CN109174006A - 一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法 - Google Patents
一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法 Download PDFInfo
- Publication number
- CN109174006A CN109174006A CN201810888752.4A CN201810888752A CN109174006A CN 109174006 A CN109174006 A CN 109174006A CN 201810888752 A CN201810888752 A CN 201810888752A CN 109174006 A CN109174006 A CN 109174006A
- Authority
- CN
- China
- Prior art keywords
- melamine
- formaldehyde
- extraction
- phase micro
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28047—Gels
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种制备离子液体改性三聚氰胺‑甲醛气凝胶涂层固相微萃取纤维的方法,这种新方法的特征在于选用碳纤维为载体,在涂层的制备过程中,将带有氨丙基的咪唑离子液体1‑十二烷基‑3‑氨丙基咪唑溴盐键合到三聚氰胺‑甲醛气凝胶涂层中得到固相微萃取纤维。本发明制备的固相微萃取纤维具有涂层选择性好、萃取性能优异的优点,可对实际样品中双酚A等痕量雌激素进行高效萃取富集,具有较好的应用潜力。
Description
技术领域
本发明涉及一种制备离子液体改性三聚氰胺-甲醛气凝胶涂层的固相微萃取纤维的技术。
背景技术
固相微萃取是近年来发展的高效样品前处理技术,能够将目标分析物从样品中进行选择性的富集和萃取,消除基质的干扰,改善色谱分析方法的灵敏度。固相微萃取集采样、富集、纯化、解析于一体,具有简便、快速、灵敏、易与色谱仪器联用实现自动化等优点,最早应用于环境化学分析,已逐步扩展到食品安全、药物分析、生命科学、毒理和法医学等诸多领域。管内固相微萃取是固相微萃取应用最为广泛之一,其核心就是管内的纤维载体和涂层。近年来,碳纤维和涤纶纤维作为载体被引入管内固相微萃取,因其本身具有吸附能力且易于改性,有利于进行涂层的修饰。
气凝胶是一种由胶体粒子或聚合物分子相互交联构成的具有三维空间网络结构的纳米多孔非晶轻质固体材料,具有大量开放的纳米级孔洞。由于气凝胶具备较低的密度(3-500 kg m-3)、超高的比表面积(200-1000 m2 g-1)、较高的孔隙率(80-99.8%,尺寸为1-100 nm)和较低的热导率等特性,使得气凝胶在吸附、保温、新型催化剂及载体、航空航天和新能源等诸多领域获得广泛应用。
三聚氰胺-甲醛气凝胶具有稳定的化学结构、较高的机械力学强度和较高的反应单体官能度,但其凝胶化时间长,所得的气凝胶任性差,不利于成型,同时在固相微萃取方面具有较差的选择性。为了提高气凝胶的选择性,将离子液体对其进行改性,设计特定的离子液体,使气凝胶表面带有特定的官能团,能特定的吸附环境中的污染物,用于环境监测。
发明内容
本发明的目的在于提供一种在纤维上制备离子液体改性的三聚氰胺-甲醛气凝胶涂层的固相微萃取技术。本发明基于离子液体作为交联剂将三聚氰胺-甲醛气凝胶制备到纤维表面,获得离子液体改性的三聚氰胺-甲醛气凝胶涂层。制备步骤具体如下:
在反应器中,将三聚氰胺加入碳酸钠水溶液中在75℃加热搅拌至溶解得到三聚氰胺水溶液,三聚氰胺的质量百分含量为6-12%,将质量百分含量为10-15%的1-十二烷基-3-氨丙基咪唑溴盐水溶液与三聚氰胺水溶液以体积比为1:1-2混合均匀,混合溶液中三聚氰胺、碳酸钠和离子液体的质量比1:0.05-0.1:0.4-1.2,将碳纤维浸没于混合溶液中,边搅拌边慢慢滴加甲醛,三聚氰胺与甲醛的摩尔比为1:3.5-4.5,用盐酸调节溶液酸度至pH为1.5,再在90℃温度下老化2-4天,然后依次用乙醇、丙酮进行溶剂置换,经冷冻干燥得到离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维。
本发明中碳纤维与混合溶液的固液比为1 g:80-100 mL。
本发明在溶剂置换中依次用乙醇、丙酮分别进行溶剂置换3次,每次置换6-10 h。
本发明的另一目的是提供离子液体改性的三聚氰胺-甲醛气凝胶涂层固相微萃取纤维,装填到聚醚醚酮(PEEK)管中制得固相微萃取管,与高效液相色谱仪在线联用,应用于环境中雌激素污染物的分析检测。
本发明将1-十二烷基-3-氨丙基咪唑溴盐改性的三聚氰胺-甲醛气凝胶制备到碳纤维载体上,制得的固相微萃取纤维具有以下优点:
(1)三聚氰胺-甲醛气凝胶的网络结构提供了相对多的吸附位点;
(2)用离子液体对气凝胶进行改性提高了三聚氰胺-甲醛气凝胶对目标分析物的选择性;
(3)离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维填充到萃取管中与高效液相色谱仪联用,建立了在线分析方法,提高了分析速度;
(4)离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维填充型萃取管与高效液相色谱仪联用,富集倍数可达1000多倍,检出限可低至0.01 μg L-1,线性范围可在0.03-50μg L-1之间。
具体实施方式
为了更好的理解本发明,通过实例进行说明:
实施例1:离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备:在反应器中,将三聚氰胺加入碳酸钠水溶液中在75℃加热搅拌至溶解得到三聚氰胺水溶液,三聚氰胺的质量百分含量为6%,将质量百分含量为15%的1-十二烷基-3-氨丙基咪唑溴盐水溶液与三聚氰胺水溶液以体积比为1:2混合均匀,混合溶液中三聚氰胺、碳酸钠和离子液体的质量比1:0.05:1.2,将碳纤维浸没于混合溶液中,纤维与混合溶液的固液比为1 g:80 mL,边搅拌边慢慢滴加甲醛,三聚氰胺与甲醛的摩尔比为1:3.5,用盐酸调节溶液酸度至pH为1.5,再在90℃温度下老化2天,然后依次用乙醇、丙酮溶剂置换3次,每次置换6 h,经冷冻干燥得到离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维。
实施例2:离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备:在反应器中,将三聚氰胺加入碳酸钠水溶液中在75℃加热搅拌至溶解得到三聚氰胺水溶液,三聚氰胺的质量百分含量为10%,将质量百分含量为12%的1-十二烷基-3-氨丙基咪唑溴盐水溶液与三聚氰胺水溶液以体积比为1:1.5混合均匀,混合溶液中三聚氰胺、碳酸钠和离子液体的质量比1:0.05:0.7,将碳纤维浸没于混合溶液中,纤维与混合溶液的固液比为1 g:90mL,边搅拌边慢慢滴加甲醛,三聚氰胺与甲醛的摩尔比为1:3.7,用盐酸调节溶液酸度至pH为1.5,再在90℃温度下老化3天,然后依次用乙醇、丙酮溶剂置换3次,每次置换8 h,经冷冻干燥得到离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维。
实施例3:离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备:在反应器中,将三聚氰胺加入碳酸钠水溶液中在75℃加热搅拌至溶解得到三聚氰胺水溶液,三聚氰胺的质量百分含量为12%,将质量百分含量为10%的1-十二烷基-3-氨丙基咪唑溴盐水溶液与三聚氰胺水溶液以体积比为1:1混合均匀,混合溶液中三聚氰胺、碳酸钠和离子液体的质量比1:0.05:0.4,将碳纤维浸没于混合溶液中,纤维与混合溶液的固液比为1 g:100mL,边搅拌边慢慢滴加甲醛,三聚氰胺与甲醛的摩尔比为1:4.5,用盐酸调节溶液酸度至pH为1.5,再在90℃温度下老化4天,然后依次用乙醇、丙酮溶剂置换3次,每次置换10 h,经冷冻干燥得到离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维。
实施例4:将一束长为30 cm、重为80 mg的离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维装填进一根30 cm长和内径为0.50 mm的PEEK管中,与高相液相色谱仪相连,并外接样品溶液输送泵,以1.5 mL min-1的样品流速进行萃取30 min,然后转阀洗脱2min,对塑料盒中双酚A进行在线萃取和在线分析,在30 min内可以完成一个样品的分析检测,检测限低至0.01 μg L-1,富集倍数高达1000多倍,线性范围可在0.03-50 μg L-1之间。
Claims (4)
1.一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法,其特征在于,在反应器中,将三聚氰胺加入碳酸钠水溶液中在75℃加热搅拌至溶解得到三聚氰胺水溶液,三聚氰胺的质量百分含量为6-12%,将质量百分含量为10-15%的1-十二烷基-3-氨丙基咪唑溴盐水溶液与三聚氰胺水溶液以体积比为1:1-2混合均匀,混合溶液中三聚氰胺、碳酸钠和离子液体的质量比1:0.05-0.1:0.4-1.2,将碳纤维浸没于混合溶液中,边搅拌边慢慢滴加甲醛,三聚氰胺与甲醛的摩尔比为1:3.5-4.5,用盐酸调节溶液酸度至pH为1.5,再在90℃温度下老化2-4天,然后依次用乙醇、丙酮进行溶剂置换,经冷冻干燥得到离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维。
2.根据权利要求1中所述的一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法,其特征在于碳纤维与混合溶液的固液比为1 g:80-100 mL。
3.如权利要求书1中所述的一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法,其特征在于依次用乙醇、丙酮分别进行溶剂置换3次,每次置换6-10 h。
4.如权利要求书1中所述的一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法所制备的离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810888752.4A CN109174006B (zh) | 2018-08-07 | 2018-08-07 | 一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810888752.4A CN109174006B (zh) | 2018-08-07 | 2018-08-07 | 一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109174006A true CN109174006A (zh) | 2019-01-11 |
CN109174006B CN109174006B (zh) | 2021-07-23 |
Family
ID=64920775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810888752.4A Active CN109174006B (zh) | 2018-08-07 | 2018-08-07 | 一种离子液体改性三聚氰胺-甲醛气凝胶涂层固相微萃取纤维的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109174006B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1546192A (zh) * | 2003-12-01 | 2004-11-17 | 中国科学院生态环境研究中心 | 一次性固相微萃取离子液体涂层的制备 |
CN102489255A (zh) * | 2011-11-24 | 2012-06-13 | 济南大学 | 贵金属纳米材料-离子液体复合功能涂层金属丝固相微萃取纤维的制备方法 |
CN106750940A (zh) * | 2016-12-22 | 2017-05-31 | 阜阳市三郁包装材料有限公司 | 一种杂化三聚氰胺‑甲醛硅气凝胶改性的阻燃聚丙烯发泡板及其制备方法 |
-
2018
- 2018-08-07 CN CN201810888752.4A patent/CN109174006B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1546192A (zh) * | 2003-12-01 | 2004-11-17 | 中国科学院生态环境研究中心 | 一次性固相微萃取离子液体涂层的制备 |
CN102489255A (zh) * | 2011-11-24 | 2012-06-13 | 济南大学 | 贵金属纳米材料-离子液体复合功能涂层金属丝固相微萃取纤维的制备方法 |
CN106750940A (zh) * | 2016-12-22 | 2017-05-31 | 阜阳市三郁包装材料有限公司 | 一种杂化三聚氰胺‑甲醛硅气凝胶改性的阻燃聚丙烯发泡板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109174006B (zh) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Hybrid molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with three templates for the rapid simultaneous purification of rutin, scoparone, and quercetin from Herba Artemisiae Scopariae | |
Zhou et al. | Recent progress of selective adsorbents: from preparation to complex sample pretreatment | |
Li et al. | Polydopamine‐assisted immobilization of zeolitic imidazolate framework‐8 for open‐tubular capillary electrochromatography | |
Lu et al. | Preparation of hydrophilic molecularly imprinted solid‐phase microextraction fiber for the selective removal and extraction of trace tetracyclines residues in animal derived foods | |
Moein et al. | Solid phase microextraction and related techniques for drugs in biological samples | |
Lu et al. | Preparation and characterization of silica monolith modified with bovine serum albumin‐gold nanoparticles conjugates and its use as chiral stationary phases for capillary electrochromatography | |
Djozan et al. | Synthesis and application of high selective monolithic fibers based on molecularly imprinted polymer for SPME of trace methamphetamine | |
Krenkova et al. | Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering | |
Liu et al. | Cotton thread modified with ionic liquid copolymerized polymer for online in‐tube solid‐phase microextraction and HPLC analysis of nonsteroidal anti‐inflammatory drugs | |
Chen et al. | Molecularly imprinted polymer as a novel solid‐phase microextraction coating for the selective enrichment of trace imidazolinones in rice, peanut, and soil | |
Ye et al. | Poly (hydroxyethyl methacrylate)‐based composite cryogel with embedded macroporous cellulose beads for the separation of human serum immunoglobulin and albumin | |
Cai et al. | Use of a novel sol–gel dibenzo-18-crown-6 solid-phase microextraction fiber and a new derivatizing reagent for determination of aliphatic amines in lake water and human urine | |
Sun et al. | Polyurethane functionalized silica aerogel for in-tube solid-phase microextraction of estrogens prior to high performance liquid chromatography detection | |
Li et al. | Carbonized cotton fibers via a facile method for highly sensitive solid‐phase microextraction of polycyclic aromatic hydrocarbons | |
Fan et al. | Spiral stir bar sorptive extraction with polyaniline‐polydimethylsiloxane sol‐gel packings for the analysis of trace estrogens in environmental water and animal‐derived food samples | |
Sun et al. | Recent advances of triazine-based materials for adsorbent based extraction techniques | |
Moliner-Martinez et al. | In-tube solid-phase microextraction | |
Kitte et al. | Recent advances in nanomaterial‐based capillary electrophoresis | |
CN109174020B (zh) | 一种聚多巴胺改性纤维素气凝胶涂层固相微萃取纤维的制备方法 | |
Gharari et al. | All‐in‐one solid‐phase microextraction: Development of a selective solid‐phase microextraction fiber assembly for the simultaneous and efficient extraction of analytes with different polarities | |
Kravchenko et al. | Multifunction covalent coatings for separation of amino acids, biogenic amines, steroid hormones, and ketoprofen enantiomers by capillary electrophoresis and capillary electrochromatography | |
Loussala et al. | Carbon nanotubes functionalized mesoporous silica for in‐tube solid‐phase microextraction of polycyclic aromatic hydrocarbons | |
Han et al. | Nano‐MoO3 for highly selective enrichment of polycyclic aromatic hydrocarbons in in‐tube solid‐phase microextraction | |
CN112755592B (zh) | 一种共价有机骨架纳米微球功能化固相微萃取整体柱 | |
Wang et al. | Synthesis of ractopamine molecularly imprinted membrane and its application in the rapid determination of three β‐agonists in porcine urine samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Sun Min Inventor after: Feng Juanjuan Inventor after: Wang Xiuqin Inventor after: Tian Yu Inventor before: Wang Xiuqin Inventor before: Sun Min Inventor before: Feng Juanjuan Inventor before: Tian Yu |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |