CN109155613A - 磁性运算放大器 - Google Patents

磁性运算放大器 Download PDF

Info

Publication number
CN109155613A
CN109155613A CN201780027374.4A CN201780027374A CN109155613A CN 109155613 A CN109155613 A CN 109155613A CN 201780027374 A CN201780027374 A CN 201780027374A CN 109155613 A CN109155613 A CN 109155613A
Authority
CN
China
Prior art keywords
magfet
differential
field effect
effect transistor
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780027374.4A
Other languages
English (en)
Inventor
文森特·弗里克
劳伦·奥斯伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Strasbourg
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Strasbourg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Strasbourg filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN109155613A publication Critical patent/CN109155613A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0088Arrangements or instruments for measuring magnetic variables use of bistable or switching devices, e.g. Reed-switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F15/00Amplifiers using galvano-magnetic effects not involving mechanical movement, e.g. using Hall effect
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/38DC amplifiers with modulator at input and demodulator at output; Modulators or demodulators specially adapted for use in such amplifiers
    • H03F3/387DC amplifiers with modulator at input and demodulator at output; Modulators or demodulators specially adapted for use in such amplifiers with semiconductor devices only
    • H03F3/393DC amplifiers with modulator at input and demodulator at output; Modulators or demodulators specially adapted for use in such amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45641Measuring at the loading circuit of the differential amplifier
    • H03F3/45659Controlling the loading circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F9/00Magnetic amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/375Circuitry to compensate the offset being present in an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/75Indexing scheme relating to amplifiers the amplifier stage being a common source configuration MOSFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45082Indexing scheme relating to differential amplifiers the common mode signal being taken or deducted from the one or more outputs of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45088Indexing scheme relating to differential amplifiers the resulting deducted common mode signal being added to or controls the differential amplifier, and being a voltage signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45116Feedback coupled to the input of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45134Indexing scheme relating to differential amplifiers the whole differential amplifier together with other coupled stages being fully differential realised
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45138Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45188Indexing scheme relating to differential amplifiers the differential amplifier contains one or more current sources in the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45192Indexing scheme relating to differential amplifiers the differential amplifier contains current mirrors comprising diodes which act as a load for the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45208Indexing scheme relating to differential amplifiers the dif amp being of the long tail pair type, one current source being coupled to the common emitter of the amplifying transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45226Indexing scheme relating to differential amplifiers the output signal being switched taken from the one or more output terminals of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45276An op amp as stage being coupled to the output of a dif amp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45346Indexing scheme relating to differential amplifiers the AAC comprising one or more FETs with multiple drains
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45361Indexing scheme relating to differential amplifiers the AAC comprising multiple transistors parallel coupled at their drains only, e.g. in a cascode dif amp, only those forming the composite common source transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45434Indexing scheme relating to differential amplifiers the CMCL output control signal being a voltage signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45642Indexing scheme relating to differential amplifiers the LC, and possibly also cascaded stages following it, being (are) controlled by the common mode signal derived to control a dif amp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45656Indexing scheme relating to differential amplifiers the LC comprising one diode of a current mirror, i.e. forming an asymmetrical load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45674Indexing scheme relating to differential amplifiers the LC comprising one current mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45681Indexing scheme relating to differential amplifiers the LC comprising offset compensating means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45684Indexing scheme relating to differential amplifiers the LC comprising one or more buffers or driving stages not being of the emitter respectively source follower type, between the output of the dif amp and the output stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

根据本发明的一方面,提供一种具有差分级(1)的磁性运算放大器,所述差分级包括第一磁场效应晶体管MAGFET(11)和差分信号调节器,所述差分信号调节器包括负载级(151)、连接到所述负载级(151)的差分输入对(153)和连接到所述差分输入对(153)的偏压电流源(155);所述磁场效应晶体管MAGFET(11)连接到所述负载级(151)作为第二差分输入对,且所述差分信号调节器包括连接到所述磁场效应晶体管MAGFET(11)的第二偏压电流源(156)。

Description

磁性运算放大器
技术领域
本发明的方面涉及磁场效应晶体管MAGFET的技术领域,且明确地说,涉及磁性运算放大器的技术领域。
背景技术
图1说明经典差分放大器级A1的结构,其包括:
-负载级151,
-差分输入对153,其具有端子Vin-和端子Vin+,
-和偏压电流源155。
偏压电流源注入并维持电路分支中的恒定电流。在图1的实例中,由偏压电流源155注射并维持的恒定电流名称为Ipol。偏压电流Ipol维持恒定,而不管应用于在差分输入对153中循环的电流IN和IP的变化,且以下等式适用:
IN+IP=Ipol
由于差分输入对153,电流IN与IP之间的差与施加到端子Vin-和端子Vin+的电位之间的差成比例。
由于负载级151,电流IN与IP之间的差转换为电压,因此给出施加到端子Vin-与Vin+的电位差的放大图像。
已知使用磁场效应晶体管MAGFET的磁性运算放大器MOP的差分级的三个配置。
图2说明MOP的第一差分级A2,其包括:
-负载级151,
-差分输入对153,其具有端子Vin-和Vin+,和
-用于电流镜中的MAGFET 255。
作为偏压电流源用于电流镜中,MAGFET 255必须确保差分输入对153中的总偏压电流允许MOP的与偏压电流成比例的开环增益。所述约束防止控制MAGFET 255的栅极电压。所述约束因此防止选择MAGFET 255的操作状态且影响其性能,尤其是在灵敏度、热噪声、消耗方面。
图3说明MOP的第二差分级A3,其包括:
-作为负载级的MAGFET 351,
-差分输入对153,其具有端子Vin-和Vin+,和
-偏压电流源155。
用作负载级且为了确保MOP的输出处的共同模式的稳定性,MAGFET 351的栅极必须通过施加恒定电压或通过具有用于负反馈中的共同模式的控制放大器加以控制。通过施加恒定电压来控制MAGFET 351的栅极防止选择MAGFET 255的操作状态。当通过具有共同模式的控制放大器的负反馈来控制MAGFET 351的栅极时,栅极电压的变化意味着MOP灵敏度的变化。换句话说,MOP的灵敏度根据共同模式的控制电压而改变:MOP A3的感测功能因此不可用。
最终,两个MAGFET可用作差分输入对,从而允许施加外部电压且因此实现例如放大器或随耦器等功能。图4说明MOP的第三差分级A4,其包括:
-负载级151,
-作为差分输入对的第一MAGFET 453和第二MAGFET 454,其具有端子Vin-和Vin+,和
-偏压电流源155。
但在MAGFET的栅极上施加外部电压意味着其灵敏度的变化:出现与MAGFET用作负载级相同的问题。
发明内容
本发明的目标是基于可以自由选择操作状态的磁场效应晶体管MAGFET实现磁性运算放大器MOP。
为此目的,根据本发明的一方面,提供一种具有差分级的磁性运算放大器,所述差分级包括:
-第一磁场效应晶体管MAGFET,和
-差分信号调节器,其包括:
o负载级,
o差分输入对,其连接到所述负载级,和
o偏压电流源,其连接到所述差分输入对,其中所述第一磁场效应晶体管MAGFET连接到所述负载级作为第二差分输入对,且其中所述差分信号调节器包括连接到所述磁场效应晶体管MAGFET的第二偏压电流源。
由于本发明,磁场效应晶体管MAGFET的栅极电压和偏压电流独立于差分输入对的偏压电流。磁场效应晶体管MAGFET的操作状态因此全部可控。
除了上文在前一段所提及的特性,根据本发明的一方面的磁性运算放大器还可以具有一个或几个互补特性以及个别地或以技术上可能的任何组合来考虑的以下特性:
-第一磁场效应晶体管MAGFET优选为n型磁场效应晶体管MAGFET,因为较之于p型磁场效应晶体管MAGFET,n型磁场效应晶体管MAGFET通常具有更好的迁移率,且因此具有对磁场的更好的灵敏度。第一磁场效应晶体管MAGFET可以替代地为p型磁场效应晶体管MAGFET。
-差分输入对可以同等地豆n型或p型差分输入对。
-差分信号调节器包括至少一个差分放大级以进一步放大有用信号。
-所述差分信号调节器进一步包括斩波器以消除差分信号调节器的偏移和低频噪声,所述斩波器包括有用信号的第一调制级和所述有用信号的第二解调级,所述有用信号作为电压进入所述第二解调级。
-当所述差分信号调节器包括至少一个差分放大级和斩波器时,所述斩波器的所述第二解调级放置在最后差分放大级之后,以消除所述差分信号调节器和每个差分放大级的所述偏移和低频噪声。
-所述磁性运算放大器包括磁性传感器,所述磁性传感器连接到所述负载级作为第二差分输入对且具有:
o对应于所述第一磁场效应晶体管MAGFET的第一配置,
o对应于第二磁场效应晶体管MAGFET的第二配置,
o对应于第三磁场效应晶体管MAGFET的第三配置,和
o对应于第四磁场效应晶体管MAGFET的第四配置,
其中所述差分信号调节器进一步包括自旋电流模块以消除所述磁性传感器的所述偏移和低频噪声,所述自旋电流模块使所述磁性传感器的所述第一配置、所述第二配置、所述第三配置和所述第四配置周期性地交替。
附图说明
-图1说明经典差分放大器级的结构。
-图2说明根据先前技术的基于磁场效应晶体管MAGFET的磁性运算放大器MOP的第一差分级。
-图3说明根据先前技术的基于磁场效应晶体管MAGFET的磁性运算放大器MOP的第二差分级。
-图4说明根据先前技术的基于磁场效应晶体管MAGFET的磁性运算放大器MOP的第三差分级。
-图5a说明根据本发明的第一实施例的基于第一磁场效应晶体管MAGFET的磁性运算放大器MOP的差分级。
-图5b说明根据本发明的第二实施例的基于第一磁场效应晶体管MAGFET的磁性运算放大器MOP的差分级。
-图5c说明根据本发明的第三实施例的基于第一磁场效应晶体管MAGFET的磁性运算放大器MOP的差分级。
-图5d说明根据本发明的第四实施例的基于第一磁场效应晶体管MAGFET的磁性运算放大器MOP的差分级。
-图6说明根据本发明的实施例的、与差分放大级相关联的基于第一磁场效应晶体管MAGFET的磁性运算放大器MOP的差分级。
-图7a说明根据本发明的实施例的、与斩波器相关联的基于第一磁场效应晶体管MAGFET的磁性运算放大器MOP的差分级。
-图7b说明根据本发明的实施例的、与差分放大级和斩波器相关联的基于第一磁场效应晶体管MAGFET的磁性运算放大器MOP的差分级。
-图8说明具有四个可能的对称MAGFET配置的磁性传感器。
-图9a说明对应于图5a、5b、5c和5d的第一磁场效应晶体管MAGFET的图8的磁性传感器的第一配置。
-图9b说明对应于第二磁场效应晶体管MAGFET的图8的磁性传感器的第二配置。
-图9c说明对应于第三磁场效应晶体管MAGFET的图8的磁性传感器的第三配置。
-图9d说明对应于第四磁场效应晶体管MAGFET的图8的磁性传感器的第四配置。
-图10说明具有四个可能的对称MAGFET配置、与自旋电流模块相关联的基于图8的磁性传感器的磁性运算放大器MOP的差分级。
具体实施方式
现在仅借助于实例且参考附图描述根据本发明的实施例的设备和方法的一些实施例。所述描述应被认为在本质上是说明性的而非限制。
先前已描述图1、图2、图3和图4。
图5a示出根据本发明的第一实施例的磁性运算放大器MOP的差分级1。差分级1包括第一磁场效应晶体管MAGFET 11和差分信号调节器。第一MAGFET11具有源极S、第一漏极D1和第二漏极D2、栅极电压Vgate。差分信号调节器包括:
-负载级151,
-差分输入对153,其连接到负载级151,
-偏压电流源155,其连接到差分输入对153,和
-第二偏压电流源156,其连接到第一MAGFET 11。
偏压电流源155将恒定偏压电流Ipol注入差分输入对153中并维持所述恒定偏压电流Ipol。第一MAGFET 11连接到负载级151作为第二差分输入对。第二偏压电流源156将恒定第二偏压电流lpol2注入第一MAGFET 11中并维持所述恒定第二偏压电流。根据本发明的第一实施例,第一磁场效应晶体管MAGFET 11为n型磁场效应晶体管MAGFET,且差分输入对153为n型差分输入对。
图5b示出根据本发明的第二实施例的磁性运算放大器MOP的差分级1,其中第一磁场效应晶体管MAGFET 11为n型磁场效应晶体管MAGFET,且差分输入对153为p型差分输入对。
图5c示出根据本发明的第三实施例的磁性运算放大器MOP的差分级1,其中第一磁场效应晶体管MAGFET 11为p型磁场效应晶体管,且差分输入对153为p型差分输入对。
图5d示出根据本发明的第四实施例的磁性运算放大器MOP的差分级1,其中第一磁场效应晶体管MAGFET 11为p型磁场效应晶体管,且差分输入对153为n型差分输入对。
磁性运算放大器MOP的差分级1可以与至少一个放大级Amp1相关联。图6示出根据本发明的实施例的、与N个差分放大级Amp1、...、AmpN相关联的磁性运算放大器MOP的差分级1,其中N为大于或等于2的自然数。
图7a示出根据本发明的实施例的磁性运算放大器MOP的差分级1,其中差分信号调节器进一步包括斩波器,所述斩波器包括有用信号的第一调制级157和有用信号的第二解调级158。
图7b示出根据本发明的实施例的、与至少一个放大级Amp1相关联的磁性运算放大器MOP的差分级1,且其中差分信号调节器包括斩波器,所述斩波器具有有用信号的第一调制级157和有用信号的第二解调级158。
图8示出基于使用四个MOS晶体管的磁性传感器20,所述四个MOS晶体管布置成彼此交叉以便形成内接成正方形的图案的两个平行对。磁性传感器20包括所有晶体管共用的正方形栅极G。在正方形栅极G的每个角处,原始晶体管的两个垂直触点连接以便形成所谓的“角触点”。磁性传感器20因此包括定位于正方形栅极G的每个角处的四个角触点:第一角触点A、第二角触点B、第三角触点C和第四角触点D。此类磁性传感器的结构例如进一步描述于V.Frick等人的论文“新颖的斩波自旋MAGFET装置(A Novel Chopping-Spinning MAGFETDevice)”(2010)中。
通过以电子方式将两个邻近角触点连接在一起以产生源极且使其余两个角触点保持独立以产生单独漏极,产生单独漏极MAGFET结构,其中源极为每个漏极的宽度的两倍。磁性传感器20的对称性允许在四个垂直方向上产生四个相同的MAGFET装置。
图9a说明磁性传感器20的第一配置,其中第三角触点C与第四角触点D连接在一起以形成源极,第一角触点A为第一漏极,且第二角触点B为第二漏极。处于其第一配置的磁性传感器20为第一MAGFET 11。使用源极电流IS对形成第一MAGFET 11的磁性传感器20加偏压。第一漏极电流ID1在形成第一MAGFET 11的磁性传感器20的第一漏极A中循环,且第二漏极电流ID2在其第二漏极B中循环。
图9b说明磁性传感器20的第二配置,其中第一角触点A与第四角触点D连接在一起以形成源极,第二角触点B为第一漏极,且第三角触点C为第二漏极。处于其第二配置的磁性传感器20为第二MAGFET 12。使用源极电流IS对形成第二MAGFET 12的磁性传感器20加偏压。第一漏极电流ID1在形成第二MAGFET 12的磁性传感器20的第一漏极B中循环,且第二漏极电流ID2在其第二漏极C中循环。
图9c说明磁性传感器20的第三配置,其中第二角触点B与第三角触点C连接在一起以形成源极,第四角触点D为第一漏极,且第一角触点A为第二漏极。处于其第三配置的磁性传感器20为第三MAGFET 13。使用源极电流IS对形成第三MAGFET 13的磁性传感器20加偏压。第一漏极电流ID1在形成第三MAGFET 13的磁性传感器20的第一漏极D中循环,且第二漏极电流ID2在其第二漏极A中循环。
图9d说明磁性传感器20的第四配置,其中第一角触点A与第二角触点B连接在一起以形成源极,第三角触点C为第一漏极,且第四角触点D为第二漏极。处于其第四配置的磁性传感器20为第四MAGFET 14。使用源极电流IS对形成第四MAGFET 14的磁性传感器20加偏压。第一漏极电流ID1在形成第四MAGFET 14的磁性传感器20的第一漏极C中循环,且第二漏极电流ID2在其第二漏极D中循环。
包括四个MAGFET配置而非单个经典MAGFET的磁性传感器20优选地用于根据本发明的实施例的磁性运算放大器中。实际上,磁性传感器20的对称形状允许应用自旋电流技术以便去除磁性传感器20的偏移和低频噪声。图10示出包括磁性传感器20的磁性放大器MOP的差分级1,其中差分信号调节器进一步包括自旋电流模块159,所述自旋电流模块使磁性传感器20的第一配置、第二配置、第三配置和第四配置周期性地交替。图10示出特定实施例,其中磁性传感器20的每个MAGFET配置为n型MAGFET配置,且差分输入对153为n型差分输入对;连接因此类似于图5a的连接。未示出的其它实施例是可能的,其中:
-磁性传感器20的每个MAGFET配置为n型MAGFET配置,且差分输入对153为p型差分输入对;连接由此类似于图5b的连接,或
-磁性传感器20的每个MAGFET配置为p型MAGFET配置,且差分输入对153为p型差分输入对;连接由此类似于图5c的连接,或
-磁性传感器20的每个MAGFET配置为p型MAGFET配置,且差分输入对153为n型差分输入对;连接由此类似于图5d的连接。

Claims (6)

1.一种具有差分级(1)的磁性运算放大器,所述差分级包括:
第一磁场效应晶体管MAGFET(11),和
差分信号调节器,其包括:
负载级(151),
差分输入对(153),其连接到所述负载级(151),和
偏压电流源(155),其连接到所述差分输入对(153),
其特征在于,所述第一磁场效应晶体管MAGFET(11)连接到所述负载级(151)作为第二差分输入对,且所述差分信号调节器包括连接到所述磁场效应晶体管MAGFET(11)的第二偏压电流源(156)。
2.根据前一权利要求所述的磁性运算放大器,其特征在于,所述第一磁场效应晶体管MAGFET(11)为n型磁场效应晶体管MAGFET。
3.根据前述权利要求中任一项所述的磁性运算放大器,其特征在于,所述差分信号调节器包括至少一个差分放大级(Amp1、AmpN)以进一步放大有用信号。
4.根据前述权利要求中任一项所述的磁性运算放大器,其特征在于,所述差分信号调节器进一步包括斩波器以消除所述差分信号调节器的偏移和低频噪声,所述斩波器包括有用信号的第一调制级(157)和所述有用信号的第二解调级(158),所述有用信号作为电压进入所述第二解调级(158)。
5.根据权利要求3和4所述的磁性运算放大器,其特征在于,所述斩波器的所述第二解调级(158)放置在最后差分放大级之后,以消除所述差分信号调节器和每个差分放大级的所述偏移和低频噪声。
6.根据前述权利要求中任一项所述的磁性运算放大器,其特征在于,其包括磁性传感器(20),所述磁性传感器连接到所述负载级(151)作为第二差分输入对且具有:
对应于所述第一磁场效应晶体管MAGFET(11)的第一配置,
对应于第二磁场效应晶体管MAGFET(12)的第二配置,
对应于第三磁场效应晶体管MAGFET(13)的第三配置,和
对应于第四磁场效应晶体管MAGFET(14)的第四配置,
且其特征在于,所述差分信号调节器进一步包括自旋电流模块(159)以消除所述磁性传感器(20)的所述偏移和低频噪声,所述自旋电流模块(159)使所述磁性传感器(20)的所述第一配置(11)、所述第二配置(12)、所述第三配置(13)和所述第四配置(14)周期性地交替。
CN201780027374.4A 2016-05-10 2017-04-28 磁性运算放大器 Pending CN109155613A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16169019.3 2016-05-10
EP16169019.3A EP3244532A1 (en) 2016-05-10 2016-05-10 Magnetic operational amplifier
PCT/EP2017/060245 WO2017194334A1 (en) 2016-05-10 2017-04-28 Magnetic operational amplifier

Publications (1)

Publication Number Publication Date
CN109155613A true CN109155613A (zh) 2019-01-04

Family

ID=55963224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780027374.4A Pending CN109155613A (zh) 2016-05-10 2017-04-28 磁性运算放大器

Country Status (4)

Country Link
US (1) US10879860B2 (zh)
EP (2) EP3244532A1 (zh)
CN (1) CN109155613A (zh)
WO (1) WO2017194334A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108377137B (zh) * 2018-05-07 2024-06-04 贵州大学 一种高压大功率集成运算放大器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411059A (zh) * 2006-03-23 2009-04-15 Nxp股份有限公司 具有并联耦合差分输入对的转换器
CN103051298A (zh) * 2011-10-17 2013-04-17 中国科学院微电子研究所 可编程增益放大电路和可编程增益放大器
CN105099379A (zh) * 2014-05-09 2015-11-25 亚德诺半导体集团 放大器输入级和放大器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012238A1 (en) * 1992-11-24 1994-06-09 Medtronic, Inc. Implantable medical device with magnetically actuated switch
US5801533A (en) * 1996-09-17 1998-09-01 Intel Corporation Method and apparatus with cascode biasing magneto field effect transistors for improved sensitivity and amplification
US6469538B1 (en) * 2000-06-09 2002-10-22 Stmicroelectronics, Inc. Current monitoring and latchup detection circuit and method of operation
US6831513B2 (en) * 2002-01-16 2004-12-14 Oki Electric Industry Co., Ltd. Differential amplifier
US7199434B2 (en) * 2003-12-05 2007-04-03 Nanyang Technological University Magnetic field effect transistor, latch and method
WO2006064687A1 (ja) * 2004-12-14 2006-06-22 Ntn Corporation 回転検出装置およびこれを備えた軸受
DE102006023695B4 (de) * 2006-05-19 2010-04-08 Xignal Technologies Ag Verfahren und Schaltungsanordnung zur Erzeugung eines periodischen elektrischen Signals mit steuerbarer Phase
US7642851B2 (en) * 2007-06-25 2010-01-05 Metalink Ltd. Variable gain amplifier insensitive to process voltage and temperature variations
US7733179B2 (en) * 2007-10-31 2010-06-08 Texas Instruments Incorporated Combination trim and CMFB circuit and method for differential amplifiers
WO2011092767A1 (ja) * 2010-02-01 2011-08-04 パナソニック株式会社 演算増幅回路、信号駆動装置、表示装置及びオフセット電圧調整方法
US8482352B2 (en) * 2010-06-30 2013-07-09 International Business Machines Corporation Differential amplifier stage with integrated offset cancellation circuit
JP2015095830A (ja) * 2013-11-13 2015-05-18 株式会社東芝 差動増幅回路
US9915641B2 (en) * 2013-12-04 2018-03-13 California Institute Of Technology Sensing and actuation of biological function using addressable transmitters operated as magnetic spins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411059A (zh) * 2006-03-23 2009-04-15 Nxp股份有限公司 具有并联耦合差分输入对的转换器
CN103051298A (zh) * 2011-10-17 2013-04-17 中国科学院微电子研究所 可编程增益放大电路和可编程增益放大器
CN105099379A (zh) * 2014-05-09 2015-11-25 亚德诺半导体集团 放大器输入级和放大器

Also Published As

Publication number Publication date
US10879860B2 (en) 2020-12-29
US20190181818A1 (en) 2019-06-13
EP3455937A1 (en) 2019-03-20
WO2017194334A1 (en) 2017-11-16
EP3244532A1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US9685914B2 (en) Amplifier circuit
WO2006116060A3 (en) Direct detect sensor for flat panel displays
US9660586B2 (en) Class D switching amplifier and method of controlling a loudspeaker
ATE466402T1 (de) Gleichtaktrückkopplungsschaltung mit geschalteten kapazitäten für einen summenstromfreien differenzverstärker
JP2010288266A5 (zh)
CN103338014A (zh) 运算放大器电路
US20150249434A1 (en) Amplifier circuit and amplifier circuit ic chip
US7948314B2 (en) Tunable linear operational transconductance amplifier
CN103095231A (zh) 一种新型的共模反馈电路
CN109155613A (zh) 磁性运算放大器
US8698213B2 (en) Pressure-sensitive amplifier stage
TW201032467A (en) Operational amplifier circuit
US9214904B2 (en) Differential power amplifier using mode injection
US7629846B2 (en) Source follower circuit and semiconductor apparatus
US8432226B1 (en) Amplifier circuits and methods for cancelling Miller capacitance
DE50007780D1 (de) Schaltungsanordnung zur Detektion einer Funktionsstörung
ATE422110T1 (de) Verstärker mit variabler verstärkung mit temperaturkompensation und verstärkungslinearitätsverbesserung
US8493148B2 (en) Gain enhancement for cascode structure
US8692615B2 (en) Enhanced transconductance circuit
EP2849337B1 (en) Electric amplifier circuit for amplifying an output signal of a microphone
US10797654B2 (en) Amplifying device comprising a compensation circuit
JP2000261001A (ja) 半導体素子および半導体センサ
TW200713804A (en) Differential amplifier
KR100776366B1 (ko) 연산 증폭기의 오프셋 감소 방법 및 회로
CN103647555A (zh) 一种动态误差补偿的跟踪和保持电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190104