CN109155717A - 用于寻呼NB-IoT装置的共同搜索空间(CSS) - Google Patents

用于寻呼NB-IoT装置的共同搜索空间(CSS) Download PDF

Info

Publication number
CN109155717A
CN109155717A CN201780030577.9A CN201780030577A CN109155717A CN 109155717 A CN109155717 A CN 109155717A CN 201780030577 A CN201780030577 A CN 201780030577A CN 109155717 A CN109155717 A CN 109155717A
Authority
CN
China
Prior art keywords
subframe
sub
paging
frame mode
downlink subframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780030577.9A
Other languages
English (en)
Other versions
CN109155717B (zh
Inventor
Y.布兰肯希普
隋宇涛
Y-P.E.王
A.格雷夫伦
H.肖克里拉扎希
林兴钦
A.阿迪卡里
J.贝格曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to CN202110419237.3A priority Critical patent/CN113286364A/zh
Publication of CN109155717A publication Critical patent/CN109155717A/zh
Application granted granted Critical
Publication of CN109155717B publication Critical patent/CN109155717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开一种由空闲模式中的用户设备(UE)(310)执行以便确定用于NB‑IoT寻呼的共同搜索空间(CSS)的方法(100)。该方法包括确定(102)周期性子帧的集合以作为寻呼时机(PO)子帧模式。该方法还包括监测(104)对于无线电网络临时标识符(RNTI)的寻呼CSS的起始子帧。按照以下操作来确定寻呼CSS的起始子帧,所述操作为:当确定(106)由寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0(108)。当确定(106)SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧(110)。

Description

用于寻呼NB-IoT装置的共同搜索空间(CSS)
技术领域
一般来说,本公开涉及无线通信,并且更具体来说,涉及确定用于寻呼窄带物联网(NB-IoT)系统和装置的共同搜索空间(CSS)。
背景技术
窄带物联网(NB-IoT)是由3GPP为蜂窝物联网开发的窄带(180 KHz带宽)系统。该系统基于LTE系统,并且为具有任何一个或多个以下特性的大量装置解决优化的网络体系结构和改善的室内覆盖:
●低吞吐量装置(例如,2Kbps)
●低延迟灵敏度(例如,~10秒)
●超低装置成本(例如,低于5美元)
●低装置功耗(例如,10年的电池寿命)
设想,该系统中的每个小区(例如,~1 km2)将服务于成千上万个(例如,~5万个)诸如传感器、仪表、致动器等的无线装置。势在必行的是,该系统能够为它的装置提供良好覆盖,这些装置通常位于室内深处(例如,地下室中的地下),或者甚至建造到建筑物的墙壁中并且只有有限的可能性或没有可能性来为电池充电。尽管设想许多不同类型的装置,但是为简单起见,它们在该文档全篇中将称为无线装置(WD)或用户设备(UE)。
为了使得有可能只利用一个重新架构的(refarmed)GSM载波来部署NB-IoT并支持对于NB-IoT UE的更低制造成本,带宽已被减小为划分成若干个副载波的大小为180 KHz的一个物理资源块(PRB)。
对于频分双工或FDD(即,传送器和接收器在不同载波频率操作),只需在UE中支持半双工模式。装置的更低复杂度(例如,只有一个传输/接收器链)意味着,在正常覆盖中也可能需要一定的重复。此外,为了减轻UE复杂度,起作用的假设是具有交叉子帧调度。即,首先在增强型物理DL控制信道(E-PDCCH,又称为NB-PDCCH)上调度传输,并且然后在NB-PDCCH的最终传输之后进行物理DL共享信道(PDSCH)上的实际数据的第一传输。类似地,对于上行链路(UL)数据传输,首先在NB-PDCCH上传达关于针对UL传输由网络所调度的和UE所需要的资源的信息,并且然后在NB-PDCCH的最终传输之后进行通过UE在物理UL共享信道(PUSCH)上的实际数据的第一传输。换句话说,对于以上两种情形,从UE的角度,并不存在同步的控制信道的接收和数据信道的接收/传输。
以下文本是来自3GPP TS 36.304的章节7的摘录,其全部内容以引用的方式并入到本文:
7. Paging
7.1 Discontinuous Reception for paging
The UE may use Discontinuous Reception (DRX) in idle mode in order to reduce power consumption. One Paging Occasion (PO) is a subframe where there may be P-RNTI transmitted on PDCCH addressing the paging message. One Paging Frame (PF) is one Radio Frame, which may contain one or multiple Paging Occasion(s). When DRX is used the UE needs only to monitor one PO per DRX cycle.
PF and PO is determined by following formulae using the DRX parameters provided in System Information:
PF is given by following equation:
SFN mod T= (T div N)*(UE_ID mod N)
Index i_s pointing to PO from subframe pattern defined below will be derived from following calculation:
i_s = floor(UE_ID/N) mod Ns
System Information DRX parameters stored in the UE shall be updated locally in the UE whenever the DRX parameter values are changed in SI. If the UE has no IMSI, for instance when making an emergency call without USIM, the UE shall use as default identity UE_ID = 0 in the PF and i_s formulas above.
The following Parameters are used for the calculation of the PF and i_s:
-T: DRX cycle of the UE. T is determined by the shortest of the UE specific DRX value, if allocated by upper layers, and a default DRX value broadcast in system information. If UE specific DRX is not configured by upper layers, the default value is applied.
-nB: 4T, 2T, T, T/2, T/4, T/8, T/16, T/32.
-N: min(T,nB)
-Ns: max(1,nB/T)
-UE_ID: IMSI mod 1024.
IMSI is given as sequence of digits of type Integer (0..9), IMSI shall in the formulae above be interpreted as a decimal integer number, where the first digit given in the sequence represents the highest order digit.
For example:
IMSI = 12 (digit1=1, digit2=2)
In the calculations, this shall be interpreted as the decimal integer " 12", not "1x16+2 = 18".
7.2 Subframe Patterns
FDD:
[Table 0-1]
TDD (all UL/DL configurations):
[Table 0-2]
发明内容
从以上摘录能够看到,当前方法为NB-IoT UE提供不充足的寻呼机会(例如,零或有限数量的寻呼时机)。因此,这对于NB-IoT UE充分通信提供有限或不充足的机会。
在本公开中,我们通过为NB-IoT UE确定寻呼时机(PO)、寻呼帧(PF)和共同搜索空间(CSS)来提出用来解决这些问题的方法和设备。这为NB-IoT装置进行通信提供更充足的机会。
本文中公开用于监测、对准、修改和/或指派用于NB-IoT UE的寻呼时机和/或寻呼帧的各种实施例。根据特定实施例,公开用于在子帧由其它广播信道或信号所占用时使用的方法和设备。根据额外实施例,公开用于带内操作的方法和设备。根据额外实施例,公开用于独立或防护频带操作的方法和设备。根据额外实施例,公开用于在不改变PO子帧模式的情况下利用有效子帧模式确定寻呼CSS的方法和设备。本文中所描述的各种方法可由无线装置、UE、网络节点或某个合适的设备组合来执行。
公开一种由无线装置执行的方法。该方法包括:确定周期性子帧的集合以作为寻呼时机(PO)子帧模式;以及监测对于无线电网络临时标识符(RNTI)的寻呼CSS的起始子帧。按照如下操作来确定寻呼CSS的起始子帧,所述操作为:(i) 当确定由寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0;以及(ii) 当确定SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧。
在一些实施例中,如果子帧在窄带系统信息块1(NB-SIB1)中被指示是有效下行链路子帧,并且子帧不包含以下中的任何一个,即NPSS、NSSS、NPBCH和NB-SIB1,那么确定子帧是有效下行链路子帧。
还公开一种无线装置。该无线装置包括处理电路,所述处理电路配置成确定周期性子帧的集合以作为寻呼时机(PO)子帧模式,并监测对于无线电网络临时标识符(RNTI)的寻呼CSS的起始子帧。按照以下操作来确定寻呼CSS的起始子帧,所述操作为:(i) 当确定由寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0;以及(ii) 当确定SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧。该无线装置还可包括配置成向无线装置供电的电源电路。
在一些实施例中,如果子帧在窄带系统信息块1(NB-SIB1)中被指示为有效下行链路子帧,并且子帧不包含以下中的任何一个,即NPSS、NSSS、NPBCH和NB-SIB1,那么确定子帧是有效下行链路子帧。
还公开一种用于在空闲模式中操作时确定用于NB-IoT寻呼的共同搜索空间(CSS)的用户设备UE。所述UE包括配置成发送和接收无线信号的天线。UE还包括无线电前端电路,其连接到天线和处理电路,并配置成调节在天线和处理电路之间传递的信号。处理电路配置成确定周期性子帧的集合以作为寻呼时机(PO)子帧模式,并监测对于无线电网络临时标识符(RNTI)的寻呼CSS的起始子帧。按照以下操作来确定寻呼CSS的起始子帧,所述操作为:(i) 当确定由寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0;以及(ii) 当确定SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧。该用户设备还包括:连接到处理电路并配置成允许将信息输入到UE中以便通过处理电路进行处理的输入接口;以及连接到处理电路并配置成从UE输出经过处理电路处理的信息的输出接口。另外,该用户设备包括连接到处理电路并配置成向UE供电的电池。
在一些实施例中,如果子帧在窄带系统信息块1(NB-SIB1)中被指示是有效下行链路子帧,并且子帧不包含以下中的任何一个,即NPSS、NSSS、NPBCH和NB-SIB1,那么确定子帧是有效下行链路子帧。
还公开一种通过网络节点执行的方法。所述方法包括:确定周期性子帧的集合以作为寻呼时机(PO)子帧模式;以及将寻呼消息传送给用户设备(UE),其中寻呼消息以寻呼CSS的起始子帧开始。按照以下操作来确定寻呼CSS的起始子帧,所述操作为:(i) 当确定由寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0;以及(ii) 当确定SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧。
在一些实施例中,网络节点在窄带系统信息块1(NB-SIB1)中指示子帧是有效下行链路子帧。如果子帧不包含以下中的任何一个,即NPSS、NSSS、NPBCH和NB-SIB1,那么网络节点确定子帧是有效下行链路子帧。
还公开一种用于确定用于NB-IoT寻呼的共同搜索空间(CSS)的网络节点。所述网络节点包括处理电路,所述处理电路配置成:确定周期性子帧的集合以作为寻呼时机(PO)子帧模式;以及将寻呼消息传送给用户设备(UE),寻呼消息以寻呼CSS的起始子帧开始。按照以下操作来确定寻呼CSS的起始子帧,所述操作为:(i) 当确定由寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0;以及(ii) 当确定SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧。
在一些实施例中,网络节点在窄带系统信息块1(NB-SIB1)中指示子帧是有效下行链路子帧。如果子帧不包含以下中的任何一个,即NPSS、NSSS、NPBCH和NB-SIB1,那么网络节点确定子帧是有效下行链路子帧。
本公开的某些实施例可提供一个或多个技术优点。例如,一些实施例可有利地为NB-IoT装置进行通信提供更充足的机会。一些实施例允许NB-IoT传输灵活地适配于有效下行链路子帧模式。一些实施例有利地为NB-IoT装置提供相同寻呼机制,而不管操作模式如何,这包括带内操作、独立操作和防护频带操作。此外,一些实施例可防止经由寻呼发送的帧的冲突。本领域技术人员可容易地获得其它优点。某些实施例可不具有所记载的优点中的任何一个优点,或者可具有所记载的优点中的一些或所有优点。
附图说明
图1是根据本公开的某些实施例通过用户设备执行的示例方法的过程流程图。
图2是根据本公开的某些实施例通过网络节点执行的示例方法的过程流程图。
图3是根据本公开的某些实施例的示例无线通信网络的示意图。
图4是根据本公开的某些实施例的示例用户设备的示意图。
具体实施方式
现在下文将参考附图更全面地描述本文中所预期的一些实施例。但是,本公开的范围内包含其它实施例,并且不应将本发明解释为只局限于本文中所阐述的实施例;相反,这些实施例作为示例被提供,以便向本领域技术人员传达本发明概念的范围。在本描述的通篇中,类似数字指代类似要素。
1.1 由其它广播信道/信号所占用的子帧
根据特定实施例,由其它广播信道或信号所占用的子帧可能会干扰寻呼消息。寻呼传输关联于寻呼无线电网络临时标识符(P-RNTI)。它能够经由以下两种变型中的任何一种变型而被发送:
(a) 不具有NB-IoT物理下行链路共享信道(NPDSCH)的NB-IoT物理下行链路控制信道(NPDCCH)。该变型可用于通知系统信息(SI)更新。在这种情况下,NPDCCH所携带的下行链路控制信息(DCI)可包含用于指示存在SI更新而没有NPDSCH的调度信息的标志。如果NB-IoTUE支持地震和海啸预警系统(ETWS)、蜂窝式消息传递警报系统(CMAS)、扩展访问限制(EAB)或各种其它警报或消息,那么DCI也可为它们提供指示符。
(b) 具有对应NPDSCH的NPDCCH。该变型可用于发送寻呼消息,其中DCI位携带用于寻呼消息的NPDSCH的调度信息。
对于NB-IoT操作,子帧{0, 4, 5, 9}被包括但不限于以下广播信道/信号的其它广播信道/信号所密集地占用:
● NPBCH:NPBCH在每个无线电帧中完全占用在子帧0处的PRB;
● NPSS:在子帧5中以10 ms的周期性传送NPSS。NPSS利用子帧的最后11个OFDM符号,其中NPSS对于正常CP而发生。即,NPSS在每个无线电帧中采用子帧5。
● NSSS:在子帧9中传送NSSS。NSSS利用子帧的最后11个OFDM符号,其中NSSS对于正常CP而发生。NSSS的周期性已经设置成20 ms。
● NSIB1(NB-IoT系统信息块):在传送NSIB1的每个无线电帧内的子帧#4中传送NSIB1。由NSIB1所占用的无线电帧出现在16个连续无线电帧中的每隔一个帧中,其中集群16无线电帧在每{64, 32, 16}无线电帧出现。
正如能够看到的,一般根据对于在系统内操作的网络节点和无线装置两者均已知的模式在特定子帧上传送这些广播信道/信号。给定被密集占用的子帧,需要提供足够数量的机会用于发送寻呼,以使得各种节点和装置能够通信。用于寻呼的共同搜索空间(CSS)是发送寻呼的NPDCCH的关键。根据特定实施例,UE监测用于寻呼的CSS以用于潜在的寻呼传输。然后,将用于寻呼的CSS的潜在起始点与可为给定UE而定义的寻呼时机(PO)对准。为了具有足够的机会来在小区中寻呼UE,接着需要对寻呼帧(PF)和寻呼时机(PO)的合适定义。在对准之后,UE接着能够发送寻呼传输。
1.2 带内操作
对于包括多PRB操作在内的所有操作模式,UE在锚PRB上接收寻呼。不同于寻呼NPDCCH和NPDSCH,还可在相同PRB上发生若干种类型的广播信道和信号,包括NPBCH、NPSS、NSSS、NSIB1和其它SIB传输。
另外,对于带内操作,存在MBSFN子帧模式并且其必须被遵守。这将子帧限制为在无线电帧中用来传送NPBCH、NPSS、NSSS、NSIB1的SF {0, 4, 5, 9},寻呼起始子帧。
因此,与遗留LTE相比,用来开始寻呼CSS的可能子帧非常有限:
● 在没有被NSIB1所占用的那些无线电帧中的子帧4;
● 在没有被NSSS所占用的那些无线电帧中的子帧9;
1.2.1 直接通过绝对子帧索引的指示
子帧0和5不再可用于寻呼CSS。根据具体实施例,可接着将FDD的寻呼子帧模式修改成表1。
为了提供足够的机会来寻呼NB-IoT UE,考虑若干种机制:
1. 保留足够数量的寻呼机会。例如,最多在每隔一个无线电帧中传送NSSS。这在每隔一个无线电帧中留下至少子帧4以便寻呼CSS。
2. 定义处置冲突的机制。
a.在一个实施例中,如果由遗留PF/PO演算产生的{PF, PO}与另一个广播传输相冲突,那么在下一个非冲突RF中以相同PO寻呼UE。例如,如果寻呼时机与NSSS或NSIB1传输相冲突,那么在不包含NSSS或NSIB1的下一个可用无线电帧中寻呼UE。在这种情况下,{PF,PO}可能在根据PF/PO演算的可能寻呼机会的集合之外。即,
i.如果具有PO=4的PF与NSSS传输相冲突,那么UE的寻呼CSS在下一个SFN: SFN’=SFN+1(mod 1024)中以PO=4开始,其中SFN依照PF演算:SFN mod T = (T div N)*(UE_ID mod N)。注意,(mod 1024)对于处理SNR回绕是必需的。
ii.如果具有PO=9的PF与NSIB1传输冲突,那么UE的寻呼CSS在下一个SFN:SFN’=SFN+1(mod 1024)中以PO=9开始,其中SFN依照PF演算:SFN mod T=(T div N)*(UE_ID modN)。
b.在另一个实施例中,如果由遗留PF/PO演算产生的{PF,PO}与另一个广播传输(例如,NSIB1或NSSS)相冲突,那么在对于UE可用的下一个非冲突PO中寻呼UE。下一个非冲突PO能够在当前演算的PF中,或者能够在依照PF演算的随后可用PF中。
表1. 对于FDD的寻呼子帧模式(以删除线示出修改)
Ns 当i_s=0时的PO 当i_s=1时的PO 当i_s=2时的PO 当i_s=3时的PO
1 9 N/A N/A N/A
2 4 9 N/A N/A
4 0 N/A 4 5 N/A 9
注意,对于未来TDD系统中的NB-IoT,能够利用类似方法来处置冲突。即,延迟到相同PO的下一个非冲突无线电帧,或延迟到对于UE可用的下一个可用PO。
1.2.2 间接通过有效子帧索引的指示
根据其它实施例,可使在遗留LTE操作中没有用于寻呼的额外子帧可用于寻呼NB-IoT。如果寻呼容量变成对于NB-IoT的瓶颈,那么这可能有益。可能已经为了其它目的而在整个小区中广播了指示什么样的子帧在小区中被视为有效下行链路子帧的参数。能够以系统信息块中的位图的形式发信号通知有效DL子帧的集合。例如,位图是[b(0), b(1),…b(p-1)],其中b(i)=0指示周期中的子帧i是无效DL子帧,而b(i)=1指示周期中的子帧i是有效DL子帧。
如果该位图参数指示一些下行链路子帧视为是有效子帧,那么能够假设,将不利用这些子帧来进行MBSFN传输,并且接着能够利用这些子帧来进行寻呼。
通过取位图中的那些b(i)>1而令小区特定有效子帧集合为{vsf(0), vsf(1), …vsf(m-1)},其中m是p个子帧的周期中的有效DL子帧的总数,m<=p。然后,能够利用一个或多个vsf来定义PO。下表1-1中列出一个示例,其中假设,在其上定义vsf的持续时间p上存在m>=4个vsf。尽管现有寻呼时机定义在无线电帧(即,10个子帧,它等于10 ms)上进行,但是也可在无线电帧或其它合适的持续时间上定义vsf。定义vsf的典型持续时间为:(a) p=10,即,10个子帧(=1个无线电帧);(b) p=40,即,40个子帧(=4个无线电帧)。
在定义PO中利用vsf概念能避免与在定义vsf中考虑的那些子帧相冲突。但是,仍然能够发生与在定义vsf中没有考虑的那些子帧的冲突。例如,可能没有将子帧#9指定为无效DL子帧,因为NSSS在所有无线电帧中都没有占用子帧#9。因此,利用vsf概念,寻呼CSS仍可能与NSSS冲突。因此,仍然需要定义用于处置冲突的机制。能够利用像上个子章节中所描述的那些机制的机制。
Ns 当i_s=0时的PO 当i_s=1时的PO 当i_s=2时的PO 当i_s=3时的PO
1 vsf(3) N/A N/A N/A
2 vsf(1) vsf(3) N/A N/A
4 vsf(0) vsf(1) vsf(2) vsf(3)
表1-1. 用有效子帧(vsf)索引定义的寻呼子帧模式:
1.3 独立或防护频带操作
1.3.1 FDD独立或防护频带操作
对于独立或防护频带操作,由NPBCH、NPSS、NSSS和NSIB1所占用的子帧的集合与带内操作相同,如上文所论述。但是,不存在遗留MBSFN传输。
因此,对于针对FDD系统的独立和/或防护频带操作,存在处置寻呼CSS的至少两种备选方案。以下论述这些主要备选方案中的两个备选方案,但是将明白,可利用额外实施例。
● 备选方案1。对于用于寻呼CSS的PO,不引入新子帧。在该备选方案中,对于FDD,可能开始寻呼CSS的子帧的集合仍然是{0, 4, 5, 9}。在这种情况下,对于独立和防护频带操作,再利用在带内操作中用于定义寻呼CSS的相同机制。
● 备选方案2。对于用于寻呼CSS的PO,引入新子帧。在该备选方案中,定义PO的新子帧模式。能够通过绝对子帧索引直接或经由有效子帧索引vsf间接定义新子帧模式。在下面,论述利用绝对子帧索引方式来进行说明。
○ 一个示例是利用子帧的全新集合,例如子帧{1, 2, 6, 7},而不是子帧{0, 4,5, 9}。对应地,将PO表修改成表2。
○ 另一个示例是取代PO子帧的子集,但是保留现有PO子帧的剩余部分。例如,分别用子帧{1, 6}取代子帧{0, 5},但保留子帧{4, 9}。对应地,将PO表修改成表3。
Ns 当i_s=0时的PO 当i_s=1时的PO 当i_s=2时的PO 当i_s=3时的PO
1 7 N/A N/A N/A
2 2 7 N/A N/A
4 1 2 6 7
表2. 对于FDD独立或防护频带操作的新寻呼子帧模式
Ns 当i_s=0时的PO 当i_s=1时的PO 当i_s=2时的PO 当i_s=3时的PO
1 9 N/A N/A N/A
2 4 9 N/A N/A
4 01 4 56 9
表3. 对于FDD独立或防护频带操作的新寻呼子帧模式
1.3.2 TDD独立或防护频带操作
注意,对于未来TDD系统中的NB-IoT,也应当处置PO的子帧模式。
1.3.2.1 没有广播有效子帧模式的TDD
根据具体实施例,可在不广播有效子帧模式的情况下使用TDD系统。如果没有广播有效子帧模式,那么若考虑所有现有TDD UL/DL配置,则无法定义新子帧集合来取代子帧{0, 1,5, 6}。这是因为,子帧{0, 1, 5, 6}是对所有TDD UL/DL配置共同的DL或特殊子帧的唯一集合。在这种情况下,只有备选方案1是可能的:
● 备选方案1。对于寻呼CSS,不引入新PO。在该备选方案中,对于TDD,可能开始寻呼CSS的子帧的集合仍然是{0, 1, 5, 6}。在这种情况下,对于独立和防护频带操作,再利用在带内操作中用于定义寻呼CSS的相同机制。如果由遗留PF/PO演算产生的{PF, PO}与NSSS或NSIB1传输相冲突,那么在不包含NSSS或NSIB1的下一个可用无线电帧中寻呼UE。
另一方面,如果只考虑所有现有TDD UL/DL配置的子集,那么更多DL或特殊子帧能够是可用的。例如,如果对于NB-IoT只支持UL/DL配置1和2,那么对于两者共同的DL或特殊子帧的集合是子帧{0, 1, 4, 5, 6, 9}。在这种情况下,能够使用备选方案1。另外,备选方案2也有可能。即,
● 备选方案2。对于寻呼CSS,引入一个或多个新PO。例如,用新PO子帧取代现有PO子帧的子集,但保留现有PO子帧的剩余部分。例如,分别用子帧{4, 9}取代子帧{0, 5},但保留子帧{1, 6}。通过表5对此进行说明。
表4:TDD上行链路-下行链路配置
表5. 对于TDD独立或防护频带操作的新寻呼子帧模式
(用删除线示出变化)
1.3.2.2利用广播有效子帧模式的TDD
如果在小区范围广播有效子帧模式,那么能够利用vsf来定义对于TDD的子帧模式。能够为TDD构造与表1-1类似的表。以下按表6示出一个示例。
表6. 用有效子帧(vsf)索引定义的寻呼子帧模式:
1.4在不改变PO子帧模式的情况下利用有效子帧模式确定寻呼CSS
根据额外实施例,能够在不改变寻呼子帧查找表的情况下利用有效DL子帧模式来确定用于寻呼CSS的子帧。即,利用与遗留系统中相同的子帧模式表,用于FDD的表0-1,以及用于TDD的表0-2。这些实施例的益处是,不减少寻呼机会的总数。
通过{PF, PO}和有效DL子帧模式确定用于寻呼CSS的起始子帧。
● 如果通过PF和PO确定的子帧sf0是有效DL子帧,那么子帧sf0是对于这个{PF,PO}集合的寻呼CSS的起始子帧。
● 如果通过PF和PO确定的子帧sf0不是有效DL子帧,那么跟在sf0之后的第一个有效子帧是对于这个{PF, PO}集合的寻呼CSS的起始子帧。
例如,
● 如果{PF, PO}指向在给定SFN中由NSSS占用的子帧#9,那么对应的寻呼CSS的起始子帧延迟到下一个有效DL子帧,例如下一个无线电帧的子帧#1。
● 如果{PF, PO}指向在给定SFN中没有由NSSS占用的子帧#9,那么对应的寻呼CSS的起始子帧是子帧#9。
另外,在有效子帧上定义寻呼CSS,其中只在有效子帧上传送寻呼NPDCCH候选。即,如果寻呼NPDCCH重复运行到无效子帧中,那么重复被延迟到下一个有效子帧。
在一种方法中,有效子帧模式VSFa(或无效子帧模式)是由eNB经由SIB广播的有效DL模式。
在另一种方法中,用于寻呼的无效子帧模式由被诸如NPBCH/NPSS/NSSS/NSIB1的已知广播信道/信号所占用并且未经由广播被发信号通知的子帧的聚合所组成。然后,有效子帧模式VSFb由未被诸如NPBCH/NPSS/NSSS/NSIB1的已知广播信道/信号占用的那些子帧组成。
在仍有的又一种方法中,有效子帧模式是VSFa和VSFb的复合。即,只有当子帧既是VSFa中的有效子帧又是VSFb中的有效子帧时,该子帧才视为是有效子帧。
根据特定实施例,可在由用户设备执行的如图1中所示的方法中执行这些解决方案。
图1公开由在空闲模式中操作的用户设备(UE)执行以便确定用于NB-IoT寻呼的共同搜索空间(CSS)的方法100。该方法在步骤102开始,此时用户设备确定周期性子帧的集合以作为寻呼时机(PO)子帧模式。该PO子帧模式有时称为{PF, PO},它可以用各种方式确定,包括但不限于使用子帧模式表。这里,PF是指寻呼帧。此类表可通过诸如3GPP TS 36.304的章节7的现有标准来定义。根据具体实施例,该表可以是在上面的表0-1和0-2中示出的表。
不管如何确定PO子帧模式,在步骤104,用户设备监测对于无线电网络临时标识符(RNTI)的寻呼CSS的起始子帧。但是,可使用其它合适的标识符。在步骤106,确定由PO子帧模式定义的第一子帧(SF0)是否是有效下行链路子帧。可以用各种方式进行该确定。
根据具体实施例,如果子帧被指示为在从网络节点接收的窄带SIB1中的有效下行链路子帧,那么UE确定该子帧是有效下行链路子帧。在3GPP TS 36.331中,可将该NB-SIB1称为“SystemInformationBlockType1-NB”。如果子帧不包括任何已知的广播信道或信号(包括但不限于NPSSS、NSSS、NPBCH和NB-SIB1),那么UE也可确定该子帧是有效下行链路子帧。如果子帧包含在有效子帧模式中,那么UE也可确定该子帧是有效下行链路子帧。可在由网络节点广播的SIB消息中接收此类有效子帧模式。这可以是如在3GPP TS 36.331和36.213中所称的“downlinkBitmapNB”。有效子帧模式也可包括没有由已知的广播信道或广播信号所占用的子帧。UE也可基于这些有效子帧模式的组合来确定子帧是有效下行链路子帧。
根据具体实施例,UE可基于上文论述的任何准则(单独地或以其任何可允许的组合)做出有效下行链路子帧的该确定。当确定它是有效子帧时,在步骤108,利用SF0作为寻呼CSS的起始子帧。当SF0不是有效子帧时,在步骤110,利用SF0之后的下一个有效下行链路子帧作为寻呼CSS的起始子帧。根据具体实施例,可将SF0定义为窄带物理数据控制信道(NPDCCH)重复的起始子帧。可将该定义包含在寻呼时机子帧模式中。根据额外实施例,可只在有效下行链路子帧上定义CSS。在这些实施例下,当NPDCCH重复与无效下行链路子帧相重叠时,重复可被延迟,直到下一个有效下行链路子帧。
根据具体实施例,也可在由网络节点执行的如图2中所示的方法中执行本文中提出的解决方案。
图2公开由网络节点执行以便确定对于NB-IoT寻呼的共同搜索空间(CSS)的方法200。该方法在步骤202开始,此时网络节点确定周期性子帧的集合以作为寻呼时机(PO)子帧模式。该PO子帧模式有时称为{PF, PO},它可以用各种方式确定,包括但不限于使用子帧模式表。此类表可通过诸如3GPP TS 36.304的章节7的现有标准来定义。根据具体实施例,该表可以是在上面的表0-1和0-2中示出的表。
不管如何确定PO子帧模式,在步骤204,网络节点将寻呼消息传送给用户设备,其中寻呼消息从寻呼CSS的起始子帧开始。在步骤206,确定由PO子帧模式定义的第一子帧(SF0)是否是有效下行链路子帧。可以用各种方式进行该确定。
根据具体实施例,如果子帧不包括任何已知的广播信道或信号(包括但不限于NPSSS、NSSS、NPBCH和NB-SIB1),那么网络节点确定该子帧是有效下行链路子帧。如果子帧包含在有效子帧模式中,那么网络也可确定该子帧是有效下行链路子帧。可在传送给用户设备的SIB1中提供有效下行链路子帧的指示,它可以采用单个子帧有效的指示,或者采用有效子帧模式的形式。有效子帧模式也可包括没有由已知的广播信道或广播信号占用的子帧。
根据具体实施例,网络节点可基于上文论述的任何准则(单独地或以其任何可允许的组合)做出有效下行链路子帧的该确定。当确定它是有效子帧时,在步骤208,利用SF0作为寻呼CSS的起始子帧。当SF0不是有效子帧时,在步骤210,利用SF0之后的下一个有效下行链路子帧作为寻呼CSS的起始子帧。根据具体实施例,可将SF0定义为窄带物理数据控制信道(NPDCCH)重复的起始子帧。该定义可包含在寻呼时机子帧模式中。根据额外实施例,可只在有效下行链路子帧上定义CSS。在这些实施例下,当NPDCCH重复与无效下行链路子帧相重叠时,重复可被延迟,直到下一个有效下行链路子帧。
尽管可在利用任何合适部件的任何合适类型的系统中实现上文描述的解决方案,但是也可在诸如图3中示出的示例无线通信网络的无线网络中实现描述的解决方案的具体实施例。在图3的示例实施例中,无线通信网络向一个或多个用户设备提供通信和其它类型的服务。在所示实施例中,无线通信网络包括利于用户设备访问和/或使用由无线通信网络提供的服务的网络节点的一个或多个实例。无线通信网络还可包括适于支持用户设备之间或无线装置和诸如固定电话的另一个通信装置之间的通信的任何额外元件。
网络320可包括用于使得能够在装置之间通信的一个或多个IP网络、公共交换电话网络(PSTN)、分组数据网络、光学网络、广域网(WAN)、局域网(LAN)、无线局域网(WLAN)、有线网络、无线网络、城域网和其它网络。
无线通信网络可表示任何类型的通信、远程通信、数据、蜂窝和/或无线电网络或其它类型的系统。在具体实施例中,无线通信网络可配置成根据特定标准或其它类型的预定义规则或过程操作。因此,无线通信网络的具体实施例可实现:通信标准,诸如全球移动通信系统(GSM)、通用移动电信系统(UMTS)、长期演进(LTE)和/或其它合适的2G、3G、4G或5G标准;无线局域网(WLAN)标准,诸如IEEE 802.11标准;和/或任何其它合适的无线通信标准,诸如全球微波接入互操作性(WiMax)、蓝牙、和/或ZigBee标准。
图3示出根据具体实施例的包括网络节点300和用户设备(UE)310的更详细视图的无线网络。为简单起见,图3只描绘网络320、网络节点300和300a以及UE 310。网络节点300包括处理器302、存储设备303、接口301和天线301a。类似地,UE 310包括处理器312、存储设备313、接口311和天线311a。这些部件可一起工作以便提供网络节点和/或用户设备功能性,诸如提供无线网络中的无线连接以及上文在图1和图2中描述的实施例。在不同实施例中,无线网络可包括可利于或参与数据和/或信号的通信(不管是经由有线还是无线连接)的任意数量的有线或无线网络、网络节点、基站、控制器、用户设备、中继站和/或任何其它部件。
在本文中使用时,“网络节点”是指能够、配置成、布置成和/或可进行操作以便与用户设备和/或与启用和/或提供对用户设备的无线访问的无线通信网络中的其它设备直接或间接通信的设备。网络节点的示例包括但不限于接入点(AP),特别是无线电接入点。网络节点可表示基站(BS),诸如无线电基站。无线电基站的具体示例包括节点B和演进型节点B(eNB)。可基于基站提供的覆盖量(或换句话说,基于它们的传送功率等级)将基站分类,并且于是也可将基站称为毫微微基站、微微基站、微基站或宏基站。“网络节点”还包括诸如集中式数字单元和/或远程无线电单元(RRU)(有时称为远程无线电头端(RRH))的分布式无线电基站的一个或多个(或所有)部分。此类远程无线电单元可以与或者可以不与天线集成来作为天线集成式无线电。分布式无线电基站的部分又可称为分布式天线系统(DAS)中的节点。
作为具体非限制性示例,基站可以是中继节点或控制中继的中继施主节点。
网络节点的又进一步示例包括多标准无线电(MSR)无线电设备(诸如MSR BS)、网络控制器(诸如无线电网络控制器(RNC)或基站控制器(BSC))、基站收发信台(BTS)、传输点、传输节点、多小区/多播协调实体(MCE)、核心网络节点(例如,MSC、MME)、O&M节点、OSS节点、SON节点、定位节点(例如,E-SMLC)和/或MDT。但是,更一般地,网络节点可表示能够、配置成、布置成和/或可进行操作以便启用和/或提供对无线通信网络的用户设备访问或向已经访问无线通信网络的用户设备提供一些服务的任何合适的装置(或装置群组)。
在本文中使用时,术语“无线电节点”通用地用于指用户设备和网络节点两者,正如每个分别在上文所描述的那样。
在图3中,网络节点300包括处理器302、存储设备303、接口301和天线301a。这些部件作为位于单个更大方框内的单独方框来被描绘。但是,实际上,网络节点可包括构成单个所示部件的多个不同物理部件(例如,接口301可包括用于有线连接的用于耦合导线的终端和用于无线连接的无线电收发器)。作为另一个示例,网络节点300可以是虚拟网络节点,其中多个不同的物理独立的部件交互以便提供网络节点300的功能性(例如,处理器302可包括位于三个独立外壳中的三个独立处理器,其中每个处理器负责针对网络节点300的具体实例的不同功能)。类似地,网络节点300可由多个物理独立的部件(例如,节点B部件和RNC部件、BTS部件和BSC部件等)组成,它们可各自具有它们自己的相应处理器、存储设备和接口部件。在其中网络节点300包括多个独立部件(例如,BTS和BSC部件)的某些场景中,可在若干个网络节点中共享这些独立部件中的一个或多个独立部件。例如,单个RNC可控制多个节点B。在此类场景中,每个独特的节点B和BSC对可以是独立网络节点。在一些实施例中,网络节点300可配置成支持多种无线电接入技术(RAT)。在此类实施例中,一些部件可被重复(例如,用于不同RAT的独立存储设备303),并且一些部件可被再利用(例如,RAT可共享相同天线301)。
处理器302可以是微处理器、控制器、微控制器、中央处理单元、数字信号处理器、专用集成电路、现场可编程门阵列或任何其它合适的计算装置、资源或可进行操作以便单独地或与其它网络节点200部件(诸如存储设备303)相结合来提供网络节点300功能性的硬件、软件和/或编码的逻辑的组合中的一个或多个的组合。例如,处理器302可执行存储在存储设备303中的指令。此类功能性可包括向诸如UE 310的用户设备提供本文中所论述的各种无线特征(包括本文中所公开的任何特征或益处)。
存储设备303可包括任何形式的易失性或非易失性计算机可读存储器,包括但不限于永久存储设备、固态存储器、远程挂载的存储器、磁介质、光介质、随机存取存储器(RAM)、只读存储器(ROM)、可移除介质或任何其它合适的本地或远程存储器部件。存储设备303可存储供网络节点300所使用的任何合适的指令、数据或信息(包括软件和编码的逻辑)。存储设备303可用于存储由处理器302进行的任何演算和/或经由接口301接收的任何数据。
网络节点300还包括可在网络节点300、网络320和/或UE 310之间进行的信令和/或数据的有线或无线通信中使用的接口301。例如,接口301可执行允许网络节点300通过有线连接来发送和接收来自网络320的数据可能所需的任何格式编排、编码或转译。接口301还可包括可耦合到天线301a或作为天线301a的部分的无线电传送器和/或接收器。无线电可接收要经由无线连接被发出到其它网络节点或UE的数字数据。无线电可将数字数据转换成具有合适信道和带宽参数的无线电信号。然后,可经由天线301a将无线电信号传送给合适接收方(例如,UE 310)。
天线301a可以是能够无线地传送和接收数据和/或信号的任何类型的天线。在一些实施例中,天线301a可包括可进行操作以便传送/接收介于例如2 GHz和66 GHz之间的无线电信号的一个或多个全向、扇区或平板天线。全向天线可用于沿任何方向传送/接收无线电信号,扇区天线可用于在具体区域内传送/接收来自装置的无线电信号,并且平板天线可以是用于以相对直线的方式传送/接收无线电信号的视线天线。
在本文中使用时,“用户设备”(UE)或“无线装置”(WD)是指能够、配置成、布置成和/或可进行操作以便与网络节点和/或另一个用户设备进行无线通信的装置。进行无线通信可涉及利用电磁信号、无线电波、红外信号和/或适于通过空中传达信息的其它类型的信号来传送和/或接收无线信号。在具体实施例中,用户设备可配置成在没有直接的人类交互的情况下传送和/或接收信息。例如,用户设备可设计成在受到内部或外部事件的触发时或响应于来自网络的请求按预定的调度将信息传送给网络。一般来说,用户设备或无线装置可表示能够、配置成、布置成和/或可进行操作以便进行无线通信的任何装置,例如无线电通信装置。无线装置的示例包括但不限于诸如智能电话的用户设备(UE)。进一步的示例包括无线摄像机、启用无线能力的平板计算机、膝上型嵌入式设备(LEE)、膝上型安装式设备(LME)、USB软件狗和/或无线客户驻地设备(CPE)。
作为一个特定示例,无线装置可表示配置成根据由第三代合作伙伴计划(3GPP)发布的一个或多个通信标准(诸如3GPP的GSM、UMTS、LTE和/或5G标准)进行通信的UE。在本文中使用时,从拥有和/或操作相关装置的人类用户的意义上来说,“用户设备”或“UE”可能不一定具有“用户”。相反,UE可表示打算销售给人类用户或由人类用户操作但是最初可能并非与特定人类用户相关联的装置。
用户设备可通过例如实现对于副链路通信的3GPP标准而支持装置到装置(D2D)通信,并且在这种情况下可称为D2D通信装置。
作为仍有的又一个特定示例,在物联网(IOT)场景中,无线装置可表示执行监测和/或测量并将此类监测和/或测量的结果传送给另一个无线装置和/或网络节点的机器或其它装置。在这种情况下,无线装置可以是机器到机器(M2M)装置,在3GPP上下文中,它可称为机器型通信(MTC)装置。作为一个具体示例,无线装置可以是实现3GPP窄带物联网(NB-IoT)标准的UE。此类机器或装置的具体示例是传感器、诸如功率表的计量装置、工业机械、或者是家用或个人器具(例如,冰箱、电视、诸如手表的个人可穿戴设备等)。在其它场景中,无线装置可表示能够在它的操作状态或与它的操作相关联的其它功能上进行监测和/或报告的交通工具或其它设备。
如上文所描述的无线装置可表示无线连接的端点,在这种情况下,装置可称为无线终端。此外,如上文所描述的无线装置可以是移动的,这种情况下,它可称为移动装置或移动终端。
如图3中所描绘,UE 310可以是能够向以及从诸如网络节点300和/或其它UE的网络节点无线地发送和接收数据和/或信号的任何类型的无线端点、移动站、移动电话、无线本地环路电话、智能电话、用户设备、桌面型计算机、PDA、蜂窝电话、平板计算机、膝上型计算机、VoIP电话或手持装置。UE 310包括处理器312、存储设备313、接口311和天线311a。类似网络节点300,将UE 310的部件描绘为是位于单个更大方框内的单独的方框,但是实际上,用户设备可包括构成单个所示部件的多个不同物理部件(例如,存储设备313可包括多个离散微芯片,每个微芯片表示总存储容量的一部分)。
处理器312可以是微处理器、控制器、微控制器、中央处理单元、数字信号处理器、专用集成电路、现场可编程门阵列或任何其它合适的计算装置、资源、或可进行操作以便单独地或与诸如存储设备313的其它UE 310部件结合提供UE 310功能性的硬件、软件和/或编码的逻辑的组合中的一个或多个的组合。此类功能性可包括提供本文中所论述的各种无线特征(包括本文中所公开的任何特征或益处)。
存储设备313可以是任何形式的易失性或非易失性存储器,包括但不限于永久存储设备、固态存储器、远程挂载的存储器、磁介质、光介质、随机存取存储器(RAM)、只读存储器(ROM)、可移除的介质或任何其它合适的本地或远程存储器部件。存储设备213可存储供UE 310使用的任何合适的数据、指令或信息(包括软件和编码的逻辑)。存储设备313可用于存储由处理器312进行的任何演算和/或经由接口311接收的任何数据。
可在UE 310和网络节点300之间进行信令和/或数据的无线通信中使用接口311。例如,接口311可执行允许UE 310通过无线连接发送和接收来自网络节点300的数据可能所需的任何格式编排、编码或转译。接口311还可包括可耦合到天线311a或作为天线311a的部分的无线电传送器和/或接收器。无线电可接收要经由无线连接被发出到网络节点301的数字数据。无线电可将数字数据转换成具有合适信道和带宽参数的无线电信号。然后,可经由天线311a将无线电信号传送给网络节点300。
天线311a可以是能够无线地传送和接收数据和/或信号的任何类型的天线。在一些实施例中,天线311a可包括可进行操作以便传送/接收介于2 GHz和66 GHz之间的无线电信号的一个或多个全向、扇区或平板天线。为简单起见,在使用无线信号的意义上,天线311a可视为是接口311的一部分。
尽管在图2的示例无线通信网络中使用的用户设备可表示包括硬件和/或软件的任何合适组合的装置,但是在具体实施例中,该用户设备可表示诸如通过图4更详细示出的示例用户设备900的装置。
如图4中所示,示例用户设备900包括天线905、无线电前端电路910、处理电路920和计算机可读存储介质930。天线905可包括一个或多个天线或天线阵列,并配置成发送和/或接收无线信号,且连接到无线电前端电路910。在某些备选实施例中,用户设备900可不包括天线905,并且天线905可改为独立于用户设备900并可通过接口或端口连接到用户设备900。
无线电前端电路910可包括各种滤波器和放大器,被连接到天线905和处理电路920,并配置成调节在天线905和处理电路920之间传递的信号。在某些备选实施例中,用户设备900可不包括无线电前端电路910,并且处理电路920可改为连接到天线905而不连接到无线电前端电路910。
处理电路920可包括射频(RF)收发器电路921、基带处理电路922和应用处理电路923中的一个或多个。在一些实施例中,RF收发器电路921、基带处理电路922和应用处理电路923可位于独立芯片组上。在备选实施例中,基带处理电路922和应用处理电路923的部分或全部可组合到一个芯片组中,并且RF收发器电路921可位于独立芯片组上。在仍有的备选实施例中,RF收发器电路921和基带处理电路922的部分或全部可位于相同芯片组上,并且应用处理电路923可位于独立芯片组上。在还有的其它备选实施例中,RF收发器电路921、基带处理电路922和应用处理电路923的部分或全部可在相同芯片组中组合。处理电路920可包括例如一个或多个中央处理单元(CPU)、一个或多个微处理器、一个或多个专用集成电路(ASIC)和/或一个或多个现场可编程门阵列(FPGA)。
在具体实施例中,本文中描述为由用户设备提供的一些或所有功能性可由如图4中所示的执行存储在计算机可读存储介质930上的指令的处理电路920提供。在备选实施例中,一些或所有功能性可由处理电路920在不执行存储在计算机可读介质上的指令的情况下以诸如硬接线的方式来提供。在那些具体实施例中的任何实施例中,不管是否执行存储在计算机可读存储介质上的指令,都能够说处理电路配置成执行描述的功能性。由此类功能性提供的益处不单独地限于处理电路920或限于用户设备的其它部件,而是由用户设备整体和/或一般地由末端用户和无线网络所享有。
天线905、无线电前端电路910和/或处理电路920可配置成执行本文中描述为由用户设备执行的任何接收操作。可从网络设备和/或另一个用户设备接收任何信息、数据和/或信号。
处理电路920可配置成执行本文中描述为由用户设备执行的任何确定或其它操作。由处理电路920执行的确定可包括:通过例如如下操作来处理由处理电路920获得的信息,这些操作为将所述获得的信息转换成其它信息、将所述获得的信息或转换后的信息与存储在用户设备中的信息进行比较和/或基于所述获得的信息或转换后的信息执行一个或多个操作;以及作为所述处理的结果做出确定。
天线905、无线电前端电路910和/或处理电路920可配置成执行本文中描述为由用户设备执行的任何传送操作。可将任何信息、数据和/或信号传送给网络设备和/或另一个用户设备。
计算机可读存储介质930一般可进行操作以便存储指令,诸如包括逻辑、规则、代码、表等中的一个或多个的应用、计算机程序、软件和/或能够由处理器执行的其它指令。计算机可读存储介质930的示例包括存储可供处理电路920使用的信息、数据和/或指令的计算机存储器(例如,随机存取存储器(RAM)或只读存储器(ROM))、大容量存储介质(例如,硬盘)、可移除的存储介质(例如,紧致盘(CD)或数字视频盘(DVD))和/或任何其它易失性或非易失性、非暂时性计算机可读和/或计算机可执行存储器装置。在一些实施例中,可考虑将处理电路920和计算机可读存储介质930集成在一起。
用户设备900的备选实施例可包括图4中示出的部件以外的额外部件,它们可负责提供用户设备的功能性的某些方面,包括本文中描述的任何功能性和/或支持上文所描述的解决方案所必需的任何功能性。仅仅作为一个示例,用户设备900可包括输入接口、装置和电路以及输出接口、装置和电路。输入接口、装置和电路配置成允许将信息输入到用户设备900中,并连接到处理电路920以便允许处理电路920处理输入信息。例如,输入接口、装置和电路可包括麦克风、近程或其它传感器、键盘/按钮、触摸显示器、一个或多个摄像机、USB端口或其它输入元件。输出接口、装置和电路配置成允许从用户设备900输出信息,并连接到处理电路920以便允许处理电路920从用户设备900输出信息。例如,输出接口、装置或电路可包括扬声器、显示器、振荡电路、USB端口、耳机接口或其它输出元件。利用一个或多个输入与输出接口、装置和电路,用户设备900可与末端用户和/或无线网络进行通信,并允许它们得益于本文中所描述的功能性。
作为另一个示例,用户设备900可包括电源电路940。电源电路940可包括功率管理电路。电源电路可从电源接收功率,电源可被包含在电源电路940中或位于电源电路940外部。例如,用户设备900可包括连接或集成到电源电路940中的电池或电池组形式的电源。也可使用其它类型的电源,诸如光伏装置。作为进一步示例,用户设备900可经由输入电路或接口(诸如电缆)而可连接到外部电源(诸如电插座),由此外部电源向电源电路940供电。
电源电路940可连接到无线电前端电路910、处理电路920和/或计算机可读存储介质930,并且可配置成向包括处理电路920的用户设备900供电以便执行本文中所描述的功能性。
用户设备900还可包括对于集成到用户设备900中的诸如例如GSM、WCDMA、LTE、NR、WiFi或蓝牙无线技术的不同无线技术的多组处理电路920、计算机可读存储介质930、无线电电路910和/或天线905。这些无线技术可被集成到相同或不同芯片组以及用户设备900内的其它部件中。

Claims (28)

1.一种由空闲模式中的用户设备(UE)(310)执行以便确定用于NB-IoT寻呼的共同搜索空间(CSS)的方法(100),所述方法包括:
确定(102)周期性子帧的集合以作为寻呼时机(PO)子帧模式;
监测(104)对于无线电网络临时标识符(RNTI)的寻呼CSS的起始子帧;
其中按照以下操作来确定寻呼CSS的所述起始子帧,所述操作为:
当确定(106)由所述寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0(108);以及
当确定(106)SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧(110)。
2.根据权利要求1所述的方法(100),其中如果满足以下条件,那么所述UE(310)确定子帧是有效下行链路子帧:
所述子帧在窄带系统信息块1(NB-SIB1)中被指示为有效下行链路子帧;以及
所述子帧不包含以下任何一个:
NB-IoT主同步序列(NPSS);
NB-IoT辅同步序列(NSSS);
NB-IoT物理广播信道(NPBCH);以及
NB-SIB1。
3.根据权利要求1所述的方法(100),其中根据子帧模式表来确定所述寻呼时机子帧模式。
4.根据权利要求1所述的方法(100),其中通过所述寻呼时机子帧模式将SF0定义为窄带物理数据控制信道(NPDCCH)重复的起始子帧。
5.根据权利要求4所述的方法(100),其中只在有效下行链路子帧上定义所述CSS,使得当所述NPDCCH重复与无效下行链路子帧相重叠时,所述NPDCCH重复被延迟直到下一个有效下行链路子帧。
6.根据权利要求1所述的方法(100),其中所述UE(310)基于在由网络节点广播的系统信息块(SIB)消息中接收的有效子帧模式来确定子帧是有效下行链路子帧。
7.根据权利要求1所述的方法(100),其中所述UE(310)基于有效子帧模式来确定子帧是有效下行链路子帧,所述有效子帧模式包括未由已知的广播信道或广播信号占用的子帧。
8.根据权利要求1所述的方法(100),其中所述UE(310)基于第一有效子帧模式和第二有效子帧模式来确定子帧是有效下行链路子帧;
所述第一有效子帧模式是在由网络节点广播的系统信息块(SIB)消息中接收的下行链路子帧模式;以及
所述第二有效子帧模式包括未由已知的广播信道或广播信号占用的子帧。
9.一种由网络节点(300)执行以便确定用于NB-IoT寻呼的共同搜索空间(CSS)的方法(200),所述方法包括:
确定(202)周期性子帧的集合以作为寻呼时机(PO)子帧模式;
将寻呼消息传送(204)给用户设备(UE)(310),所述寻呼消息以寻呼CSS的起始子帧开始;
其中按照以下操作来确定寻呼CSS的所述起始子帧,所述操作为:
当确定(206)由所述寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0(208);以及
当确定(206)SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧(210)。
10.根据权利要求9所述的方法(200),还包括:
在窄带系统信息块1(NB-SIB1)中指示下行链路子帧有效;以及
其中如果所述子帧不包含以下任何一个,那么所述网络节点(300)确定所述子帧是有效下行链路子帧:
NB-IoT主同步序列(NPSS);
NB-IoT辅同步序列(NSSS);
NB-IoT物理广播信道(NPBCH);以及
NB-SIB1。
11.根据权利要求9所述的方法(200),其中根据子帧模式表来确定所述寻呼时机子帧模式。
12.根据权利要求9所述的方法(200),其中通过所述寻呼时机子帧模式将SF0定义为窄带物理数据控制信道(NPDCCH)重复的起始子帧。
13.根据权利要求12所述的方法(200),其中只在有效下行链路子帧上定义所述CSS,使得当所述NPDCCH重复与无效下行链路子帧相重叠时,所述NPDCCH重复被延迟直到下一个有效下行链路子帧。
14.根据权利要求9所述的方法(200),其中所述网络节点在广播给所述UE(310)的系统信息块(SIB)消息中传送有效下行链路子帧模式。
15.一种配置成在空闲模式中操作时确定用于NB-IoT寻呼的共同搜索空间(CSS)的用户设备(UE)(310),所述UE(310)包括:
处理电路(312),所述处理电路(312)配置成:
确定周期性子帧的集合以作为寻呼时机(PO)子帧模式;
监测对于无线电网络临时标识符(RNTI)的寻呼CSS的起始子帧;
其中按照以下操作来确定寻呼CSS的所述起始子帧,所述操作为:
当确定由所述寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0;以及
当确定SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧。
16.根据权利要求15所述的UE(310),其中所述处理电路(312)配置成在满足以下条件时确定子帧是有效下行链路子帧:
所述子帧在窄带系统信息块1(NB-SIB1)中被指示为有效下行链路子帧;以及
所述子帧不包含以下任何一个:
NB-IoT主同步序列(NPSS);
NB-IoT辅同步序列(NSSS);
NB-IoT物理广播信道(NPBCH);以及
NB-SIB1。
17.根据权利要求15所述的UE(310),其中根据子帧模式表来确定所述寻呼时机子帧模式。
18.根据权利要求15所述的UE(310),其中通过所述寻呼时机子帧模式将SF0定义为窄带物理数据控制信道(NPDCCH)重复的起始子帧。
19.根据权利要求18所述的UE(310),其中只在有效下行链路子帧上定义所述CSS,使得当所述NPDCCH重复与无效下行链路子帧相重叠时,所述NPDCCH重复被延迟直到下一个有效下行链路子帧。
20.根据权利要求15所述的UE(310),其中所述处理电路(312)配置成基于在由网络节点(300)广播的系统信息块(SIB)消息中接收的有效子帧模式来确定子帧是有效下行链路子帧。
21.根据权利要求15所述的UE(310),其中所述处理电路(312)配置成基于有效子帧模式来确定子帧是有效下行链路子帧,所述有效子帧模式包括未由已知的广播信道或广播信号占用的子帧。
22.根据权利要求15所述的UE(310),其中所述处理电路(312)配置成基于第一有效子帧模式和第二有效子帧模式来确定子帧是有效下行链路子帧;
所述第一有效子帧模式是在由网络节点(300)广播的系统信息块(SIB)消息中接收的下行链路子帧模式;以及
所述第二有效子帧模式包括未由已知的广播信道或广播信号占用的子帧。
23.一种配置成用于确定用于NB-IoT寻呼的共同搜索空间(CSS)的网络节点(300),所述网络节点(300)包括:
处理电路(302),所述处理电路(302)配置成:
确定周期性子帧的集合以作为寻呼时机(PO)子帧模式;
将寻呼消息传送给用户设备(UE)(310),所述寻呼消息以寻呼CSS的起始子帧开始;
其中按照以下操作来确定寻呼CSS的所述起始子帧,所述操作为:
当确定由所述寻呼时机子帧模式定义的第一子帧(SF0)是有效下行链路子帧时,利用SF0;以及
当确定SF0是无效下行链路子帧时,利用SF0之后的下一个有效下行链路子帧。
24.根据权利要求23所述的网络节点(300),其中所述处理电路(302)还配置成:
如果子帧不包含以下任何一个,那么确定所述子帧是有效下行链路子帧:
NB-IoT主同步序列(NPSS);
NB-IoT辅同步序列(NSSS);
NB-IoT物理广播信道(NPBCH);以及
NB-SIB1;以及
在系统信息块1(SIB1)中将所述子帧指示为有效下行链路子帧。
25.根据权利要求23所述的网络节点(300),其中根据子帧模式表来确定所述寻呼时机子帧模式。
26.根据权利要求23所述的网络节点(300),其中通过所述寻呼时机子帧模式将SF0定义为窄带物理数据控制信道(NPDCCH)重复的起始子帧。
27.根据权利要求26所述的网络节点(300),其中只在有效下行链路子帧上定义所述CSS,使得当所述NPDCCH重复与无效下行链路子帧相重叠时,所述NPDCCH重复被延迟直到下一个有效下行链路子帧。
28.根据权利要求23所述的网络节点(300),其中所述处理电路(302)还配置成在广播给所述UE(310)的系统信息块(SIB)消息中传送有效子帧模式。
CN201780030577.9A 2016-03-16 2017-01-12 用于寻呼NB-IoT装置的共同搜索空间(CSS) Active CN109155717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110419237.3A CN113286364A (zh) 2016-03-16 2017-01-12 用于寻呼NB-IoT装置的共同搜索空间(CSS)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662309177P 2016-03-16 2016-03-16
US62/309177 2016-03-16
PCT/IB2017/050167 WO2017158440A1 (en) 2016-03-16 2017-01-12 Common search space (css) for paging of nb-iot devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110419237.3A Division CN113286364A (zh) 2016-03-16 2017-01-12 用于寻呼NB-IoT装置的共同搜索空间(CSS)

Publications (2)

Publication Number Publication Date
CN109155717A true CN109155717A (zh) 2019-01-04
CN109155717B CN109155717B (zh) 2021-04-27

Family

ID=57915024

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110419237.3A Pending CN113286364A (zh) 2016-03-16 2017-01-12 用于寻呼NB-IoT装置的共同搜索空间(CSS)
CN201780030577.9A Active CN109155717B (zh) 2016-03-16 2017-01-12 用于寻呼NB-IoT装置的共同搜索空间(CSS)

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110419237.3A Pending CN113286364A (zh) 2016-03-16 2017-01-12 用于寻呼NB-IoT装置的共同搜索空间(CSS)

Country Status (15)

Country Link
US (2) US10609686B2 (zh)
EP (2) EP3430758B1 (zh)
JP (1) JP6753943B2 (zh)
KR (1) KR102202893B1 (zh)
CN (2) CN113286364A (zh)
BR (1) BR112018068560A2 (zh)
DK (1) DK3430758T3 (zh)
ES (1) ES2790223T3 (zh)
HU (1) HUE049146T2 (zh)
IL (1) IL261684B (zh)
MX (1) MX2018011023A (zh)
PH (1) PH12018501982A1 (zh)
RU (1) RU2691637C1 (zh)
WO (1) WO2017158440A1 (zh)
ZA (1) ZA201806118B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051306B2 (en) * 2016-05-13 2021-06-29 Intel IP Corporation Scrambling for control messages
CN108633092B (zh) * 2017-03-24 2023-04-18 中兴通讯股份有限公司 一种信息发送方法、装置及终端
CN110785951B (zh) 2017-06-21 2021-05-04 Lg 电子株式会社 无线通信系统中发送/接收同步信号的方法及其装置
KR102437414B1 (ko) 2017-08-10 2022-08-29 삼성전자 주식회사 다중 대역 부분을 지원하는 반송파 상의 시스템 정보 송수신 방법 및 장치
EP3711253A2 (en) * 2017-10-02 2020-09-23 Lenovo (Singapore) Pte. Ltd. Determining paging occasion resources
CN109618408B (zh) * 2017-10-05 2020-07-31 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11109360B2 (en) * 2018-02-05 2021-08-31 Apple Inc. Channel configuration and DLUL configuration for NB-IoT-U system
CN110381607B (zh) * 2018-04-13 2021-05-07 维沃移动通信有限公司 一种控制方法及终端
KR102434156B1 (ko) * 2018-05-11 2022-08-18 노키아 테크놀로지스 오와이 페이징 상황 시작 결정 기법
CN109391695A (zh) * 2018-11-19 2019-02-26 湖南北斗星空自动化科技有限公司 基于NB-IoT窄带物联网岩土监测方法、装置和系统
US11147041B2 (en) 2019-02-27 2021-10-12 At&T Intellectual Property I, L.P. Device contexts, operational modes, and policy driven enhancements for paging in advanced networks
KR20210020384A (ko) * 2019-08-14 2021-02-24 삼성전자주식회사 차세대 이동 통신 시스템에서 복수 개의 sim을 지원하는 단말의 페이징 송수신 방법 및 장치
JP2021048570A (ja) * 2019-09-20 2021-03-25 ソニー株式会社 無線通信装置、基地局および通信制御方法
US20220095409A1 (en) * 2020-09-18 2022-03-24 Samsung Electronics Co., Ltd. Method and apparatus of pdcch monitoring for small data transmission
WO2022082552A1 (en) * 2020-10-22 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Access offset determination in conjunction with paging in non-terrestrial networks

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101513104A (zh) * 2006-08-31 2009-08-19 高通股份有限公司 在最小化寻呼丢失的同时对无线网络进行高效搜索
CN102884752A (zh) * 2010-05-05 2013-01-16 高通股份有限公司 Lte-a 中用于r-pdcch 的扩展搜索空间
CN103748936A (zh) * 2011-08-23 2014-04-23 瑞典爱立信有限公司 空寻呼检测技术
CN104349333A (zh) * 2013-08-02 2015-02-11 上海贝尔股份有限公司 增强mtc ue的无线覆盖的方法和装置
WO2015139127A1 (en) * 2014-03-15 2015-09-24 Sierra Wireless, Inc. Abbreviated blind detection in wireless communication systems including lte
WO2015147591A1 (ko) * 2014-03-27 2015-10-01 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치
CN104969493A (zh) * 2013-02-06 2015-10-07 Lg电子株式会社 用于在无线通信系统中设置用于检测下行链路控制信息的搜索区域的方法和用于其的装置
WO2015190876A1 (en) * 2014-06-12 2015-12-17 Lg Electronics Inc. Method and apparatus for indicating on/off-state of past subframes in wireless communication system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098783B (zh) * 2007-12-03 2012-12-12 华为技术有限公司 确定寻呼时刻的设备
US9226288B2 (en) * 2010-04-13 2015-12-29 Qualcomm Incorporated Method and apparatus for supporting communications in a heterogeneous network
US8588136B2 (en) 2010-04-20 2013-11-19 Pctel, Inc. System and method for SSS detection under carrier frequency offset in an orthogonal frequency-division multiple access downlink channel
US8897818B2 (en) * 2010-11-11 2014-11-25 Blackberry Limited System and method for reducing energy consumption of mobile devices using early paging indicator
US8958388B2 (en) * 2010-11-15 2015-02-17 Futurewei Technologies, Inc. System and method for measuring channel state information in a communications system
CA2832067C (en) * 2011-04-01 2019-10-01 Interdigital Patent Holdings, Inc. Method and apparatus for controlling connectivity to a network
KR20120111834A (ko) * 2011-04-02 2012-10-11 주식회사 팬택 무선통신시스템에서 이종셀간 간섭조정을 위한 제어정보의 전송장치 및 방법
CN104115421B (zh) * 2012-01-06 2017-05-31 Lg电子株式会社 用于在无线接入系统中使用时分双工模式发送和接收信号的方法及其装置
CN104322121B (zh) * 2012-07-24 2018-05-04 华为技术有限公司 下行控制信息的发送、接收方法、服务节点及用户设备
CN104956612B (zh) * 2013-01-17 2018-10-09 Lg 电子株式会社 在无线通信系统中接收控制信息的方法及其设备
CN110224799B (zh) * 2013-04-03 2022-09-20 交互数字专利控股公司 用于公共搜索空间的方法及wtru
CN103491516B (zh) * 2013-09-27 2018-05-15 东莞宇龙通信科技有限公司 控制信令的传输方法和基站
CN109246817A (zh) * 2013-11-18 2019-01-18 华为技术有限公司 子帧位置确定方法、基站及终端
US10165423B2 (en) * 2015-07-10 2018-12-25 Qualcomm Incorporated Common search space for machine type communications
US10660065B2 (en) * 2017-04-13 2020-05-19 Lg Electronics Inc. Method for transmitting a paging message and device supporting the same
US11057800B2 (en) * 2017-05-04 2021-07-06 Qualcomm Incorporated Neighbor cell measurement and reselection for narrowband operation
CN111149411B (zh) * 2017-11-15 2023-04-28 Lg电子株式会社 在无线通信系统中在随机接入过程期间执行早期数据传输的方法及其设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101513104A (zh) * 2006-08-31 2009-08-19 高通股份有限公司 在最小化寻呼丢失的同时对无线网络进行高效搜索
CN102884752A (zh) * 2010-05-05 2013-01-16 高通股份有限公司 Lte-a 中用于r-pdcch 的扩展搜索空间
CN103748936A (zh) * 2011-08-23 2014-04-23 瑞典爱立信有限公司 空寻呼检测技术
CN104969493A (zh) * 2013-02-06 2015-10-07 Lg电子株式会社 用于在无线通信系统中设置用于检测下行链路控制信息的搜索区域的方法和用于其的装置
CN104349333A (zh) * 2013-08-02 2015-02-11 上海贝尔股份有限公司 增强mtc ue的无线覆盖的方法和装置
WO2015139127A1 (en) * 2014-03-15 2015-09-24 Sierra Wireless, Inc. Abbreviated blind detection in wireless communication systems including lte
WO2015147591A1 (ko) * 2014-03-27 2015-10-01 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치
WO2015190876A1 (en) * 2014-06-12 2015-12-17 Lg Electronics Inc. Method and apparatus for indicating on/off-state of past subframes in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Common control message transmission for NB-IoT", 《3GPP TSG RAN WG1 MEETING #84》 *
INTEL CORPORATION: "Remaining open aspects on NBIOT Paging", 《3GPP TSG RAN WG2 #93》 *
NOKIA NETWORKS: "36.304 running CR to capture agreements on NB-IoT", 《3GPP TSG-RAN2 MEETING #93》 *

Also Published As

Publication number Publication date
ZA201806118B (en) 2020-05-27
BR112018068560A2 (pt) 2019-02-12
JP6753943B2 (ja) 2020-09-09
DK3430758T3 (da) 2020-05-18
HUE049146T2 (hu) 2020-09-28
IL261684B (en) 2020-06-30
RU2691637C1 (ru) 2019-06-17
EP3430758B1 (en) 2020-03-04
JP2019512956A (ja) 2019-05-16
EP3641209B1 (en) 2022-05-25
WO2017158440A1 (en) 2017-09-21
CN113286364A (zh) 2021-08-20
PH12018501982A1 (en) 2019-06-24
EP3641209A1 (en) 2020-04-22
KR20190002434A (ko) 2019-01-08
MX2018011023A (es) 2018-12-17
EP3430758A1 (en) 2019-01-23
IL261684A (en) 2018-10-31
CN109155717B (zh) 2021-04-27
US20200260429A1 (en) 2020-08-13
US10609686B2 (en) 2020-03-31
US11825473B2 (en) 2023-11-21
KR102202893B1 (ko) 2021-01-13
US20190215815A1 (en) 2019-07-11
ES2790223T3 (es) 2020-10-27

Similar Documents

Publication Publication Date Title
CN109155717A (zh) 用于寻呼NB-IoT装置的共同搜索空间(CSS)
CN105474558B (zh) 无线通信系统中的中继器操作方法和设备
JP6483728B2 (ja) 端末装置によって実行される受信方法、基地局によって実行される方法、移動性管理実体によって実行される方法、端末装置、基地局および移動性管理実体
CN107258105B (zh) 运行寻呼机制以实现增强覆盖模式
US11240769B2 (en) System information for narrowband
US11178617B2 (en) Wakeup signal grouping
CN109644494A (zh) 下一代网络中的随机接入过程
CN107734490A (zh) 无线通信系统中支持装置对装置发现的通信方法和装置
RU2736547C2 (ru) Способ и базовая станция для конфигурирования неякорного физического ресурсного блока, способ и пользовательское оборудование для определения местоположения неякорного физического ресурсного блока
US10517067B2 (en) Techniques and apparatuses for providing notifications in short paging messages
CN104349355A (zh) 一种进行数据通信的方法、系统和设备
US20220338183A1 (en) Method and Apparatus for Transmitting Initial Access Configuration Information
CN110169138B (zh) 系统信息中的寻呼和控制信道的显式配置
JP2022500934A (ja) 通信システム
WO2022030412A2 (en) Communication system
GB2619500A (en) Communication system
GB2623131A (en) Communication system
GB2624031A (en) Communication system
CN116671199A (zh) 通信的方法及通信装置
CN117336853A (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40002718

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant