CN109143426A - 一种位相编码菲涅尔透镜 - Google Patents

一种位相编码菲涅尔透镜 Download PDF

Info

Publication number
CN109143426A
CN109143426A CN201811092417.XA CN201811092417A CN109143426A CN 109143426 A CN109143426 A CN 109143426A CN 201811092417 A CN201811092417 A CN 201811092417A CN 109143426 A CN109143426 A CN 109143426A
Authority
CN
China
Prior art keywords
phase coding
fresnel lenses
phase
face shape
coding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811092417.XA
Other languages
English (en)
Other versions
CN109143426B (zh
Inventor
许峰
郑鹏磊
胡正文
王钦华
邢春蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201811092417.XA priority Critical patent/CN109143426B/zh
Publication of CN109143426A publication Critical patent/CN109143426A/zh
Application granted granted Critical
Publication of CN109143426B publication Critical patent/CN109143426B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lenses (AREA)

Abstract

本发明属于光学领域,为解决传统菲涅尔透镜用于成像时色差严重的技术问题,公开了一种位相编码菲涅尔透镜,将位相编码技术引入菲涅尔透镜领域,将位相编码元件的面形与会聚透镜的面形集成后,再进行塌陷,使每个环带的最高点与最低点的矢高差为最终得到位相编码菲涅尔透镜的面形,其中λ为设计波长,n为基底材料的折射率;这种位相编码的菲涅尔透镜不仅具有传统衍射成像透镜的聚焦功能,还具有位相编码元件的位相编码功能;用这种方法设计出来的菲涅尔透镜能够对入射的光线进行位相编码,拓宽了焦深,降低了菲涅尔透镜对波长的敏感性,在不降低菲涅尔透镜成像分辨率的情况下,拓宽了菲涅尔透镜的带宽。

Description

一种位相编码菲涅尔透镜
技术领域
本发明属于光学领域,具体涉及一种菲涅尔透镜。
背景技术
菲涅尔透镜是由法国著名物理学家菲涅尔发明的一类新型光学元件。他在1822年最初设计这种透镜,用于建立一个灯塔透镜,透过它发射的光线可以在20英里以外看到。菲涅尔透镜由一系列同心棱形槽构成,亦称螺纹透镜。菲涅尔透镜的本质是一种衍射光学元件,根据光调制的不同,可以分为振幅型菲涅尔透镜和位相型菲涅尔透。菲涅尔波带片即属于振幅型菲涅尔透镜,在制造菲涅尔透镜时,除了采用遮挡偶数波带或者奇数波带的办法,还可以通过位相补偿的办法实现,即位相型菲涅尔透镜。通过减小或者增加波带的厚度,使光通过偶数波带相对于奇数波带产生π的相位变化,于是通过偶数波带的光与通过奇数波带的光在设计焦点处变成同相位,相互加强,可以实现聚焦和成像。
然而,菲涅尔透镜作为一种衍射光学元件,具有很大的色差。一般而言,对于一个焦距为f的菲涅尔透镜,只对设计波长λ清晰成像。因此,当入射光波长为λ+Δλ时,将聚焦到f+Δf位置,在原始焦平面的位置产生背景噪声,影响成像的分辨率。
发明内容
发明要解决传统菲涅尔透镜用于成像时色差严重的问题。为此采用的技术方案是:一种位相编码菲涅尔透镜,其表面的面形为会聚透镜面形和位相编码元件面形的集成,所述的位相编码菲涅尔透镜上每个环带的最高点与最低点的矢高差为其中λ为设计波长,n为位相编码菲涅尔透镜基底材料的折射率。将位相编码技术引入传统的菲涅尔透镜中,物体经过位相编码菲涅尔透镜的相位调制,使物体的信息得以保留,通过图像复原技术将模糊图像复原成清晰的图像。
所述会聚透镜包括普通球面会聚透镜和非球面会聚透镜,位相编码元件包括三次位相编码板、四次位相编码板、对数位相编码板、正弦位相编码板、指数位相编码板。用此方法设计的位相编码菲涅尔透镜能够对入射的光线进行位相编码和聚焦。优选的方案如下:
所述会聚透镜为普通球面透镜,其面形为位相编码元件为三次位相编码板,其面形为则位相编码菲涅尔透镜的表面浮雕结构的面形方程为 且Z≥0,m=1,2,3…,式中,xm,ym为第m环带内位相编码菲涅尔透镜底部坐标,f为位相编码菲涅尔透镜的焦距,m为环带序数,α为位相编码系数,R为位相编码菲涅尔透镜的半径,λ为设计波长,n为基底材料的折射率。
三次位相编码系数α的范围为5π至50π。随着三次位相编码系数α的增大,光学系统的MTF降低,意味着在图像滤波复原处理过程会引入更多的噪音,造成信噪比的下降。随着三次位相编码系数a的减小,位相编码程度减小,拓宽带宽的效果降低。所以必须选取合适的三次位相编码系数a,以便在拓宽带宽和可接受的信噪比之间做出权衡。
所述位相编码元件面形方程为:Z=sgn(x)·(α1·x2·(ln(|x|)+β1))+sgn(y)·(α1·y2·(ln(|y|)+β1)),式中α1>0,β1>0。
所述位相编码元件面形方程为:Z=α2·x·exp(β2·x2)+α2·y·exp(β2·y2),式中α2≥30,1≤β2≤3。
所述会聚透镜面形方程为:式中,c为非球面的基准面或者辅助球面的曲率,k为锥面度,a2,a4,a6…为多次项系数。
所述会聚透镜面形方程为:式中,c为非球面的基准面或者辅助球面的曲率,k为锥面度,a1,a2,a3,a4,a5…为多次项系数。
基于上述位相编码菲涅尔透镜的一种位相编码菲涅尔透镜的成像方法,其特征在于:物体经过上述位相编码菲涅尔透镜的相位调制,使物体的信息得以保留,通过图像复原技术将模糊图像复原成清晰的图像。
基于上述位相编码菲涅尔透镜的一种位相编码菲涅尔透镜制备方法,将相同口径的会聚透镜的面形和位相编码元件的面形集成后,再进行塌陷,使每个环带的最高点与最低点的矢高差为最终得到位相编码菲涅尔透镜的面形,其中λ为设计波长,n为基底材料的折射率。
由于上述技术方案的运用,与现有技术相比具有下列优点:
将位相编码技术引入传统的菲涅尔透镜中,增加了焦深,降低了菲涅尔透镜对光波的敏感性,拓宽了菲涅尔透镜的带宽,同时不影响成像分辨率。
附图说明
图1是位相编码菲涅尔透镜表面轮廓示意图;
图2是传统菲涅尔透镜表面轮廓示意图;
图3是传统菲涅尔透镜在不同入射光照射下的点扩散函数;
图4是三次位相编码菲涅尔透镜在不同入射光照射下的点扩散函数;
图5是传统菲涅尔透镜和三次位相编码菲涅尔透镜在不同波长下的MTF;
图6是传统菲涅尔透镜在不同波长λ=630nm~670nm下的成像结果;
图7是三次位相编码菲涅尔透镜在不同波长λ=630nm~670nm下的中间模糊图像;
图8是三次位相编码菲涅尔透镜在不同波长下(630nm~670nm)的最终复原图像。
具体实施方式
为了更清楚地说明发明,下面结合附图及实施例作进一步描述:
实施例一:
一种位相编码菲涅尔透镜,如图1所示,其表面的面形为会聚透镜面形和位相编码元件面形的集成,所述的位相编码菲涅尔透镜上每个环带的最高点与最低点的矢高差为其中λ为设计波长,n为位相编码菲涅尔透镜基底材料的折射率。
实施例二:
一种位相编码菲涅尔透镜的成像方法,其特征在于:物体经过上述位相编码菲涅尔透镜的相位调制,使物体的信息得以保留,通过图像复原技术将模糊图像复原成清晰的图像。具体的选用普通球面透镜作为会聚透镜,其面形为选用三次位相编码板为位相编码元件,其面形为选用的球面透镜和三次位相板的口径应相同。将面形Z1与面形Z2进行集成,得到集成面形将集成面形进行塌陷,使每个环带的最高点与最低点的矢高差为最终得到三次位相编码菲涅尔透镜面形,其方程为且Z≥0,m=1,2,3…,式中,xm,ym为第m环带内位相编码菲涅尔透镜底部坐标,f为位相编码菲涅尔透镜的焦距,m为环带序数,α为位相编码系数,R为位相编码菲涅尔透镜的半径,λ为设计波长,n为基底材料的折射率。
选用石英作为基底,通过光刻技术将上述面形刻蚀在基底上。设计了一个口径为10mm,焦距为100mm的位相编码菲涅尔透镜。设计波长为650mm,基底折射率n为1.541976,三次位相编码系数α为30π。图2是传统菲涅尔透镜的示意图。通过对比可以发现,传统菲涅尔透镜表面的微结构是关于中心轴旋转对称的,三次位相编码菲涅尔透镜是关于y=x对称的。三次位相编码项的引入改变了菲涅尔透镜表面轮廓的分布。
为了验证该方法设计的三次位相编码菲涅尔透镜的宽带性能,分别用不同波长(630nm~670nm)的平行光照明传统菲涅尔透镜和三次位相编码菲涅尔透镜,得到各自的点扩散函数。图3是传统菲涅尔透镜的点扩散函数,图4是三次位相编码菲涅尔透镜的点扩散函数。从图3可以看出,在设计波长650nm处,传统菲涅尔透镜具有较强的聚焦能力,然而随着入射波长偏离设计波长,聚焦光斑逐渐变大,不能清晰成像。对于经过三次位相编码的菲涅尔透镜,其点扩散函数在波长630nm~670nm内保持了高度的一致性。
图5给出了传统菲涅尔透镜和三次位相编码菲涅尔透镜在不同波长(630nm~670nm)下的MTF。从图中可以看出,随着入射波长偏离设计波长(650nm),传统菲涅尔透镜的MTF曲线迅速下降,并出现零点,造成空间频率的缺失。然而三次位相编码菲涅尔透镜的MTF在波长λ=630nm~670nm这一波段内保持了很好的一致性,并且从高频到低频没有出现零点,图像信息没有缺失,可以通过数字图像复原技术将图像复原清晰。
图6给出了传统菲涅尔透镜在不同波长λ=630nm~670nm下的成像结果。随着入射波长偏离设计波长(650nm),所成的像逐渐模糊。图7给出了三次位相编码菲涅尔透镜在不同波长λ=630nm~670nm下的中间模糊图像。所有的图像在不同波长照射下具有几乎相同的模糊特性。图8给出了三次位相编码菲涅尔透镜在不同波长下(630nm~670nm)的最终复原图像。所有波长下的中间模糊图像都能被复原,具有和传统菲涅尔透镜在设计波长下基本相同的分辨率。
本技术方案未详细说明部分属于本领域公知技术。

Claims (10)

1.一种位相编码菲涅尔透镜,其表面的面形为会聚透镜面形和位相编码元件面形的集成,所述的位相编码菲涅尔透镜上每个环带的最高点与最低点的矢高差为其中λ为设计波长,n为位相编码菲涅尔透镜基底材料的折射率。
2.根据权利要求1所述的位相编码菲涅尔透镜,其特征在于:所述会聚透镜面形为位相编码元件面形为所述位相编码菲涅尔透镜面形方程为 其中Z≥0,m=1,2,3...,式中xm,ym为第m环带内位相编码菲涅尔透镜底部坐标,f为位相编码菲涅尔透镜的焦距,m为环带序数,α为位相编码系数,R为位相编码菲涅尔透镜的半径。
3.根据权利要求2所述的位相编码菲涅尔透镜,其特征在于:所述三次位相编码系数α的范围为5π至50π。
4.根据权利要求1所述的位相编码菲涅尔透镜,其特征在于:所述位相编码元件面形方程为:Z=sgn(x)·(α1·x2·(ln(|x|)+β1))+sgn(y)·(α1·y2·(ln(|y|)+β1)),式中α1>0,β1>0。
5.根据权利要求1所述的位相编码菲涅尔透镜,其特征在于:所述位相编码元件面形方程为:Z=α2·x·exp(β2·x2)+α2·y·exp(β2·y2),式中α2≥30,1≤β2≤3。
6.根据权利要求1所述的位相编码菲涅尔透镜,特征在于:所述会聚透镜面形方程为:式中,c为非球面的基准面或者辅助球面的曲率,k为锥面度,a2,a4,a6...为多次项系数。
7.根据权利要求1所述的位相编码菲涅尔透镜,特征在于:所述会聚透镜面形方程为:式中,c为非球面的基准面或者辅助球面的曲率,k为锥面度,a1,a2,a3,a4,a5...为多次项系数。
8.一种位相编码菲涅尔透镜的成像方法,其特征在于:所述的位相编码菲涅尔透镜如权利要求1~7之一所述;物体经过位相编码菲涅尔透镜的相位调制,使物体的信息得以保留,通过图像复原技术将模糊图像复原成清晰的图像。
9.一种位相编码菲涅尔透镜制备方法,将相同口径的会聚透镜的面形和位相编码元件的面形集成后,再进行塌陷,使每个环带的最高点与最低点的矢高差为最终得到位相编码菲涅尔透镜的面形,其中λ为设计波长,n为基底材料的折射率。
10.根据权利要求9所述的位相编码菲涅尔透镜制备方法,其特征在于:所述位相编码元件面形方程如权利要求2~7之一所述。
CN201811092417.XA 2018-09-19 2018-09-19 一种位相编码菲涅尔透镜 Active CN109143426B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811092417.XA CN109143426B (zh) 2018-09-19 2018-09-19 一种位相编码菲涅尔透镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811092417.XA CN109143426B (zh) 2018-09-19 2018-09-19 一种位相编码菲涅尔透镜

Publications (2)

Publication Number Publication Date
CN109143426A true CN109143426A (zh) 2019-01-04
CN109143426B CN109143426B (zh) 2020-08-07

Family

ID=64815021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811092417.XA Active CN109143426B (zh) 2018-09-19 2018-09-19 一种位相编码菲涅尔透镜

Country Status (1)

Country Link
CN (1) CN109143426B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286473A (zh) * 2019-07-23 2019-09-27 苏州大学 一种单片式消色差手机镜头
CN110989062A (zh) * 2019-12-17 2020-04-10 中国科学院长春光学精密机械与物理研究所 一种多焦点光学元件及其设计方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218471A (en) * 1987-09-21 1993-06-08 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
CN101487907A (zh) * 2009-03-05 2009-07-22 哈尔滨工业大学 连续浮雕结构微光学元件干法刻蚀图形传递误差补偿方法
CN102692781A (zh) * 2012-06-18 2012-09-26 苏州大学 一种谐衍射型液晶变焦透镜及其阵列
CN103676188A (zh) * 2014-01-14 2014-03-26 苏州大学 一种反射镜波前编码成像系统
CN104730709A (zh) * 2015-04-15 2015-06-24 重庆大学 相位调制型微镜阵列可编程菲涅尔波带片及其变焦方法
CN104823079A (zh) * 2012-11-30 2015-08-05 埃西勒国际通用光学公司 菲涅尔透镜及光学器件
CN104865627A (zh) * 2015-05-30 2015-08-26 苏州大学 一种基于波前编码技术的宽带光子筛
US20160202510A1 (en) * 2015-01-12 2016-07-14 Samsung Display Co., Ltd. Optical modulation device including liquid crystals, driving method thereof, and optical display device using the same
CN205787191U (zh) * 2016-05-30 2016-12-07 苏州大学 一种位相编码折衍射元件
CN108469674A (zh) * 2018-03-07 2018-08-31 南开大学 高分辨相位调制非线性双层微光学元件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218471A (en) * 1987-09-21 1993-06-08 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
CN101487907A (zh) * 2009-03-05 2009-07-22 哈尔滨工业大学 连续浮雕结构微光学元件干法刻蚀图形传递误差补偿方法
CN102692781A (zh) * 2012-06-18 2012-09-26 苏州大学 一种谐衍射型液晶变焦透镜及其阵列
CN104823079A (zh) * 2012-11-30 2015-08-05 埃西勒国际通用光学公司 菲涅尔透镜及光学器件
CN103676188A (zh) * 2014-01-14 2014-03-26 苏州大学 一种反射镜波前编码成像系统
US20160202510A1 (en) * 2015-01-12 2016-07-14 Samsung Display Co., Ltd. Optical modulation device including liquid crystals, driving method thereof, and optical display device using the same
CN104730709A (zh) * 2015-04-15 2015-06-24 重庆大学 相位调制型微镜阵列可编程菲涅尔波带片及其变焦方法
CN104865627A (zh) * 2015-05-30 2015-08-26 苏州大学 一种基于波前编码技术的宽带光子筛
CN205787191U (zh) * 2016-05-30 2016-12-07 苏州大学 一种位相编码折衍射元件
CN108469674A (zh) * 2018-03-07 2018-08-31 南开大学 高分辨相位调制非线性双层微光学元件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
光研科学荣誉出品: "《ZEMAX中文使用手册》", 28 February 2010 *
石顺祥等: "《物理光学与应用光学》", 31 August 2008 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286473A (zh) * 2019-07-23 2019-09-27 苏州大学 一种单片式消色差手机镜头
CN110989062A (zh) * 2019-12-17 2020-04-10 中国科学院长春光学精密机械与物理研究所 一种多焦点光学元件及其设计方法
CN110989062B (zh) * 2019-12-17 2021-05-04 中国科学院长春光学精密机械与物理研究所 一种多焦点光学元件及其设计方法

Also Published As

Publication number Publication date
CN109143426B (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
US6270220B1 (en) Multifocal lens
US6873733B2 (en) Combined wavefront coding and amplitude contrast imaging systems
US9500875B2 (en) Imaging with extended depth of focus for use with polycromatic light
US5337181A (en) Optical spatial filter
US6525302B2 (en) Wavefront coding phase contrast imaging systems
KR100321084B1 (ko) 광강도변환소자,광학장치및광디스크장치
US8556416B2 (en) Diffractive multifocal lens
CN101449193B (zh) 具有波前编码的变焦透镜系统
CN109143426A (zh) 一种位相编码菲涅尔透镜
US20080137171A1 (en) Phase mask with continuous azimuthal variation for a coronagragh imaging system
US5731914A (en) Zoom lens
JP2004046119A (ja) 投影露光システム
CN208999588U (zh) 一种用于成像的位相编码菲涅尔透镜
EP1186914B1 (en) Diffractive optical element and optical system having the same
KR20020071752A (ko) 회절광학소자와, 이 회절광학소자를 가진 광학계 및광학장치
JP2899296B2 (ja) 多焦点位相板の製造方法
US20210297601A1 (en) An optical device comprising a multi-order diffractive fresnel lens (mod-dfl) and an achromatizing compensation mechanism, and a method for enhancing images captured using the mod-dfl
JP2586703B2 (ja) 光学レンズ
CN112987143B (zh) 镜头、摄像模组和电子设备
Kuittinen et al. Improvements in diffraction efficiency of gratings and microlenses with continuous relief structures
CN1306284C (zh) 提供非球面度的衍/折混合光学元件及其设计方法
EP2023183B1 (en) Method and apparatus as well as corrective optical system for evaluating restoration-premised lens
Wippermann et al. Applications of chirped microlens arrays for aberration compensation and improved system integration
KR100404727B1 (ko) 회절 요소 및 비구면 요소를 한 면에 구비하는 렌즈 및이를 구비한 광학 장치
CN101107544B (zh) 改变光谱范围电磁辐射场、尤其是激光辐射场的装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant