CN109152526B - 具有8个通道的数字生物电势获取系统 - Google Patents

具有8个通道的数字生物电势获取系统 Download PDF

Info

Publication number
CN109152526B
CN109152526B CN201780012702.3A CN201780012702A CN109152526B CN 109152526 B CN109152526 B CN 109152526B CN 201780012702 A CN201780012702 A CN 201780012702A CN 109152526 B CN109152526 B CN 109152526B
Authority
CN
China
Prior art keywords
stage
amplifier
preamplifier
shows
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780012702.3A
Other languages
English (en)
Other versions
CN109152526A (zh
Inventor
马蒂亚斯·库尔
伊奥诺斯·马诺利
丹尼斯·普拉查
托马斯·斯蒂格利茨
奥斯卡·科塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neuroloop GmbH
Original Assignee
Neuroloop GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neuroloop GmbH filed Critical Neuroloop GmbH
Publication of CN109152526A publication Critical patent/CN109152526A/zh
Application granted granted Critical
Publication of CN109152526B publication Critical patent/CN109152526B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/333Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/144Indexing scheme relating to amplifiers the feedback circuit of the amplifier stage comprising a passive resistor and passive capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45024Indexing scheme relating to differential amplifiers the differential amplifier amplifying transistors are cascode coupled transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45116Feedback coupled to the input of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45526Indexing scheme relating to differential amplifiers the FBC comprising a resistor-capacitor combination and being coupled between the LC and the IC

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Power Engineering (AREA)
  • Cardiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Amplifiers (AREA)
  • Neurology (AREA)

Abstract

本发明涉及具有8个通道的数字生物电势获取系统。具体而言,本发明涉及一种用于从生物的神经系统获取电子信息的生物相容的记录系统,所述生物相容的记录系统包括前置放大器级和另外的放大器级,其中第二放大器级的输入耦合到所述前置放大器的输出;以及具有电容倍增器的低通滤波器,所述低通滤波器连接到所述第二级的所述放大器。所述记录系统的所述前置放大器使用P‑MOS技术设计。

Description

具有8个通道的数字生物电势获取系统
技术领域
本发明涉及用于记录生物的神经信号的生物相容的神经植入体。具体地,本发明公开用于植入生物中的芯片内神经信号的获取系统。
背景技术
生物电势是在活细胞、组织和有机组织中的点之间测量的电势并且结合所有生物化学过程发生。还描述信息在细胞之间和在细胞内的传递。电量(电压、电流或场强度)由带电荷离子的化学反应引起。此术语进一步在描述信息在细胞之间和细胞内的传递中(例如,在信号传输中)使用。
神经植入体可电刺激、捕获并且阻挡(或甚至同时捕获和刺激)来自生物中单个神经元或神经元群组(生物神经网络)的信号。
本发明公开集成CMOS生物电势获取芯片的设计和测试,所述集成CMOS生物电势获取芯片具有8个通道并且由低噪声放大器(LNA)、第二级、复用器和两个模数转换器(ADC)组成。
由于其可变的功率消耗,第一级的集成噪声可从1.94μVRMS减少至0.693μVRMS(Iss=250μA)。装置具有可变的下拐角频率和上拐角频率并且在1Mb/s下输出两个16位数字数据流。
芯片以X-Fab 0.35μm CMOS技术制造并且具有10mm2的面积。
神经植入体是支持疾病(诸如帕金森氏疾病、听觉损伤和心脏病)的治疗的装置。
这类装置通过电刺激连接神经系统以诱导身体反应。例如,耳蜗植入体刺激听神经来创建听觉的感知印象,起搏器刺激心脏的内壁来触发心脏肌肉收缩,并且深脑刺激器生成防止由帕金森氏疾病引起的不想要的肌肉颤搐的信号。
医学研究的目的在于理解神经植入体应如何影响神经系统。正常地,大型记录系统在对人和动物的实验中使用,使得可能可视化并且处理来自脑或神经的信号。当前实验显示明显倾向于使用可植入的获取系统,因为它们是更靠近于医学植入体的现实的一个步骤。
取决于应用的类型,生物电信号覆盖宽范围的幅值、噪声电平和频率带。出于这个原因,可使其性质适于相应的应用的记录系统是极其令人希望的。
Ghovanloo[6]展示了具有极其低的功率消耗的系统,所述系统可检测脑信号并且包括可变的带宽和无线电传输。Harrison等人展示了多功能获取放大器,所述多功能获取放大器在脑动作电势、脑电图(EEG)、心电图(ECG)和肌电图(EMG)的情况下已经得以证明其自身。
这些获取系统的优点是它们各自具有4μVRMs和2μVRMS的噪声电平,这在具有EEG和神经电图(ENG)的应用中相对较高。
放大器还生成噪声,所述噪声被分成热噪声和闪烁噪声。
热噪声密度相对于频率恒定并且与晶体管的等效电阻成正比例。
另一方面,闪烁噪声密度取决于具有1/f因子的频率并且与晶体管表面成反比例。
已经作出一些努力来克服噪声限制。显著的工作由用于ENG的BJT输入跨导运算放大器(OTA)表示,由R.Rieger和N.Donaldson提出。
由于BJT晶体管并不生成闪烁噪声,因而300nVRMS的所得的输入相关的噪声显著地低于先前的放大器的输入相关的噪声。然而,此架构具有两个严重的缺点:
1.它具有来自电极组织界面的20nA的剩余DC电流,这长期可在触点处导致腐蚀,以及
2.技术是“开环”,这致使增益是随机变量,这对于用于袖套电极记录的“真三向发声布置”是一个问题。
此外,斩波结构被提出使信号偏移至闪烁噪声可忽略不计的频率。信号然后在不具有闪烁噪声的情况下解调。遗憾的是,斩波放大器需要至少十倍多的带宽以确保信号足够远。
这种要求增加了放大器的功率消耗。本发明示出多功能的低噪声放大器以实现子μVRMS的输入噪声电平。应用到噪声减少的方法在于适当的晶体管大小和功率以及使用具有低闪烁噪声常数的PMOS输入晶体管。图1中示出的本系统在具有10位ADC的情况下具有8个双极性输入通道和两个独立的串行数字输出。
发明内容
本发明涉及一种用于从生物的神经系统获取电子信息的生物相容的记录系统,其包括:由具有完全差分伸缩架构的前置放大器组成的前置放大器级;第二放大器级,其中所述第二放大器级的输入耦合到所述前置放大器的输出;具有电容倍增器的变量低通滤波器,所述变量低通滤波器连接到所述第二级的所述放大器,其中所述系统通过预定信号的变化具有可变的下(fcL)拐角频率和上(fcU)拐角频率,所述下(fcL)拐角频率是基于由调谐电压(VTUNE)发生的变化,所述上(fcU)拐角频率是基于由控制电压(VGC±)发生的变化。
附图说明
图1示出在具有10位ADC的情况下具有8个双极性输入通道和两个独立的串行数字输出的系统。
图2示出提供单一级中高的增益和带宽的架构。
图3示出用于预先确定噪声特性的性能曲线。
图4示出第二级。
图5示出第二级OTA。
图6示出控制电流电容倍增器。
图7示出从放大器输出到串行数字输出的信号路径。
图8示出具有8个双极性输入通道的芯片的显微图像。
图9示出LNA8芯片的I/O引脚。
图10示出电容倍增器的下截止频率和上截止频率的变化以及偏置VGC+的控制。
图11示出以dB表示的量值相对于以Hz表示的频率的图表。
图12示出以φ表示的相以及以dB表示的量值相对于以Hz表示的频率的图表。
图13示出Ghovanloo型第一级的输入相关噪声。
图14示出偏置电流μA。
图15示出肌肉收缩图像和心电图信号图像。
图16示出根据表3的示出的低噪声放大器(LNA)与其他系统的比较。
图17示出(A)基于源的神经脉冲的图像和(B)基于图像的动作电势的图像。
具体实施方式
LNA前置放大器
已知第一级(前置放大器)在放大器链中是最重要的级,因为它是最易受噪声影响的部件。出于这个原因,已经使用全差分伸缩架构。
图2中示出的架构提供单一级中高的增益和带宽,以及理论上无限共模抑制比(CMRR)和无限噪声抑制(PSRR)。
放大器通道的方程式是已知的,并且被改述用于gm/ID设计方法,所述噪音模型如下:
Figure GDA0003426215810000041
并且传递函数:
Figure GDA0003426215810000042
以及
Figure GDA0003426215810000043
图注:
Figure GDA0003426215810000044
(1)
Figure GDA0003426215810000045
(2)
Figure GDA0003426215810000051
(3)
RF反馈电阻Ω
βMOSFET晶体管电流放大A/V2
ISS用于FD伸缩放大器的极化电流A
使用图3中标记的PMOS晶体管和最佳点,下列表中显示的变量被确定:
PMOS FD伸缩放大器的变量
Figure GDA0003426215810000052
第二级
图4中示出的第二级负责FD(全差分)到单端转换,其中6μVRMS量的输入噪音用于148μW的功率消耗(在LP模式中11μVRMS和46μW)。由于反馈,它递送0dB或20dB的增益。OTA由单端2级密勒放大器组成。
图5示出第二级OTA。图5中示出输入端VIP和VIN、参考端VREF和输出端VOUT,电阻器R1、RF和RMUL,以及电容器CMUL
在电子器件的场中,由于电容在输入端子和输出端子之间的效应的放大,密勒效应是反相电压放大器的等效输入电容的增加。由于密勒效应明显地增加的输入容量产生如下结果:
CM=C(1+Av)
其中-Av是增益并且C是反馈电容。
尽管术语密勒效应通常是指电容,但是连接在输入接点和另一个接点之间的示出增益的任何阻抗可利用这一效应修改放大器输入阻抗。
具有电容倍增器的低通滤波器
由于不同的应用需要不同的上拐角频率fcu,因而变量RC低通滤波器已经被集成。
在参考文献[3]中,这一变量通过调整LNA偏置电流Iss,创建噪音行为的变量来实现。为了避免这一不想要的耦合,提出电容倍增器,所述电容倍增器使用来自[4]的控制电流OTA并且连接到第二级,如[5]中所描述。电容倍增因子(从50pF到5nF)由差分输入VGC±、56μA的偏置电流和0.013mm2的面积设置。
图6示出控制电流电容倍增器,其中包括常规的PMOS电流镜像。
MUX,模数转换器和串行输出
芯片使用X-Fab 0.35μm库10位SAR-ADC并且集成用户定义的基于触发器的并串转换器。16位小字节序输出如[4]中组合,其中S表示起始令牌位(H L),位C3-C0表示通道数量并且位D9-D0表示ADC样本值。
图7示出从放大器输出到串行数字输出的信号路径,其中示出ADC1和ADC2
功率消耗
芯片的功率消耗概括于下表1:
Figure GDA0003426215810000061
结果
图8中示出的芯片使用X-Fab 0.35μm技术制造。放大器I/O引脚概括于表2中。系统引脚为参数提供灵活性:
·使能函数:连续的/SS变量、第二级低功率(LP)模式、电容倍增器、20dB增益
·偏置电压:VREF_ISS、VREF_CMFB
·频率范围变量:VGCP/N、VTUNE
尽管芯片被设计用于数字输出,但是它包含测试引脚来支持其特性,诸如前置放大器的模拟输出和具有通道1和5的低通滤波器。
图9示出LNA8芯片的I/O引脚。
表2,LNA8芯片的I/O引脚。已加下划线的引脚表示输出。
Figure GDA0003426215810000071
ADC可用高达1MHz的两个串行数字输出定时。
频率响应
LNA8记录系统在每种情况下通过改变电势V调谐和VGC±具有可变的拐角频率fcU、fcL。
图10示出通过VTune(V调谐)和对电容倍增器的偏置VGC+的控制产生的下截止频率和上截止频率的变化。图10的左侧示出了下截止频率fCL相对于调谐电压V_TUNE的图表,图10的右侧示出了上截止频率fCU相对于控制电压VGC+的图表。
图11示出以dB表示的量值相对于以Hz表示的频率的图表。
图12分别示出以φ表示的相以及以dB表示的量值相对于以Hz表示的频率的图表。
噪声行为
放大器的噪声频谱密度被测量用于不同的偏置电流和带宽设置电压。
图13中的图形表示示出相比较于示意性的仿真和模拟提取的仿真的测量的曲线。图14示出用于不同放大器配置的总集成输入噪声。曲线示出针对Iss=250μA的*(仿真值)0.6VRMS的最小噪声。
活体内记录
获取系统已经被测试具有生物电活体内信号,如图15所示。生物电信号使用SPI解码从串行数字输出直接地提取。SPI总线(串行外围接口)是用于短程通信的同步串行通信接口规格。SPI装置可在全双工操作中使用主从架构与单一主机通信。主装置生成框架以用于读取和写入。大量的从装置通过选择单个从选择线(SS)来支持。
图15中的上部在上文示出示例性二头肌EMG检测的三个连续的收缩。图15中的下部示出ECG检测。
总结
本文示出具有8个通道的生物电势获取系统的实现。表3示出与类似页的比较。
尽管最好的噪声效率因子由使用BJT晶体管(BJT晶体管-->Mahdi参考!)的设计实现,但是这具有如下缺点:20nA的剩余DC电流保留,这从长远看来可导致电极腐蚀。
电容倍增器实现其提供宽范围的上截止频率的功能。
然而,由于电容倍增器的尺寸被设计成具有最小面积和功率消耗,因而噪声行为在不具有电容倍增器的情况下可能无法保持低于1μVRMS;噪声行为可通过软件滤波维持。
图16示出根据下表3的示出的低噪声放大器(LNA)与其他系统的比较。
表3显示示出的低噪声放大器(LNA)与其他系统的比较
Figure GDA0003426215810000081
Figure GDA0003426215810000091
与[3]以前的作品相比较,本设计集成希望的系统的其他区块。
放大器面积已经减少了四倍并且由模拟输出减少。
结果
本发明示出具有8个通道的多功能生物电信号获取芯片的成功的实现方式和测试。放大的通道从两个模拟多路复用器选择并且由两个SPI相容的16位数据流输出。总集成输入噪声可针对介于1Hz和10kHz之间的带宽减少至*(仿真值)0.6μVRMS。获取系统已经被测试用于ECG和EMG应用。
图17的A部分分别示出基于源的神经脉冲和肌肉脉冲,B部分分别示出基于图像的动作电势和动作电流。
参考文献
[1]B.Razavi,Design of analog CMOS integrated circuits:Tata McGraw-Hill Education,2002.
[2]P.Harpe,H.Gao,R.van Dommele,E.Cantatore,and A.van Roermund,“21.2A3nW signal-acquisition IC integrating an amplifier with 2.1NEF and a 1.5fJ/conv-step ADC,”in Solid-State Circuits Conference-(ISSCC),2015IEEEInternational,2015,S.1–3.
[3]O.F.Cota,D.Plachta,T.Stieglitz,Y.Manoli,and M.Kuhl,“In-vivocharacterization of a 0.8-3\muV RMS input-noise versatile CMOS pre-amplifier,”in Neural Engineering(NER),2015 7th International IEEE/EMBSConference on,2015,S.458–461.
[4]J.
Figure GDA0003426215810000102
S.R.Garimella,A.J.
Figure GDA0003426215810000101
andR.G.Carvajal,“Gain programmable current mirrors based on current steering,”Electronics Letters,vol.42,no.10,S.559–560,2006.
[5]J.A.Ruiz,A.Lopez-Martin,and J.Ramirez-Angulo,“Three novel improvedCMOS capacitance scaling schemes,”in Circuits and Systems(ISCAS),Proceedingsof 2010IEEE International Symposium on,2010,S.1304–1307.
[6]M.Yin and M.Ghovanloo,“A low-noise clockless simultaneous 32-channel wireless neural recording system with adjustable resolution,”AnalogIntegrated Circuits and Signal Processing,vol.66,no.3,S.417–431,ISI:000287319400010,2011.
[7]J.Taylor and R.Rieger,“A low-noise front-end for multiplexed ENGrecording using CMOS technology,”Analog Integrated Circuits and SignalProcessing,vol.68,no.2,S.163–174,ISI:000292649900004,2011.
[8]F.Zhang,J.Holleman,and B.P.Otis,“Design of ultra-low powerbiopotential amplifiers for biosignal acquisition applications,”IeeeTransactions on Biomedical Circuits and Systems,vol.6,no.4,S.344–355,2012.。

Claims (4)

1.一种用于从生物的神经系统获取电子信息的生物相容的记录系统,其包括:
-由具有完全差分伸缩架构的前置放大器组成的前置放大器级,
-第二放大器级,其中所述第二放大器级的输入耦合到所述前置放大器的输出,
-具有电容倍增器的变量低通滤波器,所述变量低通滤波器连接到所述第二级的所述放大器,其中所述系统通过预定信号的变化具有可变的下(fcL)拐角频率和上(fcU)拐角频率,所述下(fcL)拐角频率是基于由调谐电压(VTUNE)发生的变化,所述上(fcU)拐角频率是基于由控制电压(VGC±)发生的变化。
2.如权利要求1所述的记录系统,其特征在于所述前置放大器在第一放大器级中使用P-MOS输入晶体管。
3.如权利要求1所述的记录系统,其特征在于所述记录系统可在至少两个记录通道的帮助下获取彼此独立的至少两个信号。
4.如权利要求1所述的记录系统,其中基于触发器的并串转换器被集成。
CN201780012702.3A 2016-02-22 2017-02-22 具有8个通道的数字生物电势获取系统 Active CN109152526B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016103073.2 2016-02-22
DE102016103073.2A DE102016103073A1 (de) 2016-02-22 2016-02-22 Digitales Biopotentialerfassungssystem mit 8 Kanälen
PCT/EP2017/054057 WO2017144529A1 (de) 2016-02-22 2017-02-22 Digitales biopotentialerfassungssystem mit 8 kanälen

Publications (2)

Publication Number Publication Date
CN109152526A CN109152526A (zh) 2019-01-04
CN109152526B true CN109152526B (zh) 2022-04-05

Family

ID=58192272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780012702.3A Active CN109152526B (zh) 2016-02-22 2017-02-22 具有8个通道的数字生物电势获取系统

Country Status (6)

Country Link
US (1) US11123000B2 (zh)
EP (1) EP3419503B1 (zh)
JP (1) JP7075356B2 (zh)
CN (1) CN109152526B (zh)
DE (1) DE102016103073A1 (zh)
WO (1) WO2017144529A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112274158B (zh) * 2020-09-30 2022-07-05 清华大学 一种生物电位记录器
CN113974654B (zh) * 2021-10-12 2024-03-19 杭州电子科技大学 一种小型化低噪声的无线侵入式神经信号记录设备
CN114403883A (zh) * 2022-01-10 2022-04-29 武汉衷华脑机融合科技发展有限公司 一种用于神经接口的电路
WO2024043266A1 (ja) * 2022-08-25 2024-02-29 日東電工株式会社 データ取得回路および生体センサ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197877A (ja) 1992-11-11 1994-07-19 Yokogawa Electric Corp 生体信号採取装置
US5479137A (en) 1993-12-14 1995-12-26 Samsung Electronics Co., Ltd. Controlled oscillator, as for synchyronous video detector
JPH08215164A (ja) 1995-02-15 1996-08-27 Horiuchi Denshi Sekkei:Kk 脳波測定分析装置
US6996435B2 (en) 2001-11-19 2006-02-07 Neurostream Technologies Inc. Implantable signal amplifying circuit for electroneurographic recording
US6756842B2 (en) * 2002-05-08 2004-06-29 Analog Devices, Inc. AC coupled multistage high gain operational amplifier
US7253680B2 (en) * 2003-05-21 2007-08-07 World Energy Labs (2), Inc. Amplifier system with current-mode servo feedback
US7113020B2 (en) 2004-10-25 2006-09-26 Toko, Inc. Capacitance multiplier circuit exhibiting improving bandwidth
US7385443B1 (en) 2007-01-31 2008-06-10 Medtronic, Inc. Chopper-stabilized instrumentation amplifier
US8344810B2 (en) * 2008-06-11 2013-01-01 National University Of Singapore CMOS amplifier with integrated tunable band-pass function
US8958868B2 (en) 2008-10-28 2015-02-17 Georgia Tech Research Corporation Systems and methods for multichannel wireless implantable neural recording
EP2720611B1 (en) * 2011-06-20 2016-04-20 The Regents of The University of California Neuron recording system
US8436679B1 (en) * 2012-02-13 2013-05-07 King Fahd University Of Petroleum And Minerals Low frequency notch filter integrated circuit
US9662025B2 (en) * 2013-05-03 2017-05-30 The Florida International University Board Of Trustees Low noise analog electronic circuit design for recording peripheral nerve activity
US10044362B2 (en) * 2014-06-19 2018-08-07 Texas Instruments Incorporated Complementary current reusing preamp for operational amplifier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《in-vivo characterization of a 0.8 - 3 μVRMS input-noise versatile CMOS pre-amplifier》;Cota et al.;《7th Annual International IEEE EMBS Conference on Neural Engineering》;20150702;正文第458-461页中的摘要,第I节第5段、第IV节第2段、第II节第B小节第3段,附图1 *
一种适用于心电信号检测的放大器设计;杨骁等;《华侨大学学报(自然科学版)》;20111130;第32卷(第6期);第635页1-2段,附图3-4 *

Also Published As

Publication number Publication date
EP3419503A1 (de) 2019-01-02
EP3419503B1 (de) 2024-04-03
JP7075356B2 (ja) 2022-05-25
US20190059755A1 (en) 2019-02-28
US11123000B2 (en) 2021-09-21
JP2019510600A (ja) 2019-04-18
CN109152526A (zh) 2019-01-04
DE102016103073A1 (de) 2017-08-24
WO2017144529A1 (de) 2017-08-31

Similar Documents

Publication Publication Date Title
CN109152526B (zh) 具有8个通道的数字生物电势获取系统
Harrison A versatile integrated circuit for the acquisition of biopotentials
US8086305B2 (en) Implantable signal amplifying circuit for electroneurographic recording
Wu et al. A 16-channel CMOS chopper-stabilized analog front-end ECoG acquisition circuit for a closed-loop epileptic seizure control system
CN113346907A (zh) 具有电容差分电路和数字σ-δ反馈的adc
KR101832734B1 (ko) 개선된 생체 신호 측정 시스템
Xu et al. A frequency shaping neural recorder with 3 pF input capacitance and 11 plus 4.5 bits dynamic range
Lee et al. A tunable biquad switched-capacitor amplifier-filter for neural recording
Robinet et al. A Low-Power 0.7$\mu {\rm V_ {rms}} $32-Channel Mixed-Signal Circuit for ECoG Recordings
Rehman et al. A CMOS micro-power and area efficient neural recording and stimulation front-end for biomedical applications
Xu et al. A low-noise, wireless, frequency-shaping neural recorder
Ranjandish et al. Walsh-hadamard-based orthogonal sampling technique for parallel neural recording systems
Kuhl et al. A 0.01 mm 2 fully-differential 2-stage amplifier with reference-free CMFB using an architecture-switching-scheme for bandwidth variation
Gosselin et al. Low-power implantable microsystem intended to multichannel cortical recording
Dwivedi et al. Local field potential measurement with low-power area-efficient neural recording amplifier
Sharma Design topologies for low-frequency and low-noise neural signal processing
Rehman et al. A 79μW 0.24 mm 2 8-channel neural signal recording front-end integrated circuit
Cota et al. In vivo characterization of a versatile 8-channel digital biopotential recording system with sub-μV RMS input noise
WO2020102305A1 (en) Reconfigurable analog front end for biosignal acquisition
Rummens et al. CMOS differential neural amplifier with high input impedance
Billoint et al. A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays
Shan et al. Integrated implantable electrode array and amplifier design for single-chip wireless neural recordings
Borghi et al. An integrated low-noise multichannel system for neural signals amplification
Kuhl et al. Area reduction techniques for deep-brain probes with electronic depth control
Tang et al. A TDM-based multi-channel analog front-end for wearable dry EEG recording system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant