CN109154631A - 使用具有经由屏蔽线缆耦合到谐振器电容器的传感器感应器的传感器谐振器进行远程感测 - Google Patents

使用具有经由屏蔽线缆耦合到谐振器电容器的传感器感应器的传感器谐振器进行远程感测 Download PDF

Info

Publication number
CN109154631A
CN109154631A CN201780028355.3A CN201780028355A CN109154631A CN 109154631 A CN109154631 A CN 109154631A CN 201780028355 A CN201780028355 A CN 201780028355A CN 109154631 A CN109154631 A CN 109154631A
Authority
CN
China
Prior art keywords
sensing
sensor
terminal
coupled
signal wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780028355.3A
Other languages
English (en)
Other versions
CN109154631B (zh
Inventor
G·P·赖特玛
刘东泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN109154631A publication Critical patent/CN109154631A/zh
Application granted granted Critical
Publication of CN109154631B publication Critical patent/CN109154631B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • G01R27/32Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

在所描述的实例中,一种感应感测系统(100)包含传感器谐振器(112),其具有经由屏蔽传输线(115)耦合到谐振器电容器(112C)的遥感感应器(112L)。所述屏蔽传输线(115)包含信号线(114A)和屏蔽返回线(114B)。感测感应器(112L)在感测端处连接在所述信号线(114A)和所述屏蔽返回线(114B)之间。所述谐振器电容器(112C)在端子端(116A/B)处连接到至少所述信号线(114A)。电感/数据转换器IDC(190)在所述屏蔽传输线(115)的所述端子端(116A/B)处连接到所述信号线(114A)和所述屏蔽返回线(114B)。在操作中,所述IDC(190)经由所述信号线(114A)将振荡信号驱动到所述传感器谐振器(112)以致使所述传感器谐振器(112)在谐振状态中振荡,从所述感测感应器(112L)投射磁性感测场,且将表示谐振状态的改变的振荡信号的测得的改变转换为对应于感测到的条件的传感器响应数据。

Description

使用具有经由屏蔽线缆耦合到谐振器电容器的传感器感应器 的传感器谐振器进行远程感测
技术领域
本发明涉及具有经驱动传感器谐振器的感应谐振感测。
背景技术
远程感应感测应用需要感应传感器远离传感器电子器件定位。确切地说,对于使用谐振传感器的感应感测,远程传感器LC谐振器和传感器电子器件之间的电线互连成问题,因为:(a)所述电线互连引入与传感器感应器串联且与谐振器电容器并联的线路电感,使得引入第二谐振模式;以及(b)所述电线互连可充当发射和接收RF干扰信号(EMI)的天线。举例来说,当在比如蜂窝电话等EMI环境内部使用感应谐振传感器例如用于触摸按钮感测时,感应传感器在强RF发射器附近操作。
图1A示出利用包含远程传感器LC谐振器12和传感器电子器件19的感应谐振传感器10的远程感应谐振感测。传感器谐振器12包含传感器感应器Lsens 12L和谐振器电容器Csens 12C。远程传感器谐振器12在谐振下由传感器电子器件19经由端口16(端子16A/16B)处介接的双线式互连14(14SA/14B)驱动。
图1B提供双线式互连14的等效电路表示,其指示电线电感Lwire/2 14A/14B与传感器感应器Lsens 12L串联且与谐振器电容器Csens 12C并联,从而有效地形成第二串联谐振器。除传感器谐振器的经驱动谐振(Lsens/Csens)之外,还由互连电感Lwire/2 14A/14B和谐振器电容器Csens 12C(第二串联谐振器)引入第二谐振模式电流环路20。当长互连14的电感Lwire类似于传感器感应器Lsens的电感使得其谐振频率接近从而使得第二谐振模式进行区分/滤波具有挑战性时,第二谐振模式可尤其具有挑战性。寄生电容器Cwire在传感器谐振器中引起偏移,但通常不是显著问题。
对于EMI,双线式导体14引入两种类型的寄生天线:(a)用于传感器环路电流(引起第二谐振模式的相同电流环路)的环路天线,和(b)相对于用于传感器电子器件19的电路接地的电线上的共模电压的偶极天线。两者均可能导致发射以及接收。
发明内容
在所描述的实例中,一种感应感测系统包含传感器谐振器,其具有经由屏蔽传输线耦合到谐振器电容器的遥感感应器。屏蔽传输线包含信号线和屏蔽返回线。感测感应器在感测端处连接在信号线和屏蔽返回线之间。谐振器电容器在端子端处连接到至少信号线。电感/数据转换器(IDC)在屏蔽传输线的端子端处连接到信号线和屏蔽返回线。在操作中,IDC可经由信号线将振荡信号驱动到传感器谐振器以致使传感器谐振器在谐振状态中振荡,从而从感测感应器投射磁性感测场,且可将表示谐振状态的改变的振荡信号的测得的改变转换为对应于感测到的条件的传感器响应数据。
在其它实例中,IDC可以运算跨导放大器实施,所述运算跨导放大器包含耦合到信号线的输出,且包含耦合到信号线以提供来自传感器谐振器的正反馈路径的非反相输入,以及耦合到屏蔽返回线并耦合到电压参考Vcm以将屏蔽返回线设定为共模电压Vcm的反相输入。低通滤波器可包含在正反馈路径中以对传感器谐振器的第二谐振频率模式进行滤波。
附图说明
图1A示出利用包含远程传感器LC谐振器(12)的感应谐振传感器(10)的远程感应谐振感测,所述远程传感器LC谐振器具有经由双线式互连(14)耦合到传感器电子器件(IDC19)的传感器感应器(Lsens 12L)和谐振器电容器(Csens 12C)。
图1B提供双线式互连(14)的等效电路表示,其指示电线电感Lwire/2(14A/14B),且示出穿过双线式互连电感Lwire/2和谐振器电容器(Csens 12C)的第二谐振模式电流环路(20)。
图2示出使用耦合到电感/数据转换器(IDC)(190)的传感器LC谐振器(112)的远程感应谐振传感器的实例实施例,所述传感器谐振器包含位于远程感测位点的远程传感器感应器(Lsens 112L)和位于IDC(IDC 190)附近的谐振器电容器(Csens 112C),所述远程传感器感应器经由屏蔽传输线(115)利用信号线(114A)和DC屏蔽件(114B)耦合到谐振器电容器,使得谐振器电容器位于屏蔽传输线的IDC侧。
图3A和3B是具有到远程传感器LC谐振器的双线式互连的感应谐振传感器(例如,图1和2中)的实例阻抗和相位曲线,其中谐振器电容器在互连的感测感应器侧上,包含示出(图3B)约30MHz处谐振器谐振频率(12A)之间的相对窄频率间隔,以及约70MHz处的相应第二谐振模式(20A)。
图4A和4B是使用具有经由屏蔽传输线耦合到谐振器电容器的遥感感应器的传感器LC谐振器的远程感应谐振传感器的实例阻抗和相位曲线,其中谐振器电容器在屏蔽传输线的IDC侧上,包含示出(图4B)约27MHz处谐振器谐振频率(112A)之间的显著增加的频率间隔,以及约250MHz处的相应第二谐振模式(120A)。
具体实施方式
本文中描述使用具有经由屏蔽传输线耦合到谐振器电容器的远程传感器感应器的传感器LC谐振器进行远程感应感测的实例实施例,其中谐振器电容器位于传输线的传感器电子器件侧上。
在本说明书中:(a)“屏蔽传输线”或“屏蔽线缆”意味着具有连接为返回线的内部信号线导体和外部屏蔽导体的互连线;以及(b)“电感/数据转换器”意味着可与传感器谐振器一起操作用于如本文所描述的感应谐振感测的包含集成电路的传感器/读出电路/电子器件。
简单概述,感应感测系统包含传感器谐振器,其具有经由屏蔽传输线耦合到谐振器电容器的遥感感应器。屏蔽传输线包含信号线和屏蔽返回线:感测感应器在感测端处连接在信号线和屏蔽返回线之间,且谐振器电容器在端子端处连接到至少信号线。电感/数据转换器(IDC)在屏蔽传输线的端子端处连接到信号线和屏蔽返回线。在操作中,IDC可经由信号线将振荡信号驱动到传感器谐振器以致使传感器谐振器在谐振状态中振荡,从感测感应器投射磁性感测场,且可将表示产生于响应于磁性感测场感测到的条件的谐振状态的改变的振荡信号的测得的改变转换为对应于感测到的条件的传感器响应数据。IDC可以运算跨导放大器实施,所述运算跨导放大器包含耦合到信号线的输出,且包含耦合到信号线以提供来自传感器谐振器的正反馈路径的非反相输入,以及耦合到屏蔽返回线并耦合到电压参考Vcm以将屏蔽返回线设定为共模电压Vcm的反相输入。低通滤波器可包含在正反馈路径中以对传感器谐振器的第二谐振频率模式进行滤波。
图2示出远程感应谐振传感器100的实例实施例。感应谐振传感器100包含传感器LC谐振器112,其经由I/O端口116(端子116A/116B)耦合到电感/数据转换器(IDC)190。IDC190可包含用于多个传感器谐振器的多信道操作的多个I/O端口116。
传感器谐振器112包含远程传感器感应器Lsens 112L和谐振器电容器Csens112C。传感器感应器Lsens 112位于远离IDC 190的感测位点处。
远程传感器感应器Lsens 112L经由屏蔽(低阻抗)传输线115耦合到谐振器电容器Csens 112C,其中信号线导体114A和屏蔽导体114B连接为返回线。相应地,谐振器电容器Csens 112C位于屏蔽传输线115的IDC侧。
IDC 190经由I/O端口116耦合到屏蔽传输线115,其中端子116A连接到信号线114A,且端子116B连接到屏蔽导体114B(返回线)。
IDC 190作为非均衡单侧振荡器操作,其在信号线114A上经由端子116A将谐振器振荡信号驱动到包含远程传感器感应器112L的传感器谐振器112。传输线屏蔽导体114B是穿过端子116B的返回线(无信号),且由IDC 190设定为固定共模电压电平(Vcm)。
将谐振器电容器Csens 112C定位在互连114的IDC侧增加了传感器谐振器谐振频率和第二谐振模式(传输线自谐振)之间的频率间隔。此频率间隔效应在图4A/4B中示出,与图3A/3B相比。
IDC 190功能上示出为OTA(运算跨导放大器)192,其作为非均衡单侧振荡器操作。OTA 192在信号线114A上经由端子116A将电流驱动(振荡信号)输出到传感器谐振器112。OTA非反相输入经连接以获得来自传感器谐振器(穿过端子116A的信号线114A)的正反馈。OTA反相输入经由端子116B耦合到传输线屏蔽导体114B(返回线),所述传输线屏蔽导体由电压参考Vcm 194设定成DC共模电压。
OTA 192在谐振下驱动传感器谐振器112,其中遥感感应器Lsens 112L投射磁性感测场用于感测事件/条件(例如导电目标的近程或位置)。传感器响应由OTA 192测量,且转换为表示感测到的事件/条件的传感器数据。传感器响应对应于经驱动传感器谐振器112的谐振状态的改变,其是由OTA 190基于维持谐振所需的OTA驱动信号的改变(例如反映传感器电感(传感器感应器Lsens)的改变或传感器谐振器损耗因子的改变)而测得/检测到。
滤波器196可插入在正反馈路径中以对传感器谐振器112的第二谐振模式进行滤波,且增强谐振器的EMI抗扰性。
屏蔽件114B有效地抑制信号线114A上来自传感器谐振器环路电流的EMI接收和发射,而屏蔽件114B上的固定共模电平抑制共模辐射。并且,屏蔽件114B减小对电线和环境之间的寄生电容的敏感度。
屏蔽传输线114可以是具有低特性阻抗的传输线。由传输线引入的串联电感等于:L_(t—line)=Z_O√εr/C_O len,其中Zo=传输线的特性阻抗,εr=传输线的衬底的有效相对电容率,Co=光速,len=传输线的长度。此串联电感应比传感器电感Lsens小,以便减小动态范围的损失。相应地,其特性阻抗应较低:Z_O<Lsense/(√εr/C_O)len)。
图3A和3B是例如图1和2中的感应谐振传感器的实例阻抗和相位曲线,其中双线式互连到远程传感器LC谐振器,谐振器电容器在互连的感测感应器侧上。确切地说,图3B相位曲线示出约30MHz处谐振器谐振频率12A之间的相对窄频率间隔,以及约70MHz处的相应第二谐振模式20A。
图4A和4B是使用具有经由屏蔽传输线耦合到谐振器电容器的遥感感应器的传感器LC谐振器的远程感应谐振传感器的实例阻抗和相位曲线,其中谐振器电容器在屏蔽传输线的IDC侧上。
现第二谐振模式120A相对于谐振器谐振频率112A处于显著较高频率。确切地说,图4B相位曲线示出约27MHz处谐振器谐振频率112A之间的显著增加的频率间隔,以及约250MHz处的相应第二谐振模式120A。因为谐振器和第二谐振模式在频率上相差十倍,所以可使用相对简单的滤波器设计来排除第二谐振模式。
综上所述,使用具有经由屏蔽传输线耦合到谐振器电容器的远程传感器感应器的传感器LC谐振器进行远程感测移动谐振器电容器远离传感器感应器到屏蔽传输线的传感器电子器件(IDC)侧,使得传输线电感与传感器感应器直接串联。传感器谐振器谐振频率和第二谐振模式之间的频率间隔增加,而不需要较高传感器电感或谐振器质量因子,这使得能够在距传感器电子器件(IDC)较大距离处使用紧凑的传感器电感器,且促进使用简单滤波来排除传输线的自谐振。
在所描述的实施例中可能进行修改,且其它实施例在权利要求书的范围内是可能的。

Claims (13)

1.一种用于感应谐振感测的系统,其包括
传感器谐振器,其包含感测感应器和谐振器电容器;
屏蔽传输线,其具有信号线导体和屏蔽返回线导体,所述屏蔽传输线具有感测端和端子端,
所述感测感应器在所述感测端处连接在所述信号线导体和所述屏蔽返回线导体之间,且
所述谐振器电容器在所述端子端处连接到至少所述信号线导体;
电感/数据转换器IDC,其包含在所述屏蔽传输线的所述端子端处分别连接到所述信号线导体和所述屏蔽返回线导体的第一和第二端子。
2.根据权利要求1所述的系统,其中所述IDC可操作以:
经由到所述信号线导体的所述第一端子将振荡信号驱动到所述传感器谐振器以致使所述传感器谐振器在谐振状态中振荡,包含从所述感测感应器投射磁性感测场;
测量表示所述谐振状态的改变的所述振荡信号的改变,所述谐振状态的改变产生于响应于所述磁性感测场感测到的条件;以及
将所述振荡信号的所述测得的改变转换为对应于所述感测到的条件的传感器数据。
3.根据权利要求1所述的系统,其中所述IDC可操作以将所述屏蔽返回线导体设定为共模电压Vcm。
4.根据权利要求1所述的系统,其中所述IDC包括:
运算跨导放大器,其包含耦合到所述第一端子的输出,且包含:耦合到所述第一端子以建立来自所述传感器谐振器的正反馈路径的非反相输入;以及耦合到所述第二端子并耦合到电压参考Vcm的反相输入。
5.根据权利要求4所述的系统,其进一步包括:
低通滤波器,其包含在所述正反馈路径中以对所述传感器谐振器的第二谐振频率模式进行滤波。
6.一种电感/数据转换器IDC电路,其可与用于感应谐振感测的传感器谐振器一起操作,所述传感器谐振器包含感测感应器和谐振器电容器,且包含具有信号线导体和屏蔽返回线导体的屏蔽传输线,所述屏蔽传输线具有感测端和端子端,所述感测感应器在所述感测端处连接在所述信号线导体和所述屏蔽返回线导体之间,所述谐振器电容器在所述端子端处连接到至少所述信号线导体,所述IDC电路包括;
驱动电路,其用以经由所述信号线导体将振荡信号驱动到第一端子以供输入到所述传感器谐振器,以致使所述传感器谐振器在谐振状态中振荡,包含从所述感测感应器投射磁性感测场;以及
转换电路,其用以测量表示所述传感器谐振器的所述谐振状态的改变的所述振荡信号的改变,所述谐振状态的改变产生于响应于所述磁性感测场感测到的条件;且将所述振荡信号的所述测得的改变转换为对应于所述感测到的条件的传感器数据。
7.根据权利要求6所述的电路,其进一步包括电压参考电路,所述电压参考电路用以将所述屏蔽返回线导体设定为共模电压Vcm。
8.根据权利要求6所述的电路,其中所述驱动电路和所述转换电路包括:
运算跨导放大器,其包含耦合到所述第一端子的输出,且包含:耦合到所述第一端子以建立来自所述传感器谐振器的正反馈路径的非反相输入;以及耦合到第二端子并耦合到电压参考Vcm的反相输入。
9.根据权利要求8所述的电路,其进一步包括:
低通滤波器,其包含在所述正反馈路径中以对所述传感器谐振器的第二谐振频率模式进行滤波。
10.一种适于感应谐振感测的方法,其包括
用感测感应器配置传感器谐振器,所述感测感应器经由具有信号线导体和屏蔽返回线导体的屏蔽传输线耦合到谐振器电容器,所述屏蔽传输线具有感测端和端子端,所述感测感应器在所述感测端处连接在所述信号线导体和所述屏蔽返回线导体之间,且所述谐振器电容器在所述端子端处连接到至少所述信号线导体;
经由到所述信号线导体的第一端子将振荡信号驱动到所述传感器谐振器以致使所述传感器谐振器在谐振状态中振荡,包含从所述感测感应器投射磁性感测场;
测量表示所述谐振状态的改变的所述振荡信号的改变,所述谐振状态的改变产生于响应于所述磁性感测场感测到的条件;以及
将所述振荡信号的所述测得的改变转换为对应于所述感测到的条件的传感器数据。
11.根据权利要求10所述的方法,其进一步包括:
将所述屏蔽返回线导体设定为共模电压Vcm。
12.根据权利要求10所述的方法,其中驱动振荡信号和测量所述振荡信号的改变是利用以下实现:
运算跨导放大器,其包含耦合到所述第一端子的输出,且包含:耦合到所述第一端子以建立来自所述传感器谐振器的正反馈路径的非反相输入;以及耦合到第二端子并耦合到电压参考Vcm的反相输入。
13.根据权利要求12所述的方法,其进一步包括:
低通滤波器,其包含在所述正反馈路径中以对所述传感器谐振器的第二谐振频率模式进行滤波。
CN201780028355.3A 2016-04-12 2017-04-12 电感/数据转换器电路及用于感应谐振感测的系统和方法 Active CN109154631B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662321731P 2016-04-12 2016-04-12
US62/321,731 2016-04-12
PCT/US2017/027280 WO2017180793A1 (en) 2016-04-12 2017-04-12 Remote sensing using sensor resonator with sensor inductor coupled to resonator capacitor over shielded cable

Publications (2)

Publication Number Publication Date
CN109154631A true CN109154631A (zh) 2019-01-04
CN109154631B CN109154631B (zh) 2021-08-20

Family

ID=59998723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780028355.3A Active CN109154631B (zh) 2016-04-12 2017-04-12 电感/数据转换器电路及用于感应谐振感测的系统和方法

Country Status (6)

Country Link
US (1) US10274526B2 (zh)
EP (1) EP3443367B1 (zh)
JP (1) JP7029040B2 (zh)
KR (1) KR102365629B1 (zh)
CN (1) CN109154631B (zh)
WO (1) WO2017180793A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216474A1 (de) * 2015-08-28 2017-03-02 Leoni Kabel Holding Gmbh Überwachungssystem, Sicherheitskabel und Schlauch für ein solches und Verfahren zum Betrieb eines Überwachungssystems
US10381992B1 (en) 2018-02-20 2019-08-13 Texas Instruments Incorporated Amplitude control with signal swapping
EP3654532B1 (en) * 2018-11-16 2022-05-18 Bently Nevada, LLC Proximity sensing system with component compatibility testing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793207A1 (en) * 2005-12-02 2007-06-06 Vibro-Meter Sa Eddy current sensor and sensor coil for the same
WO2012133569A1 (ja) * 2011-03-31 2012-10-04 株式会社東京精密 渦電流センサ
WO2015015150A1 (en) * 2013-07-31 2015-02-05 Salunda Limited Sensing using a marginal oscillator
US20150077094A1 (en) * 2013-09-16 2015-03-19 Texas Instruments Incorporated Inductive position sensing with single channel interface to multiple resonant sensors
US20150185294A1 (en) * 2013-12-31 2015-07-02 Texas Instruments Incorporated Resonant impedance sensing with a negative impedance control loop implemented with synchronized class d and output comparators
CN105190325A (zh) * 2013-03-04 2015-12-23 德克萨斯仪器股份有限公司 基于受控负阻抗的谐振阻抗感测
US20160091342A1 (en) * 2014-09-25 2016-03-31 Texas Instruments Incorporated Multi-level Rotational Resolvers Using Inductive Sensors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219740A (en) * 1979-01-12 1980-08-26 Eldec Corporation Proximity sensing system and inductance measuring technique
UA7264U (en) 2004-11-15 2005-06-15 Univ Vinnytsia Nat Tech Inductive resonance measuring transducer with the output signal presented as time intervals
US7196916B2 (en) * 2005-02-14 2007-03-27 University Of Central Florida Research Foundation Alternated duty cycle control method for half-bridge DC-DC converter
US8446744B2 (en) 2008-03-06 2013-05-21 Koninklijke Philips Electronics N.V. Method for controlling a switching device of a resonant power converter, especially in order to provide a required power, especially for an X-ray generator
US9316525B2 (en) * 2013-05-15 2016-04-19 Air Products And Chemicals, Inc. Ultrasonic liquid level sensing systems
US9450284B2 (en) * 2013-07-01 2016-09-20 Hamilton Sundstrand Corporation Resonance based cable compensation
US9995778B1 (en) * 2014-09-26 2018-06-12 David Fiori, Jr. Sensor apparatus
US9618565B2 (en) * 2015-02-02 2017-04-11 Texas Instruments Incorporated Testing resonant sensor circuits using signal sources and controllable resistors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793207A1 (en) * 2005-12-02 2007-06-06 Vibro-Meter Sa Eddy current sensor and sensor coil for the same
WO2012133569A1 (ja) * 2011-03-31 2012-10-04 株式会社東京精密 渦電流センサ
CN105190325A (zh) * 2013-03-04 2015-12-23 德克萨斯仪器股份有限公司 基于受控负阻抗的谐振阻抗感测
WO2015015150A1 (en) * 2013-07-31 2015-02-05 Salunda Limited Sensing using a marginal oscillator
US20150077094A1 (en) * 2013-09-16 2015-03-19 Texas Instruments Incorporated Inductive position sensing with single channel interface to multiple resonant sensors
CN105452884A (zh) * 2013-09-16 2016-03-30 德州仪器公司 具有到多个谐振传感器的单通道接口的电感式位置感测
US20150185294A1 (en) * 2013-12-31 2015-07-02 Texas Instruments Incorporated Resonant impedance sensing with a negative impedance control loop implemented with synchronized class d and output comparators
US20160091342A1 (en) * 2014-09-25 2016-03-31 Texas Instruments Incorporated Multi-level Rotational Resolvers Using Inductive Sensors

Also Published As

Publication number Publication date
EP3443367A1 (en) 2019-02-20
EP3443367A4 (en) 2019-04-03
CN109154631B (zh) 2021-08-20
KR20180131608A (ko) 2018-12-10
EP3443367B1 (en) 2023-09-27
JP7029040B2 (ja) 2022-03-03
KR102365629B1 (ko) 2022-02-21
US10274526B2 (en) 2019-04-30
US20170292981A1 (en) 2017-10-12
WO2017180793A1 (en) 2017-10-19
JP2019518361A (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
CN102484316B (zh) 天线装置
US8532568B2 (en) Radio receiver and transmitter circuits and methods
EP2408063B1 (en) Antenna apparatus
CN103222113B (zh) 天线装置
US9958480B2 (en) Apparatus and method for a current sensor
US9320433B2 (en) Living body detection sensor, communication apparatus having living body detection sensor, metal detection sensor
CN109154631A (zh) 使用具有经由屏蔽线缆耦合到谐振器电容器的传感器感应器的传感器谐振器进行远程感测
KR102649852B1 (ko) 이물질을 검출하는 무선 전력 시스템들
CN105026942B (zh) 用于检查电路的方法和设备
US20140152327A1 (en) Capacitive Proximity Sensor As Well As Method For Capacitive Approximation Detection
JPWO2013069455A1 (ja) アンテナ装置および通信装置
CN101300483A (zh) 混合saw/baw传感器
CN110426064A (zh) 无线无源传感器及无线无源传感方法
CN102478850B (zh) 用于过程现场设备的通信系统
CN112740560A (zh) 用于信号连接的电路、用于感应功率传输和信号发送的装置及其制造方法
JP2015130607A (ja) 通信装置
CN110323548A (zh) 电子装置
US20170250715A1 (en) Device comprising a radio communication terminal
JP6095201B2 (ja) センシングシステム
CN116908925A (zh) 一种电子设备及确定方法
JP5764038B2 (ja) 電界通信装置
JP4956638B2 (ja) 接続回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant