CN109174020B - 一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法 - Google Patents

一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法 Download PDF

Info

Publication number
CN109174020B
CN109174020B CN201810888575.XA CN201810888575A CN109174020B CN 109174020 B CN109174020 B CN 109174020B CN 201810888575 A CN201810888575 A CN 201810888575A CN 109174020 B CN109174020 B CN 109174020B
Authority
CN
China
Prior art keywords
polydopamine
solution
modified cellulose
solid
cellulose aerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810888575.XA
Other languages
English (en)
Other versions
CN109174020A (zh
Inventor
孙敏
冯娟娟
王秀琴
田雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810888575.XA priority Critical patent/CN109174020B/zh
Publication of CN109174020A publication Critical patent/CN109174020A/zh
Application granted granted Critical
Publication of CN109174020B publication Critical patent/CN109174020B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种在玄武岩纤维上制备聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的方法,特别涉及利用聚多巴胺将纤维素气凝胶原位合成到玄武岩纤维上。这种新方法的特征在于选用绿色环保的玄武岩纤维为载体,在其表面制备经聚多巴胺改性的纤维素气凝胶涂层。本发明制备的固相微萃取纤维具有机械强度高、涂层稳定性好及萃取性能强的优点,可对药物、环境及生化等样品中痕量组分的富集分析,具有较好的应用潜力。

Description

一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备 方法
技术领域
本发明涉及一种在玄武岩纤维载体上制备聚多巴胺改性的纤维素气凝胶涂层的固相微萃取纤维的技术。
背景技术
固相微萃取是上世纪九十年代发展起来的集采样、富集、纯化、解析于一体的新型样品前处理技术,具有简便、快速、灵敏、便于自动化和与仪器联用等优点,在环境、食品、药物以及生物分析等领域获得了广泛应用。管内固相微萃取是固相微萃取应用最为广泛之一,其核心就是管内的纤维载体和涂层。玄武岩纤维是国家发展的四大功能纤维之一,但因其表面比较光滑,表面能较低,经过聚多巴胺表面修饰后,增加了活性官能团,有利于键合涂层。
气凝胶是一种由胶体粒子或聚合物分子相互交联构成的具有三维空间网络结构的纳米多孔非晶轻质固体材料,具有大量开放的纳米级孔洞。由于气凝胶具备较低的密度(3-500 kg m-3)、超高的比表面积(200-1000 m2 g-1)、较高的孔隙率(80-99.8%,尺寸为1-100 nm)和较低的热导率等特性,使得气凝胶在吸附、保温、新型催化剂及载体、航空航天和新能源等诸多领域获得广泛应用。纤维素气凝胶虽然具有气凝胶的诸多优点,而其亲水性很强,不利于制备到纤维表面,聚多巴胺可通过多巴胺自聚形成,基于多巴胺自身的亲水性和黏附性,可将聚多巴胺作为支撑体,在纤维表面制备纤维素气凝胶。
发明内容
本发明的目的在于提供一种在玄武岩纤维上制备聚多巴胺改性的纤维素气凝胶涂层的固相微萃取技术。本发明基于聚多巴胺作为交联剂,将纤维素气凝胶制备到纤维表面,获得聚多巴胺改性的纤维素气凝胶涂层。制备步骤具体如下:
在反应器中,依次加入纤维素、硫脲、氢氧化钠、蒸馏水得到混合溶液,混合溶液中纤维素、硫脲、氢氧化钠的质量比为1:1-2:2.5-3,纤维素的质量百分含量为2-7%,将聚多巴胺溶液与上述混合溶液以体积比为1:0.5-1的比例混合均匀得到反应溶液,将玄武岩纤维浸没在反应溶液中,加入醋酸溶液调节溶液酸度至中性,静置1-2天得到聚多巴胺改性纤维素水凝胶,经冷冻干燥得到聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维。
本发明所用的聚多巴胺溶液由多巴胺盐酸盐和三羟甲基氨基甲烷的水溶液制得,其质量百分含量20-30%。
本发明中玄武岩纤维与反应溶液的固液比为1 g:85-100 mL。
本发明所用的醋酸溶液的质量百分含量为5%。
本发明的另一目的是提供聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维,装填到聚醚醚酮(PEEK)管中制得固相微萃取管,与高效液相色谱在线联用,应用于环境水样中多环芳烃污染物的分析检测。
本发明借助于聚多巴胺将纤维素气凝胶制备到玄武岩纤维载体上,制得的固相微萃取纤维具有以下优点:
(1)采用纤维素气凝胶作为萃取材料获得了萃取性能优异的固相微萃取涂层;
(2)聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维填充型萃取管与高效液相色谱仪联用,发展了在线分析方法,降低了系统误差,适应分析化学的发展趋势;
(3)聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维填充型萃取管与高效液相色谱仪联用,将仪器的灵敏度提高了3个数量级以上,检出限可低至0.01 μg L-1
具体实施方式
为了更好的理解本发明,通过实例进行说明:
实施例1:聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备:在反应器中,依次加入纤维素、硫脲、氢氧化钠、蒸馏水得到混合溶液,混合溶液中纤维素、硫脲、氢氧化钠的质量比为1:1:2.5,纤维素的质量百分含量为2%,将质量百分含量25%的聚多巴胺溶液与上述混合溶液以体积比为1:0.7的比例混合均匀得到反应溶液,将玄武岩纤维浸没在反应溶液中,玄武岩纤维与反应溶液的固液比为1 g:85 mL,加入5%的醋酸溶液调节溶液酸度至中性,静置1天得到聚多巴胺改性纤维素水凝胶,经冷冻干燥得到聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维。
实施例2:聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备:在反应器中,依次加入纤维素、硫脲、氢氧化钠、蒸馏水得到混合溶液,混合溶液中纤维素、硫脲、氢氧化钠的质量比为1:2:3,纤维素的质量百分含量为7%,将质量百分含量30%的聚多巴胺溶液与上述混合溶液以体积比为1:0.5的比例混合均匀得到反应溶液,将玄武岩纤维浸没在反应溶液中,玄武岩纤维与反应溶液的固液比为1 g:100 mL,加入5%的醋酸溶液调节溶液酸度至中性,静置2天得到聚多巴胺改性纤维素水凝胶,经冷冻干燥得到聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维。
实施例3:聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备:在反应器中,依次加入纤维素、硫脲、氢氧化钠、蒸馏水得到混合溶液,混合溶液中纤维素、硫脲、氢氧化钠的质量比为1:1.5:2.5,纤维素的质量百分含量为5%,将质量百分含量20%的聚多巴胺溶液与上述混合溶液以体积比为1:1的比例混合均匀得到反应溶液,将玄武岩纤维浸没在反应溶液中,玄武岩纤维与反应溶液的固液比为1 g:90 mL,加入5%的醋酸溶液调节溶液酸度至中性,静置1.5天得到聚多巴胺改性纤维素水凝胶,经冷冻干燥得到聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维。
实施例4:将一束长为30 cm、重为100 mg的聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维装填进一根30 cm长和内径为0.75 mm的PEEK管中,获得固相微萃取管。将固相微萃取管代替高效液相色谱仪中的定量环,连接到六通进样阀上,并外接样品溶液输送泵,以1 mL min-1的样品流速萃取20 min,然后转阀洗脱2 min,实现了环境水样中5种多环芳烃的在线萃取和在线分析,在20 min内可以完成一个样品的分析检测,检测限低至0.01 μgL-1,富集倍数高达1000多倍,将现有仪器直接进样的灵敏度提高了3个数量级。

Claims (3)

1.一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法,其特征在于,在反应器中,依次加入纤维素、硫脲、氢氧化钠、蒸馏水得到混合溶液,混合溶液中纤维素、硫脲、氢氧化钠的质量比为1:1-2:2.5-3,纤维素的质量百分含量为2-7%,将聚多巴胺溶液与上述混合溶液以体积比为1:0.5-1的比例混合均匀得到反应溶液,将玄武岩纤维浸没在反应溶液中,加入醋酸溶液调节溶液酸度至中性,静置1-2天得到聚多巴胺改性纤维素水凝胶,经冷冻干燥得到聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维;
聚多巴胺溶液由多巴胺盐酸盐和三羟甲基氨基甲烷的水溶液制得,其质量百分含量20-30%;
玄武岩纤维与反应溶液的固液比为1g:85-100mL。
2.如权利要求1中所述的一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法,其特征在于,醋酸溶液的质量百分含量为5%。
3.如权利要求1所述的一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法所制备的聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维。
CN201810888575.XA 2018-08-07 2018-08-07 一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法 Active CN109174020B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810888575.XA CN109174020B (zh) 2018-08-07 2018-08-07 一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810888575.XA CN109174020B (zh) 2018-08-07 2018-08-07 一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法

Publications (2)

Publication Number Publication Date
CN109174020A CN109174020A (zh) 2019-01-11
CN109174020B true CN109174020B (zh) 2021-07-27

Family

ID=64920734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810888575.XA Active CN109174020B (zh) 2018-08-07 2018-08-07 一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法

Country Status (1)

Country Link
CN (1) CN109174020B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110258116A (zh) * 2019-06-06 2019-09-20 东南大学 一种聚多巴胺改性玄武岩纤维载体的制备方法
CN112250319B (zh) * 2020-11-02 2023-04-21 贵阳学院 纤维素纳米纤维-气凝胶复合材料、复合凝胶、复合涂层和石英纤维
CN114824656B (zh) * 2022-05-07 2024-03-01 山东仁丰特种材料股份有限公司 一种隔膜纸及制备方法、电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443180A (zh) * 2011-09-15 2012-05-09 复旦大学 一种制备纤维素复合气凝胶的方法
CN102489272A (zh) * 2011-12-15 2012-06-13 南京大学 一种基于聚多巴胺修饰不锈钢丝制备固相微萃取涂层及其制备方法和应用
CN106007654A (zh) * 2016-05-24 2016-10-12 加新科技(深圳)有限公司 一种玄武岩纤维复合纤维素多功能气凝胶材料及其制备方法
CN107159163A (zh) * 2017-06-08 2017-09-15 西南交通大学 一种高吸附性能的纤维素基复合气凝胶的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443180A (zh) * 2011-09-15 2012-05-09 复旦大学 一种制备纤维素复合气凝胶的方法
CN102489272A (zh) * 2011-12-15 2012-06-13 南京大学 一种基于聚多巴胺修饰不锈钢丝制备固相微萃取涂层及其制备方法和应用
CN106007654A (zh) * 2016-05-24 2016-10-12 加新科技(深圳)有限公司 一种玄武岩纤维复合纤维素多功能气凝胶材料及其制备方法
CN107159163A (zh) * 2017-06-08 2017-09-15 西南交通大学 一种高吸附性能的纤维素基复合气凝胶的制备方法

Also Published As

Publication number Publication date
CN109174020A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109174020B (zh) 一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法
Jiang et al. Carbon nanotube-coated solid-phase microextraction metal fiber based on sol–gel technique
Chong et al. Sol− gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability
Yu et al. Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction
Xu et al. Development of dual-templates molecularly imprinted stir bar sorptive extraction and its application for the analysis of environmental estrogens in water and plastic samples
Zhang et al. Polydopamine-based immobilization of zeolitic imidazolate framework-8 for in-tube solid-phase microextraction
Song et al. Different configurations of carbon nanotubes reinforced solid-phase microextraction techniques and their applications in the environmental analysis
Li et al. Polydopamine‐assisted immobilization of zeolitic imidazolate framework‐8 for open‐tubular capillary electrochromatography
Sun et al. Development of aerogels in solid-phase extraction and microextraction
Li et al. Hybrid molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with three templates for the rapid simultaneous purification of rutin, scoparone, and quercetin from Herba Artemisiae Scopariae
Feng et al. Ionic liquid chemically bonded basalt fibers for in‐tube solid‐phase microextraction
CN103083942A (zh) 一种基于SiO2键合石墨烯的固相微萃取吸附涂层的制备方法
Maciel et al. Current status and future trends on automated multidimensional separation techniques employing sorbent‐based extraction columns
Lu et al. Preparation of hydrophilic molecularly imprinted solid‐phase microextraction fiber for the selective removal and extraction of trace tetracyclines residues in animal derived foods
Liu et al. Cotton thread modified with ionic liquid copolymerized polymer for online in‐tube solid‐phase microextraction and HPLC analysis of nonsteroidal anti‐inflammatory drugs
Chen et al. High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating
Sun et al. Nanostructured‐silver‐coated polyetheretherketone tube for online in‐tube solid‐phase microextraction coupled with high‐performance liquid chromatography
Feng et al. Poly (ionic liquids)‐coated stainless‐steel wires packed into a polyether ether ketone tube for in‐tube solid‐phase microextraction
Li et al. Carbonized cotton fibers via a facile method for highly sensitive solid‐phase microextraction of polycyclic aromatic hydrocarbons
CN109173981A (zh) 一种聚乙烯亚胺功能化二氧化硅气凝胶涂层固相微萃取纤维的制备方法
Kitte et al. Recent advances in nanomaterial‐based capillary electrophoresis
Li et al. A hollow microporous organic network as a fiber coating for solid-phase microextraction of short-chain chlorinated hydrocarbons
Loussala et al. Carbon nanotubes functionalized mesoporous silica for in‐tube solid‐phase microextraction of polycyclic aromatic hydrocarbons
Feng et al. Basalt fibers functionalized with gold nanoparticles for in‐tube solid‐phase microextraction
Gharari et al. All‐in‐one solid‐phase microextraction: Development of a selective solid‐phase microextraction fiber assembly for the simultaneous and efficient extraction of analytes with different polarities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Sun Min

Inventor after: Feng Juanjuan

Inventor after: Wang Xiuqin

Inventor after: Tian Yu

Inventor before: Wang Xiuqin

Inventor before: Sun Min

Inventor before: Feng Juanjuan

Inventor before: Tian Yu

GR01 Patent grant
GR01 Patent grant