CN109175380B - 一种抗磨损高熵合金齿轮的激光增材制造方法 - Google Patents

一种抗磨损高熵合金齿轮的激光增材制造方法 Download PDF

Info

Publication number
CN109175380B
CN109175380B CN201811149430.4A CN201811149430A CN109175380B CN 109175380 B CN109175380 B CN 109175380B CN 201811149430 A CN201811149430 A CN 201811149430A CN 109175380 B CN109175380 B CN 109175380B
Authority
CN
China
Prior art keywords
entropy alloy
mandrel
nano
gear
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811149430.4A
Other languages
English (en)
Other versions
CN109175380A (zh
Inventor
李文欣
韩杰胜
凌文凯
孟军虎
张爱军
董碧婷
麻维刚
孙国琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gansu Bo Li Jiang 3d Printing Technology Co ltd
Gansu Shunyu New Material Technology Co ltd
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Gansu Bo Li Jiang 3d Printing Technology Co ltd
Gansu Shunyu New Material Technology Co ltd
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gansu Bo Li Jiang 3d Printing Technology Co ltd, Gansu Shunyu New Material Technology Co ltd, Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Gansu Bo Li Jiang 3d Printing Technology Co ltd
Priority to CN201811149430.4A priority Critical patent/CN109175380B/zh
Publication of CN109175380A publication Critical patent/CN109175380A/zh
Application granted granted Critical
Publication of CN109175380B publication Critical patent/CN109175380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种抗磨损高熵合金齿轮的激光增材制造方法,包括以下步骤:将中碳钢圆钢外表面进行车削加工作为激光增材制造芯轴,并对芯轴的外表面进行喷砂处理;对芯轴进行预热,并采用激光熔覆工艺将纳米氧化铝增强的高熵合金粉末逐层熔覆在芯轴上至所需尺寸;将激光熔覆后的芯轴棒材进行热处理;机械加工出所需尺寸的齿轮。本发明将纳米氧化铝增强的高熵合金粉末通过激光熔覆工艺在芯轴上多层熔覆,并进行机械加工获得齿轮本体材质为中碳钢,齿部材质为高熵合金的齿轮,由此实现了抗磨损高熵合金齿轮的高效率、低成本制造。本发明将常用中碳钢和新型高熵合金有机结合起来,节约了成本,且齿部具有良好的强度、韧性、抗磨损和抗疲劳的特性。

Description

一种抗磨损高熵合金齿轮的激光增材制造方法
技术领域
本发明属于齿轮制造技术领域,具体涉及一种抗磨损高熵合金齿轮的激光增材制造方法。
背景技术
高熵合金是近些年来发展起来的一类新型多主元合金,由于具有良好的力学性能、抗氧化性能、抗磨损性能、耐腐蚀性能和高温热稳定性而成为一种极具发展潜力的新型合金。制备块体高熵合金最常用的方法是电弧熔炼,该方法具有所需控制工艺参数少,合金冷却速度快等特点。然而,熔炼法制备的高熵合金组织中存在缩松、缩孔和裂纹,并且难以避免成分偏析和组织粗大等冶金缺陷,因此现有生产高熵合金齿轮的成品率较低,且成本较高。
发明内容
本发明的目的是为了解决现有技术中存在的技术问题,提供一种成品率高、成本较低、齿部具有良好强度和韧性的抗磨损高熵合金齿轮的激光增材制造方法。
为了达到上述目的,本发明采用以下技术方案:一种抗磨损高熵合金齿轮的激光增材制造方法,齿轮本体为中碳钢材质,齿部为纳米氧化铝增强的高熵合金,其制造方法包括以下步骤:
A、将中碳钢圆钢外表面进行车削加工作为激光增材制造芯轴,并对芯轴的外表面进行喷砂处理;
B、对芯轴进行预热,并采用激光熔覆工艺将纳米氧化铝增强的高熵合金粉末逐层熔覆在芯轴上至所需尺寸;
C、将激光熔覆后的芯轴棒材进行热处理;
D、机械加工出所需尺寸的齿轮。
进一步地,所述步骤A中中碳钢圆钢车削后外圆表面粗糙度Ra为12μm-65μm;喷砂清理等级为Sa3级;喷砂后表面粗糙度Ra为40μm-70μm。
进一步地,所述步骤B中纳米氧化铝增强的高熵合金粉末化学组成为:AlCoCrFeNiTi0.5/(Al2O3)x,用纯金属粉末和纳米氧化铝按原子百分比配比并球磨混合而成,其中铝、钴、铬、铁和镍为等摩尔比,钛的摩尔含量为其他金属摩尔含量的一半,纳米氧化铝的摩尔含量X取值范围为0.05-0.2,即纳米氧化铝摩尔含量为铝含量的0.05倍至0.2倍;各金属粉末粒度为40μm-120μm,纯度大于99.5%;纳米氧化铝粉末粒度为50nm -150nm,纯度大于99.9%。
进一步地,所述步骤B中激光熔覆时送粉量范围为5g/min-12g/min;功率范围为:1200W-4000W;扫描速度2mm/s-10mm/s;搭接率为30%-50%;单层熔覆厚度为0.5mm-2mm;保护性气氛为氩气。
进一步地,所述步骤C中热处理工艺为正火处理,加热温度为中碳钢奥氏体化的临界温度+(30-50)℃;保温时间2h-4h;冷却方式为空冷。
本发明相对现有技术具有以下有益效果:本发明抗磨损高熵合金齿轮的激光增材制造方法将具有良好强韧性、抗磨损性能和耐腐蚀性能的纳米氧化铝增强的高熵合金粉末通过激光熔覆工艺在芯轴上多层熔覆,实现了抗磨损高熵合金齿轮基体的激光增材制造,并进行机械加工获得齿轮本体材质为中碳钢,齿部材质为高熵合金的齿轮,由此实现了抗磨损高熵合金齿轮的高效率、低成本制造。本发明将常用中碳钢和新型高熵合金有机结合起来,且采用激光熔覆增材制造方法降低了高熵合金的用量,节约了成本,实现了高熵合金齿轮的低成本制造,且齿部具有良好的强度、韧性、抗磨损和抗疲劳的特性。
附图说明
图1为本发明制造的抗磨损高熵合金齿轮齿部的显微组织SEM像。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
A、将中碳钢圆钢外表面进行车削加工作为激光增材制造芯轴,中碳钢圆钢车削后外圆表面粗糙度Ra为12μm,并对芯轴的外表面进行喷砂处理,喷砂清理等级为Sa3级,喷砂后表面粗糙度Ra为40μm。
B、对芯轴进行预热,并采用激光熔覆工艺将纳米氧化铝增强的高熵合金粉末逐层熔覆在芯轴上至所需尺寸,纳米氧化铝增强的高熵合金粉末化学组成为:AlCoCrFeNiTi0.5/(Al2O3)x,用纯金属粉末和纳米氧化铝按原子百分比配比并球磨混合而成,其中铝、钴、铬、铁和镍为等摩尔比,钛的摩尔含量为其他金属摩尔含量的一半,纳米氧化铝的摩尔含量X取值为0.05,即纳米氧化铝摩尔含量为铝含量的0.05倍;各金属粉末粒度为40μm,纯度大于99.5%;纳米氧化铝粉末粒度为50nm,纯度大于99.9%;激光熔覆时送粉量为5g/min,功率为:1200W,扫描速度2mm/s,搭接率为30%,单层熔覆厚度为0.5mm,保护性气氛为氩气。
C、将激光熔覆后的芯轴棒材进行热处理,热处理工艺为正火处理,加热温度为中碳钢奥氏体化的临界温度+30℃;保温时间2h;冷却方式为空冷。
D、利用通用加工齿轮的方法机械加工出所需尺寸的齿轮,齿轮本体为中碳钢材质,齿部为纳米氧化铝增强的高熵合金。
通过该实施例加工的齿部(纳米氧化铝增强的高熵合金)基本性能指标为:密度为7.1 g/cm3、硬度为520HV、屈服强度为1320MPa、抗压强度为3228MPa、压缩断裂应变为29.1%、断裂韧性为25.2MPa·m1/2以及磨损率为3.5×10-14m3/(Nm)。
实施例2
A、将中碳钢圆钢外表面进行车削加工作为激光增材制造芯轴,中碳钢圆钢车削后外圆表面粗糙度Ra为65μm,并对芯轴的外表面进行喷砂处理,喷砂清理等级为Sa3级,喷砂后表面粗糙度Ra为70μm。
B、对芯轴进行预热,并采用激光熔覆工艺将纳米氧化铝增强的高熵合金粉末逐层熔覆在芯轴上至所需尺寸,纳米氧化铝增强的高熵合金粉末化学组成为:AlCoCrFeNiTi0.5/(Al2O3)x,用纯金属粉末和纳米氧化铝按原子百分比配比并球磨混合而成,其中铝、钴、铬、铁和镍为等摩尔比,钛的摩尔含量为其他金属摩尔含量的一半,纳米氧化铝的摩尔含量X取值为0.2,即纳米氧化铝摩尔含量为铝含量的0.2倍;各金属粉末粒度为120μm,纯度大于99.5%;纳米氧化铝粉末粒度为150nm,纯度大于99.9%;激光熔覆时送粉量为12g/min,功率为: 4000W,扫描速度10mm/s,搭接率为50%,单层熔覆厚度为2mm,保护性气氛为氩气。
C、将激光熔覆后的芯轴棒材进行热处理,热处理工艺为正火处理,加热温度为中碳钢奥氏体化的临界温度+50℃;保温时间4h;冷却方式为空冷。
D、利用通用加工齿轮的方法机械加工出所需尺寸的齿轮,齿轮本体为中碳钢材质,齿部为纳米氧化铝增强的高熵合金。
通过该实施例加工的齿部(纳米氧化铝增强的高熵合金)基本性能指标为:密度为6.9 g/cm3、硬度为648HV、屈服强度为1460MPa、抗压强度为3070MPa、压缩断裂应变为21.5%、断裂韧性为19.4MPa·m1/2以及磨损率为8.1×10-14m3/(Nm)。
实施例3
A、将中碳钢圆钢外表面进行车削加工作为激光增材制造芯轴,中碳钢圆钢车削后外圆表面粗糙度Ra为40μm,并对芯轴的外表面进行喷砂处理,喷砂清理等级为Sa3级,喷砂后表面粗糙度Ra为55μm。
B、对芯轴进行预热,并采用激光熔覆工艺将纳米氧化铝增强的高熵合金粉末逐层熔覆在芯轴上至所需尺寸,纳米氧化铝增强的高熵合金粉末化学组成为:AlCoCrFeNiTi0.5/(Al2O3)x,用纯金属粉末和纳米氧化铝按原子百分比配比并球磨混合而成,其中铝、钴、铬、铁和镍为等摩尔比,钛的摩尔含量为其他金属摩尔含量的一半,纳米氧化铝的摩尔含量X取值为0.12,即纳米氧化铝摩尔含量为铝含量的0.12倍;各金属粉末粒度为80μm,纯度大于99.5%;纳米氧化铝粉末粒度为100nm,纯度大于99.9%;激光熔覆时送粉量为8g/min,功率为:2600W,扫描速度6mm/s,搭接率为40%,单层熔覆厚度为1.2mm,保护性气氛为氩气。
C、将激光熔覆后的芯轴棒材进行热处理,热处理工艺为正火处理,加热温度为中碳钢奥氏体化的临界温度+40℃;保温时间3h;冷却方式为空冷。
D、利用通用加工齿轮的方法机械加工出所需尺寸的齿轮,齿轮本体为中碳钢材质,齿部为纳米氧化铝增强的高熵合金。
通过该实施例加工的齿部(纳米氧化铝增强的高熵合金)基本性能指标为:密度为7.0 g/cm3、硬度为562HV、屈服强度为1380MPa、抗压强度为3205MPa、压缩断裂应变为25.5%、断裂韧性为23.9MPa·m1/2以及磨损率为5.2×10-14m3/(Nm)。

Claims (4)

1.一种抗磨损高熵合金齿轮的激光增材制造方法,其特征在于:齿轮本体为中碳钢材质,齿部为纳米氧化铝增强的高熵合金,其制造方法包括以下步骤:
A、将中碳钢圆钢外表面进行车削加工作为激光增材制造芯轴,并对芯轴的外表面进行喷砂处理;
B、对芯轴进行预热,并采用激光熔覆工艺将纳米氧化铝增强的高熵合金粉末逐层熔覆在芯轴上至所需尺寸;其中纳米氧化铝增强的高熵合金粉末化学组成为:AlCoCrFeNiTi0.5/(Al2O3)x,用纯金属粉末和纳米氧化铝按原子百分比配比并球磨混合而成,其中铝、钴、铬、铁和镍为等摩尔比,钛的摩尔含量为其他金属摩尔含量的一半,纳米氧化铝的摩尔含量X取值范围为0.05-0.2,即纳米氧化铝摩尔含量为铝含量的0.05倍至0.2倍;各金属粉末粒度为40μm-120μm,纯度大于99.5%;纳米氧化铝粉末粒度为50nm -150nm,纯度大于99.9%;
C、将激光熔覆后的芯轴棒材进行热处理;
D、机械加工出所需尺寸的齿轮。
2.根据权利要求1所述的一种抗磨损高熵合金齿轮的激光增材制造方法,其特征在于:所述步骤A中中碳钢圆钢车削后外圆表面粗糙度Ra为12μm-65μm;喷砂清理等级为Sa3级;喷砂后表面粗糙度Ra为40μm-70μm。
3.根据权利要求1所述的一种抗磨损高熵合金齿轮的激光增材制造方法,其特征在于:所述步骤B中激光熔覆时送粉量范围为5g/min-12g/min;功率范围为:1200W-4000W;扫描速度2mm/s-10mm/s;搭接率为30%-50%;单层熔覆厚度为0.5mm-2mm;保护性气氛为氩气。
4.根据权利要求1所述的一种抗磨损高熵合金齿轮的激光增材制造方法,其特征在于:所述步骤C中热处理工艺为正火处理,加热温度为中碳钢奥氏体化的临界温度+(30-50)℃;保温时间2h-4h;冷却方式为空冷。
CN201811149430.4A 2018-09-29 2018-09-29 一种抗磨损高熵合金齿轮的激光增材制造方法 Active CN109175380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811149430.4A CN109175380B (zh) 2018-09-29 2018-09-29 一种抗磨损高熵合金齿轮的激光增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811149430.4A CN109175380B (zh) 2018-09-29 2018-09-29 一种抗磨损高熵合金齿轮的激光增材制造方法

Publications (2)

Publication Number Publication Date
CN109175380A CN109175380A (zh) 2019-01-11
CN109175380B true CN109175380B (zh) 2020-12-15

Family

ID=64906987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811149430.4A Active CN109175380B (zh) 2018-09-29 2018-09-29 一种抗磨损高熵合金齿轮的激光增材制造方法

Country Status (1)

Country Link
CN (1) CN109175380B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094048B1 (fr) * 2019-03-18 2021-04-23 Skf Aerospace France Elément de liaison, et procédé de fabrication d’une bague pour un tel élément de liaison
CN111705252A (zh) * 2020-06-18 2020-09-25 西北工业大学 一种Al2O3纳米颗粒增强CrCoNi中熵合金基复合材料及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032120B (zh) * 2011-09-29 2015-08-26 北京有色金属研究总院 一种粉末冶金复合凸轮片
CN103911578B (zh) * 2014-04-03 2016-04-06 北京工业大学 一种高硬度bcc高熵合金涂层的制备方法
DE102015005133A1 (de) * 2015-04-22 2016-10-27 Daimler Ag Verfahren zum Herstellen eines Bauteils, insbesondere eines Zahnrads
CN104841930B (zh) * 2015-06-05 2017-03-01 哈尔滨工程大学 用于3d打印的高熵合金粉末及应用其制备高熵合金涂层的方法
CN105648297B (zh) * 2016-01-18 2018-12-28 南京工程学院 一种外加纳米陶瓷相增强韧化高熵合金复合材料制备方法
CN107299342A (zh) * 2017-07-05 2017-10-27 暨南大学 一种高熵合金涂层及其制备方法和用途
CN107971490A (zh) * 2017-11-10 2018-05-01 南京航空航天大学 一种表面高熵合金梯度冶金层的增材制备方法
CN107900335A (zh) * 2017-11-21 2018-04-13 大连交通大学 一种高熵合金的激光3d打印方法
CN108127122A (zh) * 2017-12-04 2018-06-08 西安交通大学 一种复合结构增强的双材质粉末冶金锻造零部件及其制备方法
CN108399307A (zh) * 2018-03-14 2018-08-14 大连交通大学 一种激光3d打印有限元模拟方法

Also Published As

Publication number Publication date
CN109175380A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN104174845B (zh) 一种选区激光熔化成型制备钛合金零件的方法
CN109940163B (zh) 一种强化3d打印金属零部件表面耐磨性能的后处理方法
CN101988195B (zh) 一种耐磨耐高温氧化NiCr-Cr3C2金属陶瓷涂层的制备方法
CN111763902B (zh) 一种粉芯丝材及其制备方法、防腐耐磨复合涂层及其制备方法
CN113122841B (zh) 一种具有梯度组合结构的耐蚀耐磨涂层及其制备方法
JP5371139B2 (ja) 摩擦攪拌加工用ツール
CN104480460A (zh) 一种钛合金表面激光熔覆原位自生制备耐磨自润滑涂层
CN101210325B (zh) 一种用于热锻模具的纳米复合耐磨涂层组合物及其应用
CN109175380B (zh) 一种抗磨损高熵合金齿轮的激光增材制造方法
CN110438487A (zh) 一种微纳米颗粒增强耐磨损耐腐蚀激光熔覆层及其制备方法
CN109252159B (zh) 一种碳化铌梯度复合涂层及其制备方法
CN113174525A (zh) 高熵合金粉及其制备与应用
CN104525315A (zh) 锤头及其制备方法
CN110204337B (zh) 一种航天陀螺仪轴承用碳化硼陶瓷材料的制备方法及其碳化硼陶瓷材料
CN109680276B (zh) 一种复相碳化物涂层/钛铌合金基复合材料及其制备方法
CN112795916A (zh) 轧辊阶梯垫的激光熔覆合金粉末及激光熔覆方法
CN110004372B (zh) 一种耐高温、抗氧化、耐磨冶金辊及其制备方法
CN103725858B (zh) 一种图案化均匀氧化铬薄膜的光化学原位制备方法
CN114752872A (zh) 一种碳纤维金属复合材料结构及其制备方法
CN109402626A (zh) 在重载冲压模具上制备超耐磨复合涂层的方法
CN104525861B (zh) 发动机凸轮及其制备方法
CN112251749A (zh) 一种利用等离子熔覆制备定向阵列的陶瓷相增强高熵合金耐磨涂层的方法
CN104525910A (zh) 耐磨管及其制备方法
CN114000012B (zh) 一种可磨耗自润滑铝基复合材料及其制备方法
CN105177566A (zh) 一种无心磨导板夹具及用其激光熔覆无心磨导板的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant