CN109161079B - 一种PE/PS/SEBS-g-MAH复合材料及其制备方法 - Google Patents

一种PE/PS/SEBS-g-MAH复合材料及其制备方法 Download PDF

Info

Publication number
CN109161079B
CN109161079B CN201810916818.6A CN201810916818A CN109161079B CN 109161079 B CN109161079 B CN 109161079B CN 201810916818 A CN201810916818 A CN 201810916818A CN 109161079 B CN109161079 B CN 109161079B
Authority
CN
China
Prior art keywords
mah
sebs
parts
composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810916818.6A
Other languages
English (en)
Other versions
CN109161079A (zh
Inventor
倪忠斌
侯荣杰
陈明清
刘士荣
东为富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201810916818.6A priority Critical patent/CN109161079B/zh
Publication of CN109161079A publication Critical patent/CN109161079A/zh
Application granted granted Critical
Publication of CN109161079B publication Critical patent/CN109161079B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Abstract

本发明公开了一种PE/PS/SEBS‑g‑MAH复合材料,所述复合材料所含原料及各原料的重量份数为:PE 30‑80份,PS 20‑70份,SEBS‑g‑MAH 1‑15份,石墨烯0.1‑0.9份。本发明复合材料具有优异的性能,还可采用超临界CO2进行釜式发泡,制成发泡材料,应用于包装材料、汽车材料等领域。

Description

一种PE/PS/SEBS-g-MAH复合材料及其制备方法
技术领域
本发明涉及高分子材料技术领域,尤其是涉及一种发泡PE/PS/SEBS-g-MAH复合材料的制备方法。
背景技术
聚合物共混是制备新材料的常用方法,但大多数聚合物在热力学上是不相容的,如聚乙烯(PE)、聚苯乙烯(PS)等,简单共混使得各组分之间相界面作用力差,产生明显的相分离,而聚合物之间的相容性以及相形态将直接影响到产品的性能及应用。PE是一种热塑性树脂,PE具有良好的耐化学稳定性以及优异的成型加工性能,并且PE的用途十分广泛,主要用于主要用来制造薄膜、包装材料、容器、管道、单丝、电线电缆、日用品等,也可作为电视、雷达等的高频绝缘材料。但PE存在耐环境应力开裂性较差,耐热老化性较差以及刚性较低等缺点,这些缺点也限制了PE的部分用途。PS中大体积苯环的无规排列赋予了材料高的透明度以及电绝缘性能好,易着色,加工流动性好,刚性好及耐化学腐蚀性好等。但PS的不足之处在于性脆,冲击强度低,易出现应力开裂,耐热性差及不耐沸水。发泡材料中的闭孔指泡孔是独立的,均匀的分布在发泡体中,互不连通,泡孔完整不破碎。但PE与PS这两种材料之间的化学结构、结晶行为等的差别导致这两种聚合物间的相容性极差。
目前提高PE、PS之间相容的方法主要有三种:1、引入无机纳米粒子增容:中国发明专利,一种聚乙烯/聚苯乙烯/有机改性蒙脱土复合材料及其制备方法,CN201711039498.2,通过改性蒙脱土作为聚乙烯、聚苯乙烯的相容剂,制备PE/PS复合材料,但加入的蒙脱土含量大,蒙脱土易发生团聚现象,产生应力集中点,影响复合材料的性能;2、引入嵌段共聚物,如文献:Polymer Bulletin,2016,73(10):1-21,该方法制备工艺复杂,对设备要求较高,在工业中无法进行大批量的生产;3、制备PE-g-PS接枝共聚物作为PE/PS合金的相容剂,如中国发明专利,一种聚苯乙烯/聚乙烯合金及其专用相容剂与制备方法,CN101230119A,该方法改善了PE、PS之间的相容性,减小了界面张力,但制备接枝共聚物方法复杂,成本较高,不利于工业生产。
因此,需要进一步的探索工艺简单、低成本、性能优异的PE/PS复合材料的制备方法,并开拓其应用领域具有重要的意义,尤其是发泡材料领域。
发明内容
针对现有技术存在的上述问题,本发明申请人提供了一种PE/PS/SEBS-g-MAH复合材料制备方法。本发明制备方法简单,成本较低,所制备的复合材料具有优异的性能,还可采用超临界CO2进行釜式发泡,制成发泡材料,应用于包装材料、汽车材料等领域。
本发明的技术方案如下:
一种PE/PS/SEBS-g-MAH复合材料,所述复合材料所含原料及各原料的重量份数为:
Figure BDA0001763243890000021
所述复合材料所含原料及各原料的重量份数为:
Figure BDA0001763243890000022
所述PE为LDPE、HDPE、LLDPE中的一种或多种。
所述PE为LLDPE,熔融指数为1.2-2.5g/10min。
所述PS为GPPS,数均分子量50000-200000。
所述PS数均分子量为100000-150000,熔融指数为2-6.5g/10min。
所述SEBS-g-MAH的熔融指数为1-3g/10min,MAH接枝量为1.4-2.3%。
所述石墨烯,经过传统的Hummers法进行改性,得到改性石墨烯。
一种PE/PS/SEBS-g-MAH复合材料的制备方法,所述方法包括如下步骤:
(1)将30-80份PE、20-70份PS、1-15份SEBS-g-MAH、0.1-0.9份石墨烯高速混合均匀,经双螺杆挤出机混炼、挤出、拉丝、切粒,制备成PE/PS/SEBS-g-MAH复合材料微粒;
(2)将步骤(1)制得的复合材料微粒投入反应釜,然后进行加热加压,使PE/PS/SEBS-g-MAH复合材料微粒在高温高压下产生向外膨胀的内部压力,并在瞬间释放至大气压,从而得到一定倍率的PE/PS/SEBS-g-MAH复合材料发泡材料;
所述的加热温度为110℃-150℃;加压压力为2.2-2.8MPa。
本发明有益的技术效果在于:
本发明采用SEBS-g-MAH作为PE、PS的相容剂,增加了两相界面之间的作用力,极大的改善了PE、PS之间的相容性,同时改性石墨烯在高温下与马来酸酐基团发生反应,从而增大了石墨烯之间的层间距,使得PE、PS分子插层进入层间中,产生了嵌段共聚物的作用,与SEBS-g-MAH协同增效PE/PS之间的相容性,降低了PS相的尺寸,使PS相均布分布在PE基体中,显著提高了PE/PS共混物的性能;
本发明采用超临界CO2釜式发泡的方法进行发泡,混合体系中SEBS-g-MAH与石墨烯协同增容,增加了复合物的粘度,且在发泡过程中石墨烯可成为气核点,有利于泡孔形成,减少了发泡材料中破孔、并孔情况的发生,为复合材料的发泡工艺提供了良好发泡条件;
SEBS-g-MAH/石墨烯在泄压的过程中可影响PE的结晶,从而有利于发泡,使得泡孔均匀分布,泡孔壁厚降低,闭孔率增加,进一步增强了发泡材料的强度,赋予了发泡材料的一定的耐磨性,同时耐黄变性;
本发明所涉及的工艺成本较低,可提高生产效率,且在整个过程中不存在交联反应,产物完全可回收再利用,绿色环保,符合工业化生产的需要,可广泛应用于汽车材料,包装材料,鞋底发泡材料等领域。
附图说明
图1是实施例4-9中不同含量SEBS-g-MAH复合发泡材料冲击性能图。
图2是实施例4-9中不同含量SEBS-g-MAH复合发泡材料的断裂伸长率以及拉伸强度图。
图3是实施例4-9中不同含量SEBS-g-MAH复合发泡材料的拉伸断面的SEM图。
图4是实施例9的发泡PE/PS/SEBS-g-MAH复合发泡材料的扫面电镜图。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
一种PE/PS/SEBS-g-MAH复合材料的制备方法,所述方法包括如下步骤:
(1)将30-80份PE、20-70份PS、1-15份SEBS-g-MAH、0.1-0.9份石墨烯高速混合均匀,经双螺杆挤出机混炼、挤出、拉丝、切粒,制备成PE/PS/SEBS-g-MAH复合材料微粒;
(2)将步骤(1)制得的复合材料微粒投入反应釜,然后进行加热加压,使PE/PS/SEBS-g-MAH复合材料微粒在高温高压下产生向外膨胀的内部压力,并在瞬间释放至大气压,从而得到一定倍率的PE/PS/SEBS-g-MAH复合材料发泡材料;所述的加热温度为110℃-150℃;加压压力为2.2-2.8MPa。
所述PE为LDPE、HDPE、LLDPE中的一种或多种。
所述PE为LLDPE,熔融指数为1.2-2.5g/10min。
所述PS为GPPS,数均分子量50000-200000。
所述PS数均分子量为100000-150000,熔融指数为2-6.5g/10min。
所述SEBS-g-MAH的熔融指数为1-3g/10min,MAH接枝量为1.4-2.3%。
所述石墨烯,经过传统的Hummers法进行改性,得到改性石墨烯。
采用上述方法,完成实施例1-13,各实施例中主要材料的用量(重量份数)分别如表1-3所示;
表1
LDPE PS SEBS-g-MAH 改性石墨烯
实施例1 80 20 1 0.1
实施例2 70 30 5 0.5
实施例3 20 80 9 0.9
表2
Figure BDA0001763243890000041
Figure BDA0001763243890000051
表3
HDPE PS SEBS-g-MAH 改性石墨烯
实施例11 20 80 1 0.1
实施例12 30 70 5 0.5
实施例13 80 20 9 0.9
实施例1-13制备的PE/PS/SEBS-g-MAH复合发泡材料的性能数据如表4、图1和图2所示,图1为冲击性能图,由图1可以看出,随着SEBS-g-MAH质量分数的增加,复合材料的冲击强度增加,当SEBS-g-MAH的质量分数超过5%时,复合材料的冲击强度显著增加。SEBS-g-MAH的质量分数为9%时,复合材料的冲击强度达到了35.39KJ/m2,比未添加SEBS-g-MAH的LLDPE/PS共混物的冲击强度(5.24KJ/m2)提高了近7倍,极大改善了LLDPE/PS复合材料的冲击性能。这归因于复合材料中MAH基团和石墨烯中的羧基基团赋予材料强大的极性,使得冲击强度得到极大的改善。图2是断裂伸长率以及拉伸强度图,从图2可以得出,当添加3%SEBS-g-MAH后,复合材料的拉伸强度,断裂伸长率明显增加,当质量分数超过3%后,材料的拉伸强度略微下降,而断裂伸长率增加幅度较缓慢。这是因为LLDPE/PS时典型的不相容体系,LLDPE与PS两相之间的相界面作用力弱,因此,简单共混制备的LLDPE/PS共混物的拉伸强度和断裂伸长率较低。
表4
Figure BDA0001763243890000052
Figure BDA0001763243890000061
由表4数据可以看出,SEBS-g-MAH的加入可以提高PE、PS之间的相容性,性能得到了极大的改善,且石墨烯的加入进一步提高了PEPS之间的相容性,提高了发泡PE/PS复合材料的闭孔率。在实施例4-10中,加入了不同量的SEBS-g-MAH,除了相容性、拉伸强度、断裂伸长率和冲击强度有一定程度提高以外,发泡PE/PS复合材料的闭孔率明显提高,说明石墨烯的加入确实可以起到提高发泡PE/PS复合材料闭孔率的作用。
实施例9所得发泡材料的扫面电镜图如图4所示,从图4出可以看出,复合材料能够成功的发泡,并且泡孔形态完好,泡孔尺寸均匀,泡孔尺寸在70μm左右,闭孔率在95%左右,这是由于SEBS-g-MAH和石墨烯的存在,提高了泡沫材料的闭孔率。
以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种PE/PS/SEBS-g-MAH复合材料,其特征在于,所述复合材料所含原料及各原料的重量份数为:
PE 30-80份
PS 20-70份
SEBS-g-MAH 1-15 份
石墨烯 0.1-0.9 份;
所述SEBS-g-MAH的熔融指数为1-3 g/10min,MAH接枝量为1.4-2.3%;
所述PE/PS/SEBS-g-MAH复合材料的制备方法,包括如下步骤:
(1)将30-80份PE、20-70份PS、1-15份SEBS-g-MAH、0.1-0.9份石墨烯高速混合均匀,经双螺杆挤出机混炼、挤出、拉丝、切粒,制备成PE/PS/SEBS-g-MAH复合材料微粒;
(2)将步骤(1)制得的复合材料微粒投入反应釜,然后进行加热加压,使PE/PS/SEBS-g-MAH复合材料微粒在高温高压下产生向外膨胀的内部压力,并在瞬间释放至大气压,从而得到一定倍率的PE/PS/SEBS-g-MAH复合材料发泡材料;所述的加热温度为110℃-150℃;加压压力为2.2-2.8 MPa;
所述PE为LLDPE,熔融指数为1.2-2.5g/10min;所述PS为GPPS,数均分子量50000-200000;
所述石墨烯,经过传统的Hummers法进行改性,得到改性石墨烯。
2.根据权利要求1所述的PE/PS/SEBS-g-MAH复合材料,其特征在于,所述复合材料所含原料及各原料的重量份数为:
PE 50-70份
PS 30-50份
SEBS-g-MAH 1-9 份
石墨烯 0.1-0.9 份。
3.根据权利要求1所述的PE/PS/SEBS-g-MAH复合材料,其特征在于,所述PS数均分子量为100000-150000,熔融指数为2-6.5 g/10min。
CN201810916818.6A 2018-08-13 2018-08-13 一种PE/PS/SEBS-g-MAH复合材料及其制备方法 Active CN109161079B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810916818.6A CN109161079B (zh) 2018-08-13 2018-08-13 一种PE/PS/SEBS-g-MAH复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810916818.6A CN109161079B (zh) 2018-08-13 2018-08-13 一种PE/PS/SEBS-g-MAH复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109161079A CN109161079A (zh) 2019-01-08
CN109161079B true CN109161079B (zh) 2020-09-22

Family

ID=64895666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810916818.6A Active CN109161079B (zh) 2018-08-13 2018-08-13 一种PE/PS/SEBS-g-MAH复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109161079B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106589440A (zh) * 2016-12-19 2017-04-26 江南大学 一种发泡聚乙烯/聚苯乙烯珠粒的生产方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106589440A (zh) * 2016-12-19 2017-04-26 江南大学 一种发泡聚乙烯/聚苯乙烯珠粒的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effect of mixing conditions on the selective localization of graphite oxide and the properties of polyethylene/high-impact polystyrene/graphite;Mahmood Amani et al;《RSC Advancs》;20150914;第77723-77733页 *

Also Published As

Publication number Publication date
CN109161079A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
CN112063048B (zh) 一种低介电高熔体强度阻燃聚丙烯材料及其制备方法
CN103205053B (zh) 一种纳米改性低收缩低烟无卤阻燃聚烯烃电缆料及其制备
CN103360656B (zh) 一种再生聚乙烯组合物及其制备方法
Takidis et al. Compatibility of low‐density polyethylene/poly (ethylene‐co‐vinyl acetate) binary blends prepared by melt mixing
CN110294923B (zh) 微发泡全生物降解聚合物片材及其制备方法
CN109777057B (zh) 一种聚乳酸/竹炭复合材料的制备方法
CN112175339A (zh) 一种聚合物材料及其制备方法
CN102239212A (zh) 制备橡胶/纳米粘土母料的方法,以及使用其制备高强度、高抗冲击聚丙烯/纳米粘土/橡胶复合材料的方法
Wang et al. Compatibilization of poly (lactic acid)/ethylene‐propylene‐diene rubber blends by using organic montmorillonite as a compatibilizer
CN105037656A (zh) 一种聚丙烯/聚苯乙烯合金及其制备方法
CN112759825B (zh) 纤维增强聚丙烯组合物和发泡聚丙烯复合材料及其制备方法
CN108329564A (zh) 一种高阻隔聚乙烯材料及其制备方法
CN111019211A (zh) 一种改性高密度聚乙烯复合材料及其制备方法
CN104072880B (zh) 一种tpo发泡微球的制备方法以及应用
Liu et al. Improving foamability of polypropylene by grafting modification
Zhou et al. Improvement of the dispersity of micro‐nano particles for PP/PVC composites using gas‐assisted dispersion in a controlled foaming process
CN109161079B (zh) 一种PE/PS/SEBS-g-MAH复合材料及其制备方法
CN101787196B (zh) 一种阻燃聚碳酸酯/abs组合物及其制备方法
CN104559115A (zh) 含再生树脂的pc/pet无卤阻燃合金及其制备方法
CN106939112B (zh) 一种高光泽hips/回收pet瓶片复合材料及其制备方法
Li et al. A facile, green, versatile protocol to prepare polypropylene‐g‐poly (methyl methacrylate) copolymer by water‐solid phase suspension grafting polymerization using the surface of reactor granule technology polypropylene granules as reaction loci
CN106032398A (zh) 一种长链支化聚丙烯的制备方法
CN113817296A (zh) 一种新型生物可降解缠绕膜专用料及其制备方法
WO2020169552A1 (en) Polyolefin compositions and process to produce such compositions by the addition of ionomers
AU2016369960B2 (en) A compounded polyethylene composition, process for its manufacturing and articles comprising it

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant