CN109158127A - 负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法 - Google Patents
负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法 Download PDFInfo
- Publication number
- CN109158127A CN109158127A CN201810708961.6A CN201810708961A CN109158127A CN 109158127 A CN109158127 A CN 109158127A CN 201810708961 A CN201810708961 A CN 201810708961A CN 109158127 A CN109158127 A CN 109158127A
- Authority
- CN
- China
- Prior art keywords
- thin metal
- metal organic
- nanometer sheet
- organic frame
- super thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
- B01J31/2239—Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2282—Unsaturated compounds used as ligands
- B01J31/2295—Cyclic compounds, e.g. cyclopentadienyls
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/03—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
- B01J2231/645—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/40—Complexes comprising metals of Group IV (IVA or IVB) as the central metal
- B01J2531/48—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/842—Iron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2531/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- C07C2531/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- C07C2531/22—Organic complexes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法。所述的负载有钯的二茂铁基超薄金属有机框架纳米片是在二茂铁基超薄金属有机框架纳米片上负载钯形成;二茂铁基超薄金属有机框架纳米片由有机配体1,1'‑二茂铁二甲酸、金属盐四氯化锆和调制剂酸制备获得;将二茂铁基超薄金属有机框架纳米片和水加入到反应容器中,超声得超薄金属有机框架纳米片分散液;在超薄金属有机框架纳米片分散液中加入钯的前驱体,在一定温度下反应一段时间得负载有钯的超薄金属有机框架纳米片。本发明制备方法简单,绿色环保,所得负载有钯的二茂铁基超薄金属有机框架纳米片具有多孔的结构,化学性质稳定,在非均相催化领域有着重要的应用前景。
Description
技术领域
本发明属于材料化学领域的一种负载有金属的有机框架纳米片及其制备方法,具体涉及一种负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法。
背景技术
超薄金属有机框架纳米片具有超薄的厚度,以及大的横向尺寸。这些特点使得超薄金属有机框架纳米片具有更多暴露的活性位点,非常适合作为金属纳米颗粒的载体,在非均相催化领域发挥重要的作用。
目前来说,将金属纳米颗粒负载到金属有机框架纳米片上主要需要两个步骤。首先,将金属前驱体吸附到金属有机框架纳米片上。然后,加入还原剂(如硼氢化钠和氢气等)将金属前驱体还原成相应的金属纳米颗粒。然而,这种方法不能保证所有的金属纳米颗粒都负载到金属有机框架纳米片的孔道内。其次,所采用的还原条件太苛刻,有可能会破坏金属有机框架纳米片的结构。
发明内容
为了解决背景技术中存在的问题,本发明提供了一种负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法,其厚度在50nm以下,横向尺寸在1000nm以下。
本发明二茂铁基超薄金属有机框架纳米片的厚度在50nm以下且横向尺寸在1000nm以下。
本发明具体技术方案是:
一、一种负载有钯的二茂铁基超薄金属有机框架纳米片:
所述的负载有钯的二茂铁基超薄金属有机框架纳米片是在二茂铁基超薄金属有机框架纳米片上负载钯形成。
所述的二茂铁基超薄金属有机框架纳米片由有机配体1,1'-二茂铁二甲酸、金属盐四氯化锆和调制剂酸制备获得。
所述的钯颗粒大小在10nm以下,二茂铁基超薄金属有机框架纳米片的厚度在50nm以下,横向尺寸在1000nm以下。
所述的钯颗粒大小为单个钯颗粒的大小,所述的厚度与横向尺寸为单个二茂铁基超薄金属有机框架纳米片的厚度与横向尺寸,横向尺寸为垂直于厚度方向的平面上任意方向的尺寸。
二、一种负载有钯的二茂铁基超薄金属有机框架纳米片的制备方法,包括以下步骤:
1)制备超薄金属有机框架纳米片分散液:将二茂铁基超薄金属有机框架纳米片和水加入到反应容器中,超声一段时间将纳米片分散即得超薄金属有机框架纳米片分散液;
2)制备负载有钯的超薄金属有机框架纳米片:在步骤1)得到的超薄金属有机框架纳米片分散液中加入钯的前驱体,在一定温度下反应一段时间得负载有钯的超薄金属有机框架纳米片。
所述步骤1)中的超薄金属有机框架纳米片分散液的纳米片浓度为0.01~1mg/mL,所述步骤2)中加入的钯的前驱体的浓度为0.01~2μmol/mL。
所述步骤2)的反应温度为0~50℃,反应时间为30min~12h。
所述的钯的前驱体为氯亚钯酸钾,其分子式为K2PdCl4。
所述步骤2)中反应的还原剂为二茂铁基超薄金属有机框架纳米片。
本发明二茂铁基超薄金属有机框架纳米片负载金属钯过程中,是以自身作为还原剂对钯的前驱体进行还原,还原剂即为二茂铁基超薄金属有机框架纳米片,不添加额外的还原剂,而实现了金属钯负载于二茂铁基超薄金属有机框架纳米片表面。
所述的二茂铁基超薄金属有机框架纳米片主要由有机配体1,1'-二茂铁二甲酸、金属盐四氯化锆制备合成。
所述的二茂铁基超薄金属有机框架纳米片采用以下制备过程:在80~180℃温度条件下,将有机配体1,1'-二茂铁二甲酸、金属盐四氯化锆和调制剂酸加入到反应容器中,然后加入溶剂N,N-二甲基甲酰胺调节溶液中四氯化锆和1,1'-二茂铁二甲酸的的浓度,反应12h到7天后即得二茂铁基超薄金属有机框架纳米片。
所述的1,1'-二茂铁二甲酸与四氯化锆的摩尔比为1:10~5:1;所述的酸与四氯化锆的摩尔比为1:1~300:1。
调节后溶液中所述四氯化锆和1,1'-二茂铁二甲酸的浓度为0.01~0.2mmol/mL。
二茂铁基超薄金属有机框架纳米片过程中的反应温度为80~180℃;所述的反应时间在30min到7天之间。
本发明采用茂铁基超薄金属有机框架纳米片本身作为还原剂,原位还原钯前驱体,不需要采用任何额外还原剂。同时,该原位还原条件温和,避免了由于还原条件苛刻而引起结构破坏的问题。此外,钯在二茂铁基超薄金属有机框架纳米片中分散均匀,且颗粒大小在10nm以下,在非均相催化领域有重要的应用前景。
本发明具有如下有益效果:
1、提供了一种催化性能优越的负载有钯的超薄金属有机框架纳米片;
2、提供了一种简单绿色环保的制备负载有钯的超薄金属有机框架纳米片的方法;
3、所得的负载有钯的超薄金属有机框架纳米片具有高的催化活性,在非均相催化等领域有重要的应用前景。
附图说明
图1为负载有钯的超薄金属有机框架纳米片的透射电镜图;
图2a)为负载有钯的超薄金属有机框架纳米片催化苯乙烯加氢反应的动力学曲线;
图2b)为回收不同次数的负载有钯的超薄金属有机框架纳米片催化苯乙烯加氢反应的转化率。
具体实施方式
下面结合具体实施例对本发明做更详尽的说明,但本发明的实施方式不限于此。
实施例1:
于一个500mL圆底烧瓶中,加入超薄金属有机框架纳米片(5mg)和水(250mL),超声30min将其分散,得到超薄金属有机框架纳米片分散液。在分散液中加入氯亚钯酸钾(1.63mg,0.1mmol),于30℃反应5小时。反应结束后,离心分离(3000rpm,30min),得到沉淀。将所得沉淀用水(30mL)重新超声分散,再次离心得到沉淀。重复上述超声分散和离心操作三次后,得到负载有钯的超薄金属有机框架纳米片。
实施例2:
于一个500mL圆底烧瓶中,加入超薄金属有机框架纳米片(100mg)和水(250mL),超声30min将其分散,得到超薄金属有机框架纳米片分散液。在分散液中加入氯亚钯酸钾(32.6mg,0.1mmol),于30℃反应5小时。反应结束后,离心分离(3000rpm,30min),得到沉淀。将所得沉淀用水(30mL)重新超声分散,再次离心得到沉淀。重复上述超声分散和离心操作三次后,得到负载有钯的超薄金属有机框架纳米片。
实验测试结果如下:
如图1所示为制备得到的负载有钯的超薄金属有机框架纳米片的透射电镜图,从图中可以看到钯颗粒的大小约为5nm且在超薄金属有机框架纳米片上均匀地分布,表明本发明制备得到的负载有钯的超薄金属有机框架纳米片是一种高效的催化加氢催化剂;
如图2所示,负载有钯的超薄金属有机框架纳米片可以催化苯乙烯加氢反应快速地进行(TOF值高达7968h-1),将负载有钯的超薄金属有机框架纳米片回收利用6次,其催化性能没有明显的降低。
实施例3:
于一个500mL圆底烧瓶中,加入超薄金属有机框架纳米片(500mg)和水(250mL),超声30min将其分散,得到超薄金属有机框架纳米片分散液。在分散液中加入氯亚钯酸钾(326mg,1mmol),于30℃反应5小时。反应结束后,离心分离(3000rpm,30min),得到沉淀。将所得沉淀用水(30mL)重新超声分散,再次离心得到沉淀。重复上述超声分散和离心操作三次后,得到负载有钯的超薄金属有机框架纳米片。
实施例4:
于一个500mL圆底烧瓶中,加入超薄金属有机框架纳米片(100mg)和水(250mL),超声30min将其分散,得到超薄金属有机框架纳米片分散液。在分散液中加入氯亚钯酸钾(32.6mg,0.1mmol),于0℃反应12小时。反应结束后,离心分离(3000rpm,30min),得到沉淀。将所得沉淀用水(30mL)重新超声分散,再次离心得到沉淀。重复上述超声分散和离心操作三次后,得到负载有钯的超薄金属有机框架纳米片。
实施例5:
于一个500mL圆底烧瓶中,加入超薄金属有机框架纳米片(100mg)和水(250mL),超声30min将其分散,得到超薄金属有机框架纳米片分散液。在分散液中加入氯亚钯酸钾(32.6mg,0.1mmol),于50℃反应30min。反应结束后,离心分离(3000rpm,30min),得到沉淀。将所得沉淀用水(30mL)重新超声分散,再次离心得到沉淀。重复上述超声分散和离心操作三次后,得到负载有钯的超薄金属有机框架纳米片。
由上述实施可见,本发明制备方法简单,绿色环保,所得负载有钯的二茂铁基超薄金属有机框架纳米片具有多孔的结构,化学性质稳定,在非均相催化领域有着重要的应用前景。
Claims (9)
1.一种负载有钯的二茂铁基超薄金属有机框架纳米片,其特征在于:所述的负载有钯的二茂铁基超薄金属有机框架纳米片是在二茂铁基超薄金属有机框架纳米片上负载钯形成。
2.根据权利要求1所述的一种负载有钯的二茂铁基超薄金属有机框架纳米片,其特征在于:所述的二茂铁基超薄金属有机框架纳米片由有机配体1,1'-二茂铁二甲酸、金属盐四氯化锆和调制剂酸制备获得。
3.根据权利要求1所述的一种负载有钯的二茂铁基超薄金属有机框架纳米片,其特征在于:所述的钯颗粒大小在10nm以下,二茂铁基超薄金属有机框架纳米片的厚度在50nm以下,横向尺寸在1000nm以下。
4.一种负载有钯的二茂铁基超薄金属有机框架纳米片的制备方法,其特征在于,包括以下步骤:
1)制备超薄金属有机框架纳米片分散液:将二茂铁基超薄金属有机框架纳米片和水加入到反应容器中,超声即得超薄金属有机框架纳米片分散液;
2)制备负载有钯的超薄金属有机框架纳米片:在步骤1)得到的超薄金属有机框架纳米片分散液中加入钯的前驱体,在一定温度下反应一段时间得负载有钯的超薄金属有机框架纳米片。
5.根据权利要求书3所述的负载有钯的二茂铁基超薄金属有机框架纳米片的制备方法,其特征在于,所述步骤1)中的超薄金属有机框架纳米片分散液的浓度为0.01~1mg/mL,所述步骤2)中加入的钯的前驱体的浓度为0.01~2μmol/mL。
6.根据权利要求书3所述的负载有钯的二茂铁基超薄金属有机框架纳米片的制备方法,其特征在于,所述步骤2)的反应温度为0~50℃,反应时间为30min~12h。
7.根据权利要求书3所述的负载有钯的二茂铁基超薄金属有机框架纳米片的制备方法,其特征在于,所述的钯的前驱体为氯亚钯酸钾。
8.根据权利要求书3所述的负载有钯的二茂铁基超薄金属有机框架纳米片的制备方法,其特征在于,所述步骤2)中反应的还原剂为二茂铁基超薄金属有机框架纳米片。
9.根据权利要求书3所述的负载有钯的二茂铁基超薄金属有机框架纳米片的制备方法,其特征在于,所述的二茂铁基超薄金属有机框架纳米片主要由有机配体1,1'-二茂铁二甲酸、金属盐四氯化锆制备合成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810708961.6A CN109158127B (zh) | 2018-07-02 | 2018-07-02 | 负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810708961.6A CN109158127B (zh) | 2018-07-02 | 2018-07-02 | 负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109158127A true CN109158127A (zh) | 2019-01-08 |
CN109158127B CN109158127B (zh) | 2020-07-31 |
Family
ID=64897521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810708961.6A Active CN109158127B (zh) | 2018-07-02 | 2018-07-02 | 负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109158127B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109939740A (zh) * | 2019-04-09 | 2019-06-28 | 大连理工大学 | 一种负载金纳米粒子的二维纳米片的制备方法及应用 |
CN111185235A (zh) * | 2020-01-16 | 2020-05-22 | 浙江大学 | 一种金纳米颗粒/金属有机框架复合物的制备及其在对硝基苯酚还原中的应用 |
CN115772272A (zh) * | 2022-12-05 | 2023-03-10 | 洛阳师范学院 | 一种银修饰的二维金属-有机框架纳米材料及其制备方法和在制备抗菌产品中的应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101733162A (zh) * | 2009-12-24 | 2010-06-16 | 上海交通大学 | 有机金属框架物负载钯及其制备方法、用途 |
WO2015171791A1 (en) * | 2014-05-06 | 2015-11-12 | Massachusetts Institute Of Technology | Compositions and methods comprising conductive metal organic frameworks and uses thereof |
CN106179506A (zh) * | 2016-06-24 | 2016-12-07 | 中国科学院福建物质结构研究所 | 一种负载型钯基催化剂及其制备方法和应用 |
CN107746465A (zh) * | 2017-10-01 | 2018-03-02 | 桂林理工大学 | 一种以3,5‑吡唑二羧酸为配体构筑的Nd‑MOF材料及制备方法 |
CN107837820A (zh) * | 2017-11-21 | 2018-03-27 | 南京工业大学 | 一种二维MOFs材料负载纳米粒子的制备方法 |
CN107887616A (zh) * | 2017-11-09 | 2018-04-06 | 中国石油大学(华东) | 一种新型过渡金属修饰的氧化还原催化剂及其制备方法 |
WO2018154166A1 (es) * | 2017-02-22 | 2018-08-30 | Universitat De València | Clústeres metálicos subnanométricos confinados en redes metal-orgánicas como catalizadores para la síntesis de cicloheptatrienos y derivados |
-
2018
- 2018-07-02 CN CN201810708961.6A patent/CN109158127B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101733162A (zh) * | 2009-12-24 | 2010-06-16 | 上海交通大学 | 有机金属框架物负载钯及其制备方法、用途 |
WO2015171791A1 (en) * | 2014-05-06 | 2015-11-12 | Massachusetts Institute Of Technology | Compositions and methods comprising conductive metal organic frameworks and uses thereof |
CN106179506A (zh) * | 2016-06-24 | 2016-12-07 | 中国科学院福建物质结构研究所 | 一种负载型钯基催化剂及其制备方法和应用 |
WO2018154166A1 (es) * | 2017-02-22 | 2018-08-30 | Universitat De València | Clústeres metálicos subnanométricos confinados en redes metal-orgánicas como catalizadores para la síntesis de cicloheptatrienos y derivados |
CN107746465A (zh) * | 2017-10-01 | 2018-03-02 | 桂林理工大学 | 一种以3,5‑吡唑二羧酸为配体构筑的Nd‑MOF材料及制备方法 |
CN107887616A (zh) * | 2017-11-09 | 2018-04-06 | 中国石油大学(华东) | 一种新型过渡金属修饰的氧化还原催化剂及其制备方法 |
CN107837820A (zh) * | 2017-11-21 | 2018-03-27 | 南京工业大学 | 一种二维MOFs材料负载纳米粒子的制备方法 |
Non-Patent Citations (2)
Title |
---|
TING HE ET AL.: "Ultrathin 2D Zirconium Metal-Organic Framework Nanosheets: Preparation and Application in Photocatalysis", 《SMALL》 * |
VADAPALLI CHANDRASEKHAR AND RAMALINGAM THIRUMOORTHI: "Coordination polymers containing ferrocene backbone. Synthesis, structure and electrochemistry", 《DALTON TRANSACTIONS》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109939740A (zh) * | 2019-04-09 | 2019-06-28 | 大连理工大学 | 一种负载金纳米粒子的二维纳米片的制备方法及应用 |
CN111185235A (zh) * | 2020-01-16 | 2020-05-22 | 浙江大学 | 一种金纳米颗粒/金属有机框架复合物的制备及其在对硝基苯酚还原中的应用 |
CN115772272A (zh) * | 2022-12-05 | 2023-03-10 | 洛阳师范学院 | 一种银修饰的二维金属-有机框架纳米材料及其制备方法和在制备抗菌产品中的应用 |
CN115772272B (zh) * | 2022-12-05 | 2023-11-14 | 洛阳师范学院 | 一种银修饰的二维金属-有机框架纳米材料及其制备方法和在制备抗菌产品中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109158127B (zh) | 2020-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2T x MXene nanosheets for efficient methanol oxidation | |
Chen et al. | Controllable catalysis with nanoparticles: bimetallic alloy systems and surface adsorbates | |
Zhou et al. | Gram-scale-synthesized Pd2Co-supported Pt monolayer electrocatalysts for oxygen reduction reaction | |
He et al. | Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity | |
Zhao et al. | Ultrathin PtPdCu nanowires fused porous architecture with 3D molecular accessibility: an active and durable platform for methanol oxidation | |
Zhang et al. | Effects of acid treatment of Pt− Ni alloy nanoparticles@ graphene on the kinetics of the oxygen reduction reaction in acidic and alkaline solutions | |
Wang et al. | Pd–Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward Suzuki cross-coupling reactions | |
CN109158127A (zh) | 负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法 | |
Esmaeilzadeh et al. | Pd immobilized on hybrid of magnetic graphene quantum dots and cyclodextrin decorated chitosan: An efficient hydrogenation catalyst | |
Zhao et al. | Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis | |
Li et al. | An enzyme–copper nanoparticle hybrid catalyst prepared from disassembly of an enzyme–inorganic nanocrystal three-dimensional nanostructure | |
Sharma et al. | PdO/CuO nanoparticles on zeolite-Y for nitroarene reduction and methanol oxidation | |
Hadian-Dehkordi et al. | Amphiphilic carbon quantum dots as a bridge to a pseudohomogeneous catalyst for selective oxidative cracking of alkenes to aldehydes: A nonmetallic oxidation system | |
Cai et al. | Facile strategy to prepare Rh nanosheet-supported PtRh nanoparticles with synergistically enhanced catalysis in oxidation | |
Rossi et al. | Screening of soluble rhodium nanoparticles as precursor for highly active hydrogenation catalysts: the effect of the stabilizing agents | |
Cui et al. | Ultrasonic-assisted synthesis of two dimensional coral-like Pd nanosheets supported on reduced graphene oxide for enhanced electrocatalytic performance | |
Karataş et al. | Rh (0) nanoparticles impregnated on two‐dimensional transition metal carbides, MXene, as an effective nanocatalyst for ammonia‐borane hydrolysis | |
Liu et al. | Pt3Sn nanoparticles with controlled size: high-temperature synthesis and room-temperature catalytic activation for electrochemical methanol oxidation | |
Jiang et al. | Aryl-aryl bond formation by Ullmann reaction: from mechanistic aspects to catalyst | |
Wang et al. | Metal-organic framework grown in situ on chitosan microspheres as robust host of palladium for heterogeneous catalysis: Suzuki reaction and the p-nitrophenol reduction | |
Du et al. | In situ engineering of the Cu+/Cu0 interface to boost C2+ selectivity in CO2 electroreduction | |
Zhang et al. | Cellulose-supported Pd nanoparticles: Effective for the selective oxidation of glucose into gluconic acid | |
Fang et al. | Fabrication of ellipsoidal silica yolk–shell magnetic structures with extremely stable Au nanoparticles as highly reactive and recoverable catalysts | |
Ren et al. | Fabrication and catalytic properties of “cage like” aryl imine Pd (II)/Cu (II)-bimetallic catalytic monolayer supported on graphene oxide for Suzuki coupling reaction | |
Özgür | Green synthesis of highly dispersed Ag nanoparticles on polydopamine-functionalized graphene oxide and their high catalytic reduction reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |