CN109165451A - 一种地裂缝环境下盾构隧道适用性判断的方法 - Google Patents

一种地裂缝环境下盾构隧道适用性判断的方法 Download PDF

Info

Publication number
CN109165451A
CN109165451A CN201810996103.6A CN201810996103A CN109165451A CN 109165451 A CN109165451 A CN 109165451A CN 201810996103 A CN201810996103 A CN 201810996103A CN 109165451 A CN109165451 A CN 109165451A
Authority
CN
China
Prior art keywords
curve
tunnel
lining
under
ground fissure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810996103.6A
Other languages
English (en)
Inventor
邓亚虹
宣友
徐召
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201810996103.6A priority Critical patent/CN109165451A/zh
Publication of CN109165451A publication Critical patent/CN109165451A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Civil Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Architecture (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

本发明公开一种地裂缝环境下盾构隧道适用性判断的方法,在地裂缝环境下的盾构隧道中,在相同地裂缝上下盘错距和隧道衬砌强度条件下,得到衬砌最大竖向变形与衬砌厚度的关系、衬砌最大拉应力与衬砌厚度关系、衬砌最大压应力与衬砌厚度关系;在相同地裂缝上下盘错距和隧道衬砌厚度下,得到衬砌最大竖向变形与衬砌强度等级的关系、衬砌最大拉应力与衬砌强度等级关系、衬砌最大压应力与衬砌强度等级关系;在相同地裂缝上下盘错距和隧道衬砌厚度下,得到衬砌最大竖向变形与衬砌强度等级的关系、衬砌最大拉应力与衬砌强度等级关系、衬砌最大压应力与衬砌强度等级关系;通过上述曲线与标准能够较为准确的判断不同工况下盾构隧道是否满足强度及变形要求。

Description

一种地裂缝环境下盾构隧道适用性判断的方法
技术领域
本发明属于抗震设防技术领域,涉及一种判断在地裂缝环境下隧道衬砌结构是否适用的方法,具体是一种地裂缝环境下盾构隧道适用性判断的方法。
背景技术
改革开放以来,随着国民经济的日益增长,基础设施建设也在如火如荼的进行,现如今,地铁几乎覆盖了国内外的各大中城市。当地裂缝十分发育时,在修建城市地铁需要考虑地铁隧道衬砌结构的稳定问题。现有技术不能够细致的解决在地裂缝密集发育地区修建盾构隧道的稳定问题,找到一种可以判断在地裂缝环境下隧道衬砌结构是否稳定的方法十分重要。
发明内容
为解决现有技术中存在的问题,本发明的目的是提供一种地裂缝环境下盾构隧道适用性判断的方法,本发明能够较为精确的判断不同工况下盾构隧道是否满足强度及变形要求,解决了现有技术中存在的问题。
本发明所采用的技术方案是:
一种地裂缝环境下盾构隧道适用性判断的方法,包括如下步骤:
(1)在地裂缝环境下的盾构隧道中,在相同的隧道衬砌厚度和相同的隧道衬砌强度条件下,由不同的地裂缝上下盘错距建立不同工况下的有限元模型,整合得到曲线A、曲线B和曲线C;曲线A为衬砌最大竖向变形与错距的关系曲线,曲线B为衬砌底面最大拉应力与错距关系曲线,曲线C为衬砌顶面最大压应力与错距关系曲线;在有限元模型建立的过程中,不同工况下地裂缝上下盘错距的选取可根据该地区地裂缝发育程度和隧道穿过地裂缝程度综合考量;
(2)在地裂缝环境下的盾构隧道中,在相同的地裂缝上下盘错距和相同的隧道衬砌强度条件下,由不同的隧道衬砌厚度建立不同工况下的有限元模型,整合得到曲线D、曲线E和曲线F;曲线D为衬砌最大竖向变形与衬砌厚度的关系曲线,曲线E为衬砌最大拉应力与衬砌厚度关系曲线,曲线F为衬砌最大压应力与衬砌厚度关系曲线;在有限元模型建立的过程中不同工况下隧道衬砌厚度的选取可根据该地区地质环境进行考量;
(3)在地裂缝环境下的盾构隧道中,在相同的地裂缝上下盘错距和相同的隧道衬砌厚度下,由不同的隧道衬砌强度建立在不同工况下的有限元模型,整合得到曲线G、曲线H和曲线I;曲线G为衬砌最大竖向变形与衬砌强度等级的关系曲线,曲线H为衬砌最大拉应力与衬砌强度等级关系曲线,曲线I为衬砌最大压应力与衬砌强度等级关系曲线;在有限元模型建立的过程中不同工况下隧道衬砌强度的选取可根据该工程的工程等级进行考量;
(4)在预定的工况下,已知该工况的地裂缝上下盘错距、隧道衬砌强度和隧道衬砌厚度,则通过曲线A、曲线B、曲线C、曲线D、曲线E、曲线F、曲线G、曲线H和曲线I这九条曲线即可判断出在该工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力;
(5)由步骤(4)得出的预定工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力与各自的预设值进行比较,若隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力均满足要求,则该工况下盾构隧道可以投入建设,反之则不行。
步骤(5)中,得出的预定工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力与《地铁设计规范》GB 50157进行比较,若对应的变形和强度均满足规范要求则该工况下盾构隧道可以投入建设,反之则不行。
所述步骤(1)中,不同的地裂缝上下盘错距的不同工况包括:地裂缝相对错距为5cm的工况、地裂缝相对错距为10cm的工况、地裂缝相对错距为15cm的工况、地裂缝相对错距为20cm的工况、地裂缝相对错距为30cm的工况、地裂缝相对错距为40cm的工况和地裂缝相对错距为50cm的工况。
所述步骤(2)中,不同的隧道衬砌厚的不同工况包括:无内衬工况、内衬厚度为200mm的工况、内衬厚度为300的工况和内衬厚度为400mm的工况。
所述步骤(3)中,不同的隧道衬砌强度的不同工况包括:内衬强度为C30的工况、内衬强度为C40的工况和内衬强度为C50的工况。
所述衬砌为单层衬砌。
所述衬砌为双层衬砌和/或多层衬砌中的某一层衬砌。
与现有技术相比,本发明具有如下有益效果:
本发明的地裂缝环境下盾构隧道适用性判断的方法首先在地裂缝环境下的盾构隧道中,在相同的隧道衬砌厚度和相同的隧道衬砌强度条件下,由不同的地裂缝上下盘错距建立不同工况下的有限元模型,整合得到衬砌最大竖向变形与错距的关系曲线、衬砌底面最大拉应力与错距关系曲线和衬砌顶面最大压应力与错距关系曲线;再在地裂缝环境下的盾构隧道中,在相同的地裂缝上下盘错距和相同的隧道衬砌强度条件下,由不同的隧道衬砌厚度建立不同工况下的有限元模型,整合得到衬砌最大竖向变形与衬砌厚度的关系曲线、衬砌最大拉应力与衬砌厚度关系曲线和衬砌最大压应力与衬砌厚度关系曲线;再在地裂缝环境下的盾构隧道中,在相同的地裂缝上下盘错距和相同的隧道衬砌厚度下,由不同的隧道衬砌强度建立在不同工况下的有限元模型,整合得到衬砌最大竖向变形与衬砌强度等级的关系曲线、衬砌最大拉应力与衬砌强度等级关系曲线和衬砌最大压应力与衬砌强度等级关系曲线;在预定的工况下,已知该工况的地裂缝上下盘错距、隧道衬砌强度和隧道衬砌厚度,则通过上述这九条曲线即可判断出在该工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力;再将预定工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力与各自的预设值进行比较,若隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力均满足要求,则该工况下盾构隧道可以投入建设,反之则不行。本发明通过上述各种曲线能够较为精确的判断不同工况下盾构隧道是否满足强度及变形要求,解决了现有技术中存在的问题。
附图说明
图1为本发明实施例中衬砌最大竖向变形与错距的关系曲线;
图2为本发明实施例中衬砌底面最大拉应力与错距关系曲线;
图3为本发明实施例中衬砌顶面最大压应力与错距关系曲线;
图4为本发明实施例中衬砌最大竖向变形与衬砌厚度关系曲线;
图5为本发明实施例中衬砌最大拉应力与衬砌厚度关系曲线;
图6为本发明实施例中衬砌最大压应力与衬砌厚度关系曲线;
图7为本发明实施例中衬砌最大竖向变形与衬砌强度等级关系曲线;
图8为本发明实施例中衬砌最大拉应力与衬砌强度等级关系曲线;
图9为本发明实施例中衬砌最大压应力与衬砌强度等级关系曲线;
图10为本发明实施例中衬砌底面坡度变化曲线;
图11为本发明地裂缝环境下盾构隧道适用性判断的方法的流程图。
具体实施方式
下面结合实施例和附图来对本发明作进一步的说明。
实施例
参照图11,以某地地铁二号线工程(南北线)为例,该地铁从北到南将穿过10条地裂缝,本实施例为判断双层衬砌中内衬在强度和变形上是否满足规范要求,在MSC.MARC(2001)软件上完成对各种工况下有限元模型的建立和计算,具体过程如下:
第一步,外部衬砌为300mm厚C50钢筋混凝土管片,内衬保持厚度为300mm且混凝土强度为C30,在有限元软件中分别模拟在地裂缝相对错距分别为5cm、10cm、15cm、20cm、30cm、40cm和50cm的7种不同工况下双层衬砌结构的应力和变形,以分析地裂缝相对错距的影响大小和规律,得到曲线A、曲线B和曲线C;曲线A为衬砌最大竖向变形与错距的关系曲线(见图1),曲线B为衬砌底面最大拉应力与错距关系曲线(见图2),曲线C为衬砌顶面最大压应力与错距关系曲线(见图3);
第二步,外部衬砌为300mm厚C50钢筋混凝土管片,内衬保持混凝土强度为C30且地裂缝相对错距为15cm,在有限元软件中分别模拟在无内衬(即内衬厚度为0mm)以及内衬厚度分别为200mm、300mm和400mm的4种工况下双层衬砌结构的应力和变形,以分析内衬厚度的影响大小和规律,得到曲线D、曲线E和曲线F;曲线D为衬砌最大竖向变形与内衬厚度的关系曲线(见图4),曲线E为衬砌最大拉应力与内衬厚度关系曲线(见图5),曲线F为衬砌最大压应力与内衬厚度关系曲线(见图6);
第三步,外部衬砌为300mm厚C50钢筋混凝土管片,内部衬砌保持厚度为300mm且地裂缝相对错距为15cm,在有限元软件中分别模拟在内衬强度分别为C30、C40和C50的3种工况下双层衬砌结构的应力和变形,以分析内衬强度的影响大小和规律,得到曲线G、曲线H和曲线I;曲线G为衬砌最大竖向变形与内衬强度等级的关系曲线(见图7),曲线H为衬砌最大拉应力与内衬强度等级关系曲线(件图8),曲线I为衬砌最大压应力与内衬强度等级关系(见图9);
第四步,给定工况外部衬砌为300mm厚C50钢筋混凝土管片,内部衬砌厚度为350mm、衬砌强度为C30、地裂缝相对错距为20cm,综合曲线A、曲线B、曲线C、曲线D、曲线E、曲线F、曲线G、曲线H和曲线I这九条曲线即可判断出在该工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力;
第五步,由第四步得到的在某一特定工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力与最新修订的《地铁设计规范》GB-50157进行比较,若对应的变形和强度均满足规范要求则该工况下盾构隧道可以投入建设,反之则不行。
强度方面需要注明的是在混凝土结构设计时,通常不考虑混凝土的抗拉强度,而代之以钢筋来承受,因此,通过强度判断时,可用已知应力对结构进行配筋计算,如果能够合理的配置钢筋,且不超过最大配筋率,则可行,反之不可行。另外,考虑管片环之间在纵向也是通过螺栓连接,因此,环与环接触断面上的应力实际是由有限的几个螺栓来承受的,所以同样需要验算螺栓的强度,只有两者都满足才是满足要求的。
变形方面需要特别注明的是,由于地裂缝相对错动,使衬砌纵向产生附加沉降变形,这时会形成附加的纵坡等。而地铁线路纵断面正线的最大坡度不宜大于30‰,困难地段可采用35‰,同时,相邻两坡度的竖曲线半径在一般情况下不能小于5000m,困难情况下不能小于3000m。根据以上要求,可由变形曲线求得附加变形坡度(如图10)和竖曲线半径,如果此坡度和竖曲线半径和原有设计坡度和竖曲线半径叠加后能满足上述要求,则可行,反之则不可行。
注:本发明所提到的盾构隧道判断方法适用于单层、双层、多层衬砌,对于双层、多层衬砌判断是针对衬砌结构中的某一层衬砌。

Claims (6)

1.一种地裂缝环境下盾构隧道适用性判断的方法,其特征在于,包括如下步骤:
(1)在地裂缝环境下的盾构隧道中,在相同的隧道衬砌厚度和相同的隧道衬砌强度条件下,由不同的地裂缝上下盘错距建立不同工况下的有限元模型,得到曲线A、曲线B和曲线C;其中:曲线A为衬砌最大竖向变形与错距的关系曲线,曲线B为衬砌底面最大拉应力与错距关系曲线,曲线C为衬砌顶面最大压应力与错距关系曲线;
(2)在地裂缝环境下的盾构隧道中,在相同的地裂缝上下盘错距和相同的隧道衬砌强度条件下,由不同的隧道衬砌厚度建立不同工况下的有限元模型,得到曲线D、曲线E和曲线F;其中:曲线D为衬砌最大竖向变形与衬砌厚度的关系曲线,曲线E为衬砌最大拉应力与衬砌厚度关系曲线,曲线F为衬砌最大压应力与衬砌厚度关系曲线;
(3)在地裂缝环境下的盾构隧道中,在相同的地裂缝上下盘错距和相同的隧道衬砌厚度下,由不同的隧道衬砌强度建立在不同工况下的有限元模型,得到曲线G、曲线H和曲线I;其中:曲线G为衬砌最大竖向变形与衬砌强度等级的关系曲线,曲线H为衬砌最大拉应力与衬砌强度等级关系曲线,曲线I为衬砌最大压应力与衬砌强度等级关系曲线;
(4)在预定的工况下,已知该工况的地裂缝上下盘错距、隧道衬砌强度和隧道衬砌厚度,则通过曲线A、曲线B、曲线C、曲线D、曲线E、曲线F、曲线G、曲线H和曲线I判断出在该工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力;
(5)由步骤(4)得出的预设工况下隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力与各自的预设值进行比较,若隧道的最大竖向变形、隧道底面的最大拉应力及隧道顶面的最大压应力均满足要求,则该工况下盾构隧道可以投入建设,反之则不行。
2.根据权利要求1所述的一种地裂缝环境下盾构隧道适用性判断的方法,其特征在于,所述步骤(1)中,不同的地裂缝上下盘错距的不同工况包括:地裂缝相对错距为5cm的工况、地裂缝相对错距为10cm的工况、地裂缝相对错距为15cm的工况、地裂缝相对错距为20cm的工况、地裂缝相对错距为30cm的工况、地裂缝相对错距为40cm的工况和地裂缝相对错距为50cm的工况。
3.根据权利要求1所述的一种地裂缝环境下盾构隧道适用性判断的方法,其特征在于,所述步骤(2)中,不同的隧道衬砌厚的不同工况包括:无内衬工况、内衬厚度为200mm的工况、内衬厚度为300的工况和内衬厚度为400mm的工况。
4.根据权利要求1所述的一种地裂缝环境下盾构隧道适用性判断的方法,其特征在于,所述步骤(3)中,不同的隧道衬砌强度的不同工况包括:内衬强度为C30的工况、内衬强度为C40的工况和内衬强度为C50的工况。
5.根据权利要求1-4任意一项所述的一种地裂缝环境下盾构隧道适用性判断的方法,其特征在于,所述衬砌为单层衬砌。
6.根据权利要求1-4任意一项所述的一种地裂缝环境下盾构隧道适用性判断的方法,其特征在于,所述衬砌为双层衬砌和/或多层衬砌中的某一层衬砌。
CN201810996103.6A 2018-08-29 2018-08-29 一种地裂缝环境下盾构隧道适用性判断的方法 Pending CN109165451A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810996103.6A CN109165451A (zh) 2018-08-29 2018-08-29 一种地裂缝环境下盾构隧道适用性判断的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810996103.6A CN109165451A (zh) 2018-08-29 2018-08-29 一种地裂缝环境下盾构隧道适用性判断的方法

Publications (1)

Publication Number Publication Date
CN109165451A true CN109165451A (zh) 2019-01-08

Family

ID=64893151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810996103.6A Pending CN109165451A (zh) 2018-08-29 2018-08-29 一种地裂缝环境下盾构隧道适用性判断的方法

Country Status (1)

Country Link
CN (1) CN109165451A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110119572A (zh) * 2019-05-13 2019-08-13 招商局重庆交通科研设计院有限公司 一种适用于隧道病害的评价系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537162A (zh) * 2014-12-16 2015-04-22 上海交通大学 确定盾构隧道衬砌环间接缝抵抗错台与张开变形能力方法
CN108416182A (zh) * 2018-05-31 2018-08-17 长安大学 一种基于定量分析的明沟隔振的设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537162A (zh) * 2014-12-16 2015-04-22 上海交通大学 确定盾构隧道衬砌环间接缝抵抗错台与张开变形能力方法
CN108416182A (zh) * 2018-05-31 2018-08-17 长安大学 一种基于定量分析的明沟隔振的设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孟振江等: "地铁隧道相交地裂缝的破坏特征及结构抗裂设计", 《长安大学学报(自然科学版)》 *
邓亚虹等: "地裂缝活动环境下盾构隧道双层衬砌性状分析", 《岩石力学与工程学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110119572A (zh) * 2019-05-13 2019-08-13 招商局重庆交通科研设计院有限公司 一种适用于隧道病害的评价系统
CN110119572B (zh) * 2019-05-13 2022-07-08 招商局重庆交通科研设计院有限公司 一种适用于隧道病害的评价系统

Similar Documents

Publication Publication Date Title
Lai et al. Characteristics of seismic disasters and aseismic measures of tunnels in Wenchuan earthquake
CN108915734A (zh) 一种波纹钢-混凝土组合支护结构及其施工方法
Tu et al. Excavation and kinematic analysis of a shallow large-span tunnel in an up-soft/low-hard rock stratum
CN110617067B (zh) 一种极软弱围岩隧道全断面边界超前管棚低风险施工方法
CN104278841B (zh) 在钢管柱内浇筑混凝土的方法
CN108952766B (zh) 隧道穿越喀斯特岩溶地段处治的施工方法
CN108660935A (zh) 一种钢筋混凝土拱桥的施工方法
CN110485429A (zh) 一种预应力型钢装配式组合内支撑施工方法
CN209924998U (zh) 一种浅覆土盾构隧道下穿道路加固保护结构
CN108086354A (zh) 一种用现浇暗梁拼接的预制装配式综合管廊及其施工方法
CN107419748A (zh) 一种跨越轨道盾构区间的管廊施工结构
CN107247851A (zh) 一种零弯矩盾构隧道横断面的设计计算方法
CN106522272A (zh) 地下管廊基于横截面有粘结预应力板的设计及施工方法
CN101638898B (zh) 顶管竖井悬挂式施工方法
CN109165451A (zh) 一种地裂缝环境下盾构隧道适用性判断的方法
CN107100629A (zh) 一种盾构隧道下卧软土层塑性变形的控制方法及结构
CN107654239A (zh) 一种隧底开挖及仰拱施工方法
CN208633847U (zh) 一种适用于圆拱直墙式隧道全断面开挖的波纹钢支护结构
Zhou et al. Stability predictions for excavations of mountain tunnels based on [BQ] method and its field verification
CN105927251B (zh) 浅埋型球铁框架-钢筋混凝土组合隧道壁板
CN110374012A (zh) 一种t梁原位支架法预制工法
Mori et al. Large rectangular cross-section tunneling by the multi-micro shield tunneling (MMST) method
CN209704560U (zh) 修建超浅埋大型地下空间的棚架结构
CN204570718U (zh) 一种带有液体管道通路的筏板基础
Xu et al. Performance of a large-scale excavation by bottom-up technique in Hangzhou soft clay

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108

RJ01 Rejection of invention patent application after publication