的比电容为418F/g,具有高的比电容量。
对比例1
本对比例与实施例1基本相同,唯一不同的是不加入KOH,即乳胶海绵、KOH与乙醇水溶液的质量比为1:0:1。
图7为对比例1制得的多孔碳纳米材料的扫描电镜图,从图中可以看出纳米颗粒结构。图8为对比例1制得的多孔碳纳米材料的循环伏安曲线。图9为对比例1制得的多孔碳纳米材料的充放电曲线图。从曲线中可知所制备材料的比电容为32F/g,比电容量较低。
对比例2
本对比例与实施例1基本相同,唯一不同的是乳胶海绵、KOH与乙醇水溶液的质量比为3:1:1。
图10为对比例2制得的多孔碳纳米材料的扫描电镜图。图11为对比例2制得的多孔碳纳米材料的循环伏安曲线。图12为对比例2制得的多孔碳纳米材料的充放电曲线图。从曲线中可知所制备材料的比电容为130F/g。
对比例3
本对比例与实施例1基本相同,唯一不同的是乳胶海绵、KOH与乙醇水溶液混合后,采用冷冻干燥的方式除去水和乙醇。
图13为对比例3制得的多孔碳纳米材料的扫描电镜图。图14为对比例3制得的多孔碳纳米材料的循环伏安曲线。图15为对比例3制得的多孔碳纳米材料的充放电曲线图。从曲线中可知所制备材料的比电容为141F/g,具有较高的比电容量。

Claims (5)

1.乳胶海绵制备多孔碳纳米材料的方法,其特征在于,具体步骤如下:
按乳胶海绵、KOH与乙醇的质量比为1:1:1~2:1:2,将乳胶海绵粉末和KOH加入乙醇中,均匀混合后,100~150℃下加热除去乙醇,然后在惰性气体的保护下,将乳胶海绵进行分段煅烧,第一段煅烧温度为300~500℃,煅烧保温时间为1~3h,第二段煅烧温度为600~900℃,煅烧保温时间为1~3h,煅烧结束后,自然冷却,产物用盐酸洗涤去除杂质,再水和乙醇洗至中性,烘干,得到多孔碳纳米材料。
2.根据权利要求1所述的方法,其特征在于,所述的乙醇浓度为95%。
3.根据权利要求1所述的方法,其特征在于,所述的盐酸浓度为10~50%。
4.根据权利要求1所述的方法,其特征在于,所述的惰性气体为氮气或氩气。
5.根据权利要求1所述的方法,其特征在于,所述的分段煅烧过程中,升温速率为3~10℃/min。
CN201810990643.3A 2018-08-28 2018-08-28 乳胶海绵制备多孔碳纳米材料的方法 Pending CN109179376A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810990643.3A CN109179376A (zh) 2018-08-28 2018-08-28 乳胶海绵制备多孔碳纳米材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810990643.3A CN109179376A (zh) 2018-08-28 2018-08-28 乳胶海绵制备多孔碳纳米材料的方法

Publications (1)

Publication Number Publication Date
CN109179376A true CN109179376A (zh) 2019-01-11

Family

ID=64916679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810990643.3A Pending CN109179376A (zh) 2018-08-28 2018-08-28 乳胶海绵制备多孔碳纳米材料的方法

Country Status (1)

Country Link
CN (1) CN109179376A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044822A (zh) * 2021-02-07 2021-06-29 桂林理工大学 利用废弃海绵空间限域原位制备高导电性磷酸铁的方法
CN113299483A (zh) * 2020-02-21 2021-08-24 西交利物浦大学 超级电容器、超级电容器电极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101700885A (zh) * 2009-11-04 2010-05-05 大连理工大学 一种高比表面积活性炭的制备方法
CN102509629A (zh) * 2011-09-29 2012-06-20 中山大学 一种高比表面积层次孔炭材料及其制备方法和应用
CN102583372A (zh) * 2012-01-13 2012-07-18 沈阳化工大学 以酚醛泡沫废料为原料制备高比表面积无灰活性炭的方法
CN102910627A (zh) * 2012-10-29 2013-02-06 陕西联盟物流有限公司 一种利用石油流化焦制备活性炭的制备方法
CN106115697A (zh) * 2016-06-27 2016-11-16 西安交通大学 一种表面富含花瓣状石墨烯的活性炭的制备方法
CN106450323A (zh) * 2016-11-29 2017-02-22 陕西科技大学 一种骨架多孔碳电极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101700885A (zh) * 2009-11-04 2010-05-05 大连理工大学 一种高比表面积活性炭的制备方法
CN102509629A (zh) * 2011-09-29 2012-06-20 中山大学 一种高比表面积层次孔炭材料及其制备方法和应用
CN102583372A (zh) * 2012-01-13 2012-07-18 沈阳化工大学 以酚醛泡沫废料为原料制备高比表面积无灰活性炭的方法
CN102910627A (zh) * 2012-10-29 2013-02-06 陕西联盟物流有限公司 一种利用石油流化焦制备活性炭的制备方法
CN106115697A (zh) * 2016-06-27 2016-11-16 西安交通大学 一种表面富含花瓣状石墨烯的活性炭的制备方法
CN106450323A (zh) * 2016-11-29 2017-02-22 陕西科技大学 一种骨架多孔碳电极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUI ZHANG 等: "Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for highperformance supercapacitors", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
YI FENG等: "Design of Melamine Sponge-Based Three-Dimensional Porous", 《I&E CHEMISTRY RESEARCH》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299483A (zh) * 2020-02-21 2021-08-24 西交利物浦大学 超级电容器、超级电容器电极材料及其制备方法
CN113044822A (zh) * 2021-02-07 2021-06-29 桂林理工大学 利用废弃海绵空间限域原位制备高导电性磷酸铁的方法

Similar Documents

Publication Publication Date Title
CN109516458A (zh) 一种生物质基分级多孔碳及其制备方法
CN105905908A (zh) 一种基于埃洛石原料制备纳米硅的方法
CN105314622A (zh) 熔融盐辅助碳化生物质制备杂原子掺杂多孔碳材料的方法
Li et al. Porous biochar generated from natural Amorphophallus konjac for high performance supercapacitors
CN109304187B (zh) 一种中空纳米复合材料、制备方法及其应用
CN104528720A (zh) 一种多级孔炭材料的制备方法及产品
CN112467067B (zh) 提纯光伏硅泥制备的三维多孔硅碳材料及制备方法
CN108054020B (zh) 一种氮掺杂碳颗粒/石墨化碳氮复合材料的制备方法及应用
CN106449156A (zh) 一种用于电容器电极的多孔氮掺杂石墨烯材料的制备方法
CN103290426B (zh) 一种钛酸锂的制备方法
CN109110756A (zh) 一种均质玉米芯衍生炭电极材料及其制备方法
CN106784654A (zh) 一种石墨烯包覆钴酸锂材料的制备方法
CN106892417B (zh) 一种魔芋粉基多孔炭材料的制备方法及应用
CN110002550B (zh) 双离子脱盐电极及其制备方法
CN107579249A (zh) 一种中药渣制备硬碳负极材料及其制备方法
CN109179376A (zh) 乳胶海绵制备多孔碳纳米材料的方法
CN111905767B (zh) 一种纳米绒球状硫化钼/木质基碳多孔电极材料及其制备方法和应用
CN103887481A (zh) 一种异质结纳米结构材料制备方法
CN109346688A (zh) 一种蛋黄-壳结构负极材料及其制备方法和锂离子电池
CN108948368B (zh) 一种快速制备镍基金属有机框架材料的方法
CN108545712A (zh) 一种用盐模板碳化zif-8合成多级孔碳材料的方法
CN104752071A (zh) 一种四氧化三钴、钼酸钴核壳异质结构纳米线阵列、制备方法及其应用
CN108630453A (zh) 一步法制备类石墨烯碳纳米片材料的方法及其用途
CN106315568A (zh) 一种石墨烯的制备方法及石墨烯
CN105692585B (zh) 一种含石墨烯结构的碳纳米材料及其制法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190111

RJ01 Rejection of invention patent application after publication