CN109159909B - 临近空间高速飞机爬升轨迹的设计方法 - Google Patents

临近空间高速飞机爬升轨迹的设计方法 Download PDF

Info

Publication number
CN109159909B
CN109159909B CN201810825667.3A CN201810825667A CN109159909B CN 109159909 B CN109159909 B CN 109159909B CN 201810825667 A CN201810825667 A CN 201810825667A CN 109159909 B CN109159909 B CN 109159909B
Authority
CN
China
Prior art keywords
airplane
aircraft
climbing
speed
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810825667.3A
Other languages
English (en)
Other versions
CN109159909A (zh
Inventor
张方齐
程杰
孙烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Aircraft Design and Research Institute Aviation Industry of China AVIC
Original Assignee
Shenyang Aircraft Design and Research Institute Aviation Industry of China AVIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Aircraft Design and Research Institute Aviation Industry of China AVIC filed Critical Shenyang Aircraft Design and Research Institute Aviation Industry of China AVIC
Priority to CN201810825667.3A priority Critical patent/CN109159909B/zh
Publication of CN109159909A publication Critical patent/CN109159909A/zh
Application granted granted Critical
Publication of CN109159909B publication Critical patent/CN109159909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种临近空间高速飞机爬升轨迹的设计方法,该设计方法包括:将飞机在不同高度下的速度所对应的剩余过载曲线画在同一二维坐标系内;根据剩余过载曲线,确定预期的飞机优化爬升轨迹。通过本发明提供的设计方法设计出的飞机优化爬升轨迹,使得飞机能够达到理论最大的加速能力,同时,也使得飞机以飞行时间最短、耗油量最小的方式爬升。

Description

临近空间高速飞机爬升轨迹的设计方法
技术领域
本发明属于飞机技术领域,具体涉及一种临近空间高速飞机爬升轨迹的设计方法。
背景技术
临近空间高速飞机应用自然吸气组合动力,在方案设计阶段会面临剩余推力不足的情况,尤其在飞机的跨音速、模态转换阶段,剩余推力和单位剩余功率等表征飞机加速系能的指标较传统战斗机明显降低,需要采用更精细的飞行轨迹设计方法,尽量提升飞机的加速能力。
因此,希望有一种技术方案来克服或至少减轻现有技术的至少一个上述问题。
发明内容
本发明的目的在于提供一种临近空间高速飞机爬升轨迹的设计方法来克服或至少减轻现有技术中的至少一个上述问题。
为实现上述目的,本发明提供了一种临近空间高速飞机爬升轨迹的设计方法,所述设计方法包括:将飞机在不同高度下的速度多对应的剩余过载曲线画在同一二维坐标系内,其中,所述二维坐标系的横坐标为Ma数,纵坐标为剩余过载;根据所述剩余过载曲线,确定预期的飞机优化爬升轨迹。
优选的,所述飞机的剩余过载曲线通过下式得到,
Figure BDA0001742431880000011
其中,nx为飞机剩余过载,P为发动机推力,Q为气动阻力,G为飞机重力。
优选的,根据所述剩余过载曲线,确定预期的飞机优化爬升轨迹,包括:以飞机爬升状态的起始高度速度为起点,在所述二维坐标系中从左向右沿着所有曲线族的上沿前进方向画曲线;当速度达到爬升状态要求的末速度后,曲线在二维坐标系中以直线连接到爬升末状态要求的高度点。
优选的,通过所述飞机优化爬升轨迹,计算飞机的飞行剖面信息,其中,所述飞行剖面信息包括:完整的爬升过程的高度、速度、时间、耗油量以及加速度。
优选的,通过所述飞机优化爬升轨迹,计算飞机的飞行剖面信息,包括按照下式计算飞机的飞行剖面信息,
Figure BDA0001742431880000021
其中,m为飞机质量,V为飞机速度,t为时间,α为飞机迎角,
Figure BDA0001742431880000022
为发动机安装角,P为发动机推力,Q为气动阻力,G为飞机重力。
本发明的有益效果:通过本发明提供的设计方法设计出的飞机优化爬升轨迹,使得飞机能够达到理论最大的加速能力,同时,也使得飞机以飞行时间最短、耗油量最小的方式爬升。
附图说明
图1是本发明实施例提供的设计方法的流程示意图;
图2是本发明实施例提供的飞机高空高速爬升剩余过载曲线与预期飞行轨迹;
图3是本发明实施例提供的飞机飞行Ma数与时间的关系曲线图;
图4是本发明实施例提供的飞机飞行Ma数与剩余过载的关系曲线图。
具体实施方式
为使本发明实施的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本发明一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合附图对本发明的实施例进行详细说明。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
为了更好的理解本发明,下面将结合附图,详细描述根据本发明实施例提供的临近空间高速飞机爬升轨迹的设计方法,应注意,这些实施例并不是用来限制本发明公开的范围。
图1是本发明实施例提供的设计方法的流程示意图。如图1所示,临近空间高速飞机爬升轨迹的设计方法具体包括以下步骤:
s101,将飞机在不同高度下的速度所对应的剩余过载曲线画在同一二维坐标系内。
其中,二维坐标系的横坐标为Ma数,纵坐标为剩余过载,如图2所示。
飞机的剩余过载曲线通过下式计算得到,
Figure BDA0001742431880000031
式中,nx为飞机剩余过载,P为发动机推力,Q为气动阻力,G为飞机重力。
s102,根据剩余过载曲线,确定预期的飞机优化爬升轨迹。
继续参见图2,预期的飞机优化爬升轨迹通过以下方法确定:
在图2所示的曲线中,以飞机爬升状态的起始高度速度为起点,在二维坐标系中从左向右沿着所有曲线族的上沿前进方向画曲线;当速度达到爬升状态要求的末速度后,曲线在二维坐标系中以直线连接到爬升末状态要求的高度点。
s103,通过所述飞机优化爬升轨迹,计算飞机的飞行剖面信息。
飞机的飞行剖面信息包括:完整的爬升过程的高度、速度、时间、耗油量以及加速度。
通过下式计算飞机的飞行剖面信息,计算结果如图3和图4所示。
Figure BDA0001742431880000041
其中,m为飞机质量,V为飞机速度,t为时间,α为飞机迎角,
Figure BDA0001742431880000042
为发动机安装角,P为发动机推力,Q为气动阻力,G为飞机重力。
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (3)

1.一种临近空间高速飞机爬升轨迹的设计方法,其特征在于,所述设计方法包括
将飞机在不同高度下的速度所对应的剩余过载曲线画在同一二维坐标系内,其中,所述二维坐标系的横坐标为Ma数,纵坐标为剩余过载,所述飞机的剩余过载曲线通过下式得到
Figure FDA0003259781330000011
其中,nx为飞机剩余过载,P为发动机推力,Q为气动阻力,G为飞机重力;
根据所述剩余过载曲线,确定预期的飞机优化爬升轨迹,包括:
以飞机爬升状态的起始高度速度为起点,在所述二维坐标系中从左向右沿着所有曲线族的上沿前进方向画曲线;
当速度达到爬升状态要求的末速度后,曲线在二维坐标系中以直线连接到爬升末状态要求的高度点。
2.根据权利要求1所述的临近空间高速飞机爬升轨迹的设计方法,其特征在于,所述设计方法还包括
通过所述飞机优化爬升轨迹,计算飞机的飞行剖面信息;其中,所述飞行剖面信息包括:完整的爬升过程的高度、速度、时间、耗油量以及加速度。
3.根据权利要求2所述的临近空间高速飞机爬升轨迹的设计方法,其特征在于,通过所述飞机优化爬升轨迹,计算飞机的飞行剖面信息,包括
按照下式计算飞机的飞行剖面信息,
Figure FDA0003259781330000012
其中,m为飞机质量,V为飞机速度,t为时间,α为飞机迎角,
Figure FDA0003259781330000013
为发动机安装角,P为发动机推力,Q为气动阻力,G为飞机重力。
CN201810825667.3A 2018-07-25 2018-07-25 临近空间高速飞机爬升轨迹的设计方法 Active CN109159909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810825667.3A CN109159909B (zh) 2018-07-25 2018-07-25 临近空间高速飞机爬升轨迹的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810825667.3A CN109159909B (zh) 2018-07-25 2018-07-25 临近空间高速飞机爬升轨迹的设计方法

Publications (2)

Publication Number Publication Date
CN109159909A CN109159909A (zh) 2019-01-08
CN109159909B true CN109159909B (zh) 2022-02-22

Family

ID=64898098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810825667.3A Active CN109159909B (zh) 2018-07-25 2018-07-25 临近空间高速飞机爬升轨迹的设计方法

Country Status (1)

Country Link
CN (1) CN109159909B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2125001C1 (ru) * 1989-11-27 1999-01-20 Акционерное общество открытого типа "Таганрогский авиационный научно-технический комплекс им.Г.М.Бериева" Днище гидросамолета
CN101393458A (zh) * 2008-10-30 2009-03-25 北京控制工程研究所 一种空天飞机高空爬升纵向控制方法
CN104777844A (zh) * 2015-02-12 2015-07-15 西安电子科技大学 一种高超声速临近空间飞行器航迹跟踪方法
CN106502263A (zh) * 2015-09-03 2017-03-15 通用电气公司 使用非线性规划的飞行路径优化
CN106529094A (zh) * 2016-11-30 2017-03-22 中国航空工业集团公司沈阳飞机设计研究所 一种基于典型飞行动作的飞机严重载荷谱编制方法
CN106643341A (zh) * 2017-02-24 2017-05-10 北京临近空间飞行器系统工程研究所 基于准平衡滑翔原理的力热控制耦合设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2125001C1 (ru) * 1989-11-27 1999-01-20 Акционерное общество открытого типа "Таганрогский авиационный научно-технический комплекс им.Г.М.Бериева" Днище гидросамолета
CN101393458A (zh) * 2008-10-30 2009-03-25 北京控制工程研究所 一种空天飞机高空爬升纵向控制方法
CN104777844A (zh) * 2015-02-12 2015-07-15 西安电子科技大学 一种高超声速临近空间飞行器航迹跟踪方法
CN106502263A (zh) * 2015-09-03 2017-03-15 通用电气公司 使用非线性规划的飞行路径优化
CN106529094A (zh) * 2016-11-30 2017-03-22 中国航空工业集团公司沈阳飞机设计研究所 一种基于典型飞行动作的飞机严重载荷谱编制方法
CN106643341A (zh) * 2017-02-24 2017-05-10 北京临近空间飞行器系统工程研究所 基于准平衡滑翔原理的力热控制耦合设计方法

Also Published As

Publication number Publication date
CN109159909A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
CN104276284B (zh) 一种串列式扇翼飞行器布局
EP3269636A1 (en) Airplane wing
CN103640696B (zh) 垂降无人机及其控制方法
CN103171766A (zh) 短距起降无人飞翼
CN110794866A (zh) 一种集爬升-巡航-下降为整体的航时性能优化方法
CN109808913A (zh) 一种带有可偏转翼梢小翼的无人机设计方法
CN102826216A (zh) 一种飞行器气动布局
CN205239908U (zh) 固定倾转角旋翼飞行器
CN110104160A (zh) 一种中距耦合折叠双翼飞行器
CN203666968U (zh) 一种下反式机翼小翼尖结构
CN106873615B (zh) 应急返场着陆速度指令集设计方法
CN109159909B (zh) 临近空间高速飞机爬升轨迹的设计方法
US20160293016A1 (en) System and Method for Calculating a Fuel Consumption Differential Corresponding to an Aircraft Trajectory Revision
CN113569429B (zh) 短距垂直起降飞行器三维飞行包线计算方法及装置
CN112591133B (zh) 一种跨昼夜飞行太阳能无人机总体参数设计方法
CN104964610A (zh) 一种乘波体构型无人靶机
CN103171758A (zh) 一种飞翼型飞机的增升方法
CN103612769A (zh) 翼吊布局飞机中吊挂的整流罩结构
CN113753257B (zh) 一种桁架支撑机翼构型飞机展弦比优化方法
CN107697284B (zh) 一种双段式仿生扑翼无人机机翼
CN114912284A (zh) 基于第一法则的飞行管理系统爬升性能预测算法
CN102616367B (zh) 一种高升阻比固定翼飞机及其实现方法
CN109815528A (zh) 一种基于大型复合翼气的飞行器参数优化的方法
CN204750567U (zh) 一种高速风扇翼飞行器
CN202783771U (zh) 一种飞行器气动布局

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant