CN109174099A - 一种SiO2-金属复合空心球催化剂的制备方法 - Google Patents

一种SiO2-金属复合空心球催化剂的制备方法 Download PDF

Info

Publication number
CN109174099A
CN109174099A CN201811004626.4A CN201811004626A CN109174099A CN 109174099 A CN109174099 A CN 109174099A CN 201811004626 A CN201811004626 A CN 201811004626A CN 109174099 A CN109174099 A CN 109174099A
Authority
CN
China
Prior art keywords
sio
hollow ball
preparation
metal composite
composite hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811004626.4A
Other languages
English (en)
Inventor
赵文丽
孙姣
汤琴
吉庆敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201811004626.4A priority Critical patent/CN109174099A/zh
Publication of CN109174099A publication Critical patent/CN109174099A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种SiO2‑金属复合空心球催化剂的制备方法,简单可控,适用于制备高性价比的亚纳米级金属催化剂,提升了现有的制备技术,该结构中金属均匀地分布在SiO2球壳上而非传统地包裹在空心球内部,使得其具有较高的催化活性,而且无需使用表面活性剂等其他物质,避免了由表面改性剂带来的毒性风险,绿色环保。

Description

一种SiO2-金属复合空心球催化剂的制备方法
技术领域
本发明涉及一种SiO2-金属复合空心球催化剂的制备方法。
背景技术
金属纳米复合材料广泛地应用在催化、能源、环保等领域。而金属纳米复合材料中金属纳米颗粒可由几百到几十纳米,也可以控制在亚纳米级范围。负载型金属催化剂是一种典型的非均相催化剂,大多数负载型金属催化剂的金属颗粒尺寸为纳米尺度。研究表明,当金属颗粒尺寸减小到亚纳米尺度时,能够大大提高金属利用率。除此之外,由于具有特殊的几何结构和电子性质,亚纳米催化剂还体现出不同于通常纳米催化剂的优异催化性质。近年来,在催化领域亚纳米级催化剂的研发引起了科研人员的广大关注。为了合成亚纳米催化剂材料,研究人员做了大量的尝试。Qiao等人(Nature Chemistry,2011,3(8):634-641.)报道采用共沉淀方法制备的Pt/FeOx催化剂,该催化剂中Pt的负载量仅为0.17wt%;Liu等人(Science,2016,352(6287):797-801.)尝试采用光化学方法将金属负载量提高到1.5wt%;Corma等人(Nature Chemistry,2013,5(9):775-781.)研究的金纳米簇负载在碳纳米管上的金属负载率仅为0.015wt%;Yin等人(Angewandte Chemie,2016,128(36):10958-10963.)利用金属有机框架合成亚纳米级的钴基催化剂,其金属钴载量达到4wt%。Raul Arenal等人(Nature Communications,2018,9(1).)报道了一种新策略直接合成亚纳米级Pt基-MCM-22沸石复合催化剂,Pt的负载量为0.1wt%,甚至更低。
综上所述目前亚纳米级催化剂面临着两个主要的问题:金属载量较低和以贵金属研究为主。
因此,针对上述问题提出一种新的SiO2-金属复合空心球催化剂的制备方法。
发明内容
本发明的目的就在于为了解决上述问题而提供一种SiO2-金属复合空心球催化剂的制备方法。
本发明通过以下技术方案来实现上述目的,
一种SiO2-金属复合空心球催化剂的制备方法,包括以下步骤:
一、将SiO2纳米颗粒分散在去离子水中,超声至少10min后获得白色悬浊液;
二、向步骤一得到的白色悬浊液中加入金属盐,超声10min以上,得到中间溶液;
三、将步骤二得到的中间溶液移至反应釜中,将硼氢化钠加入步骤二得到的中间溶液中进行水热反应,得到第二中间溶液;
四、将步骤三得到的第二中间溶液离心水洗至中性后冷冻干燥,干燥后即得具有金属原子分散的SiO2中空球。
更进一步的,步骤一中SiO2纳米颗粒的直径为50nm-900nm。
更进一步的,步骤一中白色悬浊液中SiO2的浓度为10mg/ml-100mg/ml。
更进一步的,步骤二中金属盐为Fe盐。
更进一步的,步骤二中金属盐为硫酸盐、氯化盐、硝酸盐、醋酸盐、乙醇基盐或葡萄糖基盐。
更进一步的,步骤三的第二中间溶液中硼氢化钠的浓度为0.05g/ml-0.2g/ml。
更进一步的,步骤三中水热反应的温度为65℃-200℃,时间为0.5-48小时。
更进一步的,步骤二的中间溶液中金属盐的浓度为0.002mmol/ml-1mmol/ml。
有益效果:本发明的SiO2-金属复合空心球催化剂的制备方法简单可控,适用于制备高性价比的亚纳米级金属催化剂,提升了现有的制备技术,该结构中金属均匀地分布在SiO2球壳上而非传统地包裹在空心球内部,使得其具有较高的催化活性,而且无需使用表面活性剂等其他物质,避免了由表面改性剂带来的毒性风险,绿色环保。
附图说明
图1为实施例1所得的Fe-SiO2中空球的扫描电子显微图;
图2为实施例1所得的Fe-SiO2中空球的100nm下的透射电子显微图;
图3为实施例1所得的Fe-SiO2中空球的5nm下的透射电子显微图;
图4为实施例1所得的Fe-SiO2中空球的250nm下的透射电子显微图;
图5为实施例1所得的Fe-SiO2中空球的250nm下的透射电子显微图;
图6为实施例1所得的Fe-SiO2中空球的250nm下的透射电子显微图;
图7为实施例1所得的Fe-SiO2中空球的X射线能谱仪图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
步骤1:制备SiO2水溶液。具体包括如下步骤:称量150mg的SiO2实心球纳米颗粒,其尺寸为450nm左右,将其放入烧杯中,向烧杯中加入5mL的去离子水,将得到的溶液超声处理10分钟;
步骤2:制备Fe-SiO2NPs溶液。具体包括如下步骤:步骤1所制得的溶液中加入5mmol的三氯化铁(FeCl3),将该溶液超声处理10分钟;
步骤3:制备Fe-SiO2中空球前驱体。具体包括如下步骤:将步骤2中制备的Fe-SiO2NPs溶液移入20mL容量的聚四氟乙烯衬里的高压釜中,向其加入0.50gNaBH4,并在80℃下进行反应12小时;
步骤4:将得到的溶液离心水洗至中性后进行冷冻干燥。干燥后的样品为Fe-SiO2中空球。
实施例2
与实施例1类似,区别在于,将实施例1的步骤2中的FeCl3改为氯化亚铁(FeCl2),其他条件保持一致。
实施例3
与实施例1类似,区别在于,将实施例1的步骤2中的FeCl3改为醋酸铁(C4H7FeO5),其他条件保持一致。
实施例4
与实施例1类似,区别在于,将实施例1的步骤3的加热温度改为160℃,其他条件保持一致。
实施例5
与实施例1类似,区别在于,将实施例1的步骤3的加热时间改为1小时,其他条件保持一致。
实施1-5得到如图1、图2、图3、图4、图5和图6所示的Fe-SiO2中空球。
表一、实施例1所得的Fe-SiO2中空球的X射线能谱仪数据表
元素 线类型 wt% wt%Sigma 原子百分比 标准样品标签 厂家标准
O K线系 61.43 0.85 78.61 SiO2
Si K线系 19.99 0.60 14.58 SiO2
Fe K线系 18.58 0.69 6.81 Fe
总量: 100.00 100.00
图7为本发明实施例1所得的Fe-SiO2中空球的X射线能谱仪结果图。
本发明的优点与得到的效果如下:
1.制备工艺简单可控,绿色环保;
2.金属-SiO2催化剂的金属尺寸为亚纳米级,其载量高达18wt%;
3.该方法适用于制备高性价比的亚纳米级金属催化剂,提升了现有的制备技术;
4.该结构中金属均匀地分布在SiO2球壳上而非传统地包裹在空心球内部,使得其具有较高的催化活性;
5.无需使用表面活性剂等其他物质,避免了由表面改性剂带来的毒性风险。

Claims (8)

1.一种SiO2-金属复合空心球催化剂的制备方法,其特征在于,
包括以下步骤:
一、将SiO2纳米颗粒分散在去离子水中,超声至少10min后获得白色悬浊液;
二、向步骤一得到的白色悬浊液中加入金属盐,超声10min以上,得到中间溶液;
三、将步骤二得到的中间溶液移至反应釜中,将硼氢化钠加入步骤二得到的中间溶液中进行水热反应,得到第二中间溶液;
四、将步骤三得到的第二中间溶液离心水洗至中性后冷冻干燥,干燥后即得具有金属原子分散的SiO2中空球。
2.根据权利要求1所述的SiO2-金属复合空心球催化剂的制备方法,其特征在于:步骤一中SiO2纳米颗粒的直径为50nm-900nm。
3.根据权利要求1所述的SiO2-金属复合空心球催化剂的制备方法,其特征在于:步骤一中白色悬浊液中SiO2的浓度为10mg/ml-100mg/ml。
4.根据权利要求1所述的SiO2-金属复合空心球催化剂的制备方法,其特征在于:步骤二中金属盐为Fe盐。
5.根据权利要求1所述的SiO2-金属复合空心球催化剂的制备方法,其特征在于:步骤二中金属盐为硫酸盐、氯化盐、硝酸盐、醋酸盐、乙醇基盐或葡萄糖基盐。
6.根据权利要求1所述的SiO2-金属复合空心球催化剂的制备方法,其特征在于:步骤三的第二中间溶液中硼氢化钠的浓度为0.05g/ml-0.2g/ml。
7.根据权利要求1所述的SiO2-金属复合空心球催化剂的制备方法,其特征在于:步骤三中水热反应的温度为65℃-200℃,时间为0.5-48小时。
8.根据权利要求1所述的SiO2-金属复合空心球催化剂的制备方法,其特征在于:步骤二的中间溶液中金属盐的浓度为0.002mmol/ml-1mmol/ml。
CN201811004626.4A 2018-08-30 2018-08-30 一种SiO2-金属复合空心球催化剂的制备方法 Pending CN109174099A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811004626.4A CN109174099A (zh) 2018-08-30 2018-08-30 一种SiO2-金属复合空心球催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811004626.4A CN109174099A (zh) 2018-08-30 2018-08-30 一种SiO2-金属复合空心球催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN109174099A true CN109174099A (zh) 2019-01-11

Family

ID=64916828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811004626.4A Pending CN109174099A (zh) 2018-08-30 2018-08-30 一种SiO2-金属复合空心球催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN109174099A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111939909A (zh) * 2019-05-17 2020-11-17 南京理工大学 含铁基中空硅球催化剂及其制备方法和应用
CN112044392A (zh) * 2019-06-06 2020-12-08 南京理工大学 镁改性纳米二氧化硅中空球的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236816A (zh) * 2007-12-11 2008-08-06 中国科学院上海硅酸盐研究所 磁性内核介孔空心球的制备方法
CN101310851A (zh) * 2008-02-26 2008-11-26 浙江大学 一种制备金属氧化物空心纳米球的方法
CN102051177A (zh) * 2010-09-30 2011-05-11 济南大学 水溶性荧光磁性纳米微粒及其制备方法
CN102784654A (zh) * 2012-07-19 2012-11-21 上海师范大学 一种负载型中空纳米合金球催化剂及其制备方法和用途
CN104857959A (zh) * 2015-05-20 2015-08-26 南京理工大学 一种在中空有序介孔硅球基体中负载铁铜双金属的纳米复合材料及制备方法
KR20160115467A (ko) * 2015-03-27 2016-10-06 포항공과대학교 산학협력단 비귀금속 나노입자 제조용 속빈 나노 래틀 입자 및 이를 이용한 나노입자의 제조방법
CN107170584A (zh) * 2017-06-02 2017-09-15 扬州大学 复合核壳纳米空心球的制备方法及其在染料敏化太阳能电池中的应用
CN107456930A (zh) * 2016-06-03 2017-12-12 南京理工大学 一步法合成镶嵌Ag纳米颗粒的SiO2纳米囊及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236816A (zh) * 2007-12-11 2008-08-06 中国科学院上海硅酸盐研究所 磁性内核介孔空心球的制备方法
CN101310851A (zh) * 2008-02-26 2008-11-26 浙江大学 一种制备金属氧化物空心纳米球的方法
CN102051177A (zh) * 2010-09-30 2011-05-11 济南大学 水溶性荧光磁性纳米微粒及其制备方法
CN102784654A (zh) * 2012-07-19 2012-11-21 上海师范大学 一种负载型中空纳米合金球催化剂及其制备方法和用途
KR20160115467A (ko) * 2015-03-27 2016-10-06 포항공과대학교 산학협력단 비귀금속 나노입자 제조용 속빈 나노 래틀 입자 및 이를 이용한 나노입자의 제조방법
CN104857959A (zh) * 2015-05-20 2015-08-26 南京理工大学 一种在中空有序介孔硅球基体中负载铁铜双金属的纳米复合材料及制备方法
CN107456930A (zh) * 2016-06-03 2017-12-12 南京理工大学 一步法合成镶嵌Ag纳米颗粒的SiO2纳米囊及其制备方法
CN107170584A (zh) * 2017-06-02 2017-09-15 扬州大学 复合核壳纳米空心球的制备方法及其在染料敏化太阳能电池中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111939909A (zh) * 2019-05-17 2020-11-17 南京理工大学 含铁基中空硅球催化剂及其制备方法和应用
CN112044392A (zh) * 2019-06-06 2020-12-08 南京理工大学 镁改性纳米二氧化硅中空球的制备方法

Similar Documents

Publication Publication Date Title
Yang et al. Facile fabrication of Au/Fe3O4 nanocomposites as excellent nanocatalyst for ultrafast recyclable reduction of 4-nitropheol
Chairam et al. Starch-supported gold nanoparticles and their use in 4-nitrophenol reduction
Jaji et al. Advanced nickel nanoparticles technology: From synthesis to applications
Xia et al. Preparation of bimetallic nanoparticles using a facile green synthesis method and their application
Maham et al. Facile synthesis of Ag/ZrO2 nanocomposite as a recyclable catalyst for the treatment of environmental pollutants
Dong et al. Ag@ Fe 3 O 4@ cellulose nanocrystals nanocomposites: microwave-assisted hydrothermal synthesis, antimicrobial properties, and good adsorption of dye solution
Tomke et al. Facile fabrication of silver on magnetic nanocomposite (Fe3O4@ Chitosan–AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens
Castillo-López et al. Green synthesis of Au nanoparticles using potato extract: stability and growth mechanism
Zayed et al. Spectroscopic investigation of chitosan-supported Cu2O/CuO nanocomposite; a separable catalyst for water-pollutants degradation
Xie et al. Novel visible light-responsive graphene oxide/Bi2WO6/starch composite membrane for efficient degradation of ethylene
Nasrollahzadeh et al. Biosynthesis and characterization of Ag/MgO nanocomposite and its catalytic performance in the rapid treatment of environmental contaminants
Ren et al. Green synthesis of reduced graphene oxide/chitosan/gold nanoparticles composites and their catalytic activity for reduction of 4-nitrophenol
Shen et al. Size control and catalytic activity of highly dispersed Pd nanoparticles supported on porous glass beads
CN109174099A (zh) 一种SiO2-金属复合空心球催化剂的制备方法
Zhang et al. Preparation of ultrafine and highly loaded silver nanoparticle composites and their highly efficient applications as reductive catalysts and antibacterial agents
CN106732797A (zh) 一种磷钨酸负载型Pd‑金属有机骨架催化剂
Bordbar et al. Biosynthesis of waste pistachio shell supported silver nanoparticles for the catalytic reduction processes
Ihsan et al. Synthesis, characterization, and biological screening of metal nanoparticles loaded gum acacia microgels
CN105944758B (zh) 一种新型镍/海藻酸钠无机/有机杂化材料及其制备方法和应用
Fahiminia et al. Phytosynthesis of Cu/rGO using Euphorbia cheiradenia Boiss extract and study of its ability in the reduction of organic dyes and 4‐nitrophenol in aqueous medium
KR101890463B1 (ko) 중공 금속 나노입자의 제조방법 및 이에 의해 제조된 중공 금속 나노입자
Wang et al. Microwave-assisted continuous flow phytosynthesis of silver nanoparticle/reduced graphene oxide composites and related visible light catalytic performance
CN107899594A (zh) 一种碳点修饰羟基磷酸铜光催化材料及其制备方法
Wang et al. Preparation of hierarchical porous silicalite-1 encapsulated Ag NPs and its catalytic performance for 4-nitrophenol reduction
CN113633624B (zh) 一种核-壳结构的海藻酸盐-磁性壳聚糖微球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190111

RJ01 Rejection of invention patent application after publication