CN110989062B - 一种多焦点光学元件及其设计方法 - Google Patents

一种多焦点光学元件及其设计方法 Download PDF

Info

Publication number
CN110989062B
CN110989062B CN201911301657.0A CN201911301657A CN110989062B CN 110989062 B CN110989062 B CN 110989062B CN 201911301657 A CN201911301657 A CN 201911301657A CN 110989062 B CN110989062 B CN 110989062B
Authority
CN
China
Prior art keywords
optical element
phase function
multifocal optical
multifocal
exp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911301657.0A
Other languages
English (en)
Other versions
CN110989062A (zh
Inventor
薛栋林
张海东
王孝坤
张学军
尹小林
王若秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201911301657.0A priority Critical patent/CN110989062B/zh
Publication of CN110989062A publication Critical patent/CN110989062A/zh
Application granted granted Critical
Publication of CN110989062B publication Critical patent/CN110989062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明公开了一种多焦点光学元件及其设计方法,首先确定多焦点光学元件包含的焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距,然后根据预设公式、焦点数量和各个焦点的焦距确定出用于描述光学元件的分光作用的第一相位函数Φ1(ξ)和用于描述光学元件的聚焦光束作用的第二相位函数Φ2(ξ),从而确定出入射光通过多焦点光学元件后透射光的复振幅的表达式即多焦点光学元件的相位函数,进一步计算获得多焦点光学元件各个台阶的高度,从而设计得到多焦点光学元件。通过本发明方法获得的多焦点光学元件使用一片光学衍射元件即可实现多焦点汇聚,并且对焦点数量和焦距可以调控,设计自由度高。

Description

一种多焦点光学元件及其设计方法
技术领域
本发明涉及光学元件技术领域,特别是涉及一种多焦点光学元件设计方法。本发明还涉及一种多焦点光学元件。
背景技术
随着探测器技术和计算光学的发展,如何通过小型乃至微型的光学系统获取信息、识别物体已经成为一个热点研究话题,比如可以将微型成像光学系统集成在银行卡上来保障资金安全,或者将微型成像光学系统集成在可穿戴设备上来获取更多的环境信息。对于传统的单口径光学系统而言,由于受限于光学衍射极限,其很难在空间上进一步压缩。仿生复眼结构由于其具有视场大、结构紧凑、对运动物体具有极高的敏感度等特殊属性,为微型光学系统提供了另一种实现方式。
近些年来,为了使仿生复眼结构能够获得更大的视场和更高的图像质量,从仿生复眼光学系统的结构形式到后期的图像重构算法都受到了广泛研究,其中,如何进一步扩大仿生复眼光学系统的观测范围也成为大家重点研究的方向。比如液体透镜被应用在复眼结构中,其工作原理是通过改变加在透镜两端的电压来改变液体透镜的曲率,从而改变其焦距。这种方式固然能够扩大复眼光学系统的观测范围,但是其缺点也很显著:从需要改变焦距到发出电信号,再到液体透镜完成对应形变这一过程需要一定的反应时间,当复眼结构对快速运动的物体进行识别跟踪时,较长的反应时间很大程度上限制了其应用;除此之外,由于电控系统和一些电子元件的存在也很难使得复眼结构的填充因子很高。
为了解决上述难点,多焦点光学元件被应用到仿生复眼结构中,传统的多焦点实现方式主要有如下几种:
(1)曲率拼接式的折射透镜
透镜被分割成若干环形区域,每个区域对应一种曲率半径,以此能够在光轴方向实现多个焦点的汇聚。这种实现方式的多焦点光学元件的缺点是,由于透镜的每个焦点只对应某一环形区域,导致其点扩散函数相对于单焦点透镜下降很多,即在成像分辨率上会有较大牺牲。
(2)非周期性的衍射元件
一些非周期性的衍射元件不需要借助传统透镜也能对入射光实现多焦点的汇聚,例如Fibonacci波带片、Walsh波带片等。这类衍射元件也有其固有的缺点,即不能对焦点个数和焦距进行有效的调控。以Fibonacci波带片为例,其只能对入射光实现双焦点的汇聚,并且两个焦距只能以黄金分割的比例分布,这也极大限制了这类光学元件的应用。
(3)折射透镜+菲涅尔波带片
菲涅尔波带片是一种周期性的衍射光学元件,通过改变菲涅尔波带片的周期台阶数和刻蚀深度,可以将入射光的能量分布到所需的衍射级次中,再通过后端折射透镜的汇聚,可以实现一束平行光在轴向上的多焦点汇聚。与上述两种方式相比,这种方式能够克服点扩散函数下降以及不能调控焦点个数和焦距的缺点,但是这种方式的缺点是必须使用两片光学元件才能实现多焦点汇聚,结构不够紧凑,另外对于复眼这种阵列式结构,对两片光学元件加工精度的一致性以及后期的光路调节提出了更高的要求。
发明内容
有鉴于此,本发明的目的是提供一种多焦点光学元件及其设计方法,使用一片光学衍射元件即可实现多焦点汇聚,并且对焦点数量和焦距可以调控,设计自由度高。
为实现上述目的,本发明提供如下技术方案:
一种多焦点光学元件设计方法,所述多焦点光学元件包括位于中间的第一组台阶以及若干组环绕所述第一组台阶的呈环状的台阶,所述设计方法包括:
确定所述多焦点光学元件包含的焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距;
根据预设公式、焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距确定出第一相位函数Φ1(ξ)、第二相位函数Φ2(ξ)以及f1、f2,其中第一相位函数Φ1(ξ)用于描述所述多焦点光学元件的分光作用,第二相位函数Φ2(ξ)用于描述所述多焦点光学元件的聚焦光束作用,所述预设公式为入射光通过所述多焦点光学元件后透射光的复振幅的表达式,如下:
Figure BDA0002321954390000031
其中,ρ表示所述多焦点光学元件的径向坐标,ρ∈[0,R],R表示所述多焦点光学元件的半径,I0(ρ)表示入射光振幅的空间分布,f1和f2为根据中心焦点的焦距以及各个非中心焦点的焦距计算获得,k表示波矢,
Figure BDA0002321954390000032
λ表示入射光波长;
根据以下公式获得所述多焦点光学元件各个台阶的高度,以设计获得所述多焦点光学元件:
kdΔn=W(ρ);
其中,Δn表示所述多焦点光学元件的折射率与空气折射率的差异量,d表示所述多焦点光学元件上径向坐标为ρ处的台阶高度。
优选的,根据预设公式和焦点数量确定出第一相位函数Φ1(ξ)的方法包括:获得相位函数exp[iΦ1(ξ)]的傅里叶级数表达式,获得的相位函数exp[iΦ1(ξ)]的傅里叶级数表达式包含的傅里叶级数与焦点数量相同,根据得到的相位函数exp[iΦ1(ξ)]的傅里叶级数表达式确定出第一相位函数Φ1(ξ);
根据预设公式和焦点数量确定出第二相位函数Φ2(ξ)的方法包括:获得相位函数exp[iΦ2(ξ)]的傅里叶级数表达式,获得的相位函数exp[iΦ2(ξ)]的傅里叶级数表达式包含的傅里叶级数与焦点数量相同,根据得到的相位函数exp[iΦ2(ξ)]的傅里叶级数表达式,确定出第二相位函数Φ2(ξ)。
优选的,相位函数exp[iΦ(ξ)]的傅里叶级数表达式为:
Figure BDA0002321954390000041
其中,
Figure BDA0002321954390000042
优选的,根据以下公式、中心焦点的焦距以及各个非中心焦点的焦距计算获得f1、f2
Figure BDA0002321954390000043
其中,
Figure BDA0002321954390000044
Figure BDA0002321954390000045
Figure BDA0002321954390000046
优选的,确定出的第二相位函数为:
Figure BDA0002321954390000047
优选的,若所述多焦点光学元件包括两个焦点,确定出的第一相位函数为:
Figure BDA0002321954390000048
若所述多焦点光学元件包括三个焦点,确定出的第一相位函数为:
Figure BDA0002321954390000049
若所述多焦点光学元件包括五个焦点,确定出的第一相位函数为:
Figure BDA0002321954390000051
一种多焦点光学元件,采用以上所述的多焦点光学元件设计方法设计得到。
由上述技术方案可知,本发明所提供的一种多焦点光学元件设计方法,首先确定多焦点光学元件包含的焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距,然后根据预设公式、焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距确定出用于描述光学元件的分光作用的第一相位函数Φ1(ξ)、用于描述光学元件的聚焦光束作用的第二相位函数Φ2(ξ)以及f1、f2,从而确定出入射光通过多焦点光学元件后透射光的复振幅的表达式即多焦点光学元件的相位函数,进一步根据公式kdΔn=W(ρ)计算获得多焦点光学元件各个台阶的高度,从而设计得到多焦点光学元件。通过本发明方法设计的多焦点光学元件使用一片光学衍射元件即可实现多焦点汇聚,并且对焦点数量和焦距可以调控,设计自由度高。
本发明提供的一种多焦点光学元件,能够达到上述有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种多焦点光学元件设计方法的流程图;
图2为本发明一具体实例的三焦点光学元件的示意图;
图3为本发明一具体实例的三焦点光学元件仿真获得的能量分布图;
图4为本具体实例的三焦点光学元件和传统单焦点光学元件的点扩散函数;
图5为本发明又一具体实例的五焦点光学元件仿真获得的能量分布图;
图6为本发明又一具体实例的双焦点光学元件和单焦点光学元件进行成像仿真的结果示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明实施例提供一种多焦点光学元件设计方法,所设计的多焦点光学元件包括位于中间的第一组台阶以及若干组环绕所述第一组台阶的呈环状的台阶,入射光通过光学元件,由于光学元件上台阶结构对光的衍射作用,实现多焦点汇聚。
请参考图1,图1为本发明实施例提供的一种多焦点光学元件设计方法的流程图,由图可知,所述设计方法包括以下步骤:
S10:确定多焦点光学元件包含的焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距。
首先根据设计要求,确定所要的光学元件包含的焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距,以及可以确定出光学元件的尺寸包括直径等。
S11:根据预设公式、焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距确定出第一相位函数Φ1(ξ)、第二相位函数Φ2(ξ)以及f1、f2,其中第一相位函数Φ1(ξ)用于描述所述多焦点光学元件的分光作用,第二相位函数Φ2(ξ)用于描述所述多焦点光学元件的聚焦光束作用。
所述预设公式为入射光通过所述多焦点光学元件后透射光的复振幅的表达式,如下:
Figure BDA0002321954390000071
其中,ρ表示所述多焦点光学元件的径向坐标。ρ∈[0,R],R表示所述多焦点光学元件的半径,I0(ρ)表示入射光振幅的空间分布,f1和f2为根据中心焦点的焦距以及各个非中心焦点的焦距计算获得,k表示波矢,
Figure BDA0002321954390000072
λ表示入射光波长。
假设入射光的复振幅表达式为:
Figure BDA0002321954390000073
其中,
Figure BDA0002321954390000074
表示入射光相位的空间分布。
所述多焦点光学元件的相位表达式为:
Figure BDA0002321954390000075
其中,
Figure BDA0002321954390000076
表示焦距为f1透镜的折叠相位,
Figure BDA0002321954390000079
表示焦距为f2透镜的折叠相位,各自表达式具体如下:
Figure BDA0002321954390000077
那么,根据上述各式可得到入射光通过多焦点光学元件后透射光的复振幅的表达式为:
Figure BDA0002321954390000078
根据所要设计的多焦点光学元件的中心焦点的焦距、各个非中心焦点与中心焦点的间距可以计算获得各个非中心焦点的焦距,根据中心焦点的焦距、各个非中心焦点的焦距计算出f1和f2的值。
进而,根据所要设计的多焦点光学元件包含的焦点数量结合上述预设公式,确定出光学元件的第一相位函数和第二相位函数。具体的,可根据以下方法确定出光学元件的第一相位函数,具体为:获得相位函数exp[iΦ1(ξ)]的傅里叶级数表达式,获得的相位函数exp[iΦ1(ξ)]的傅里叶级数表达式包含的傅里叶级数与焦点数量相同,根据得到的相位函数exp[iΦ1(ξ)]的傅里叶级数表达式确定出第一相位函数Φ1(ξ)。可根据以下方法确定出光学元件的第二相位函数,具体为:获得相位函数exp[iΦ2(ξ)]的傅里叶级数表达式,获得的相位函数exp[iΦ2(ξ)]的傅里叶级数表达式包含的傅里叶级数与焦点数量相同,根据得到的相位函数exp[iΦ2(ξ)]的傅里叶级数表达式确定出第二相位函数Φ2(ξ)。
将相位函数exp[iΦ(ξ)]展开为傅里叶级数,表示为:
Figure BDA0002321954390000081
其中,
Figure BDA0002321954390000082
Figure BDA0002321954390000083
相应的,针对第一相位函数Φ1(ξ),有:
Figure BDA0002321954390000084
针对第二相位函数Φ2(ξ),有:
Figure BDA0002321954390000085
将上述各式合并可以得到:
Figure BDA0002321954390000086
公式(7)可以等效为由一系列焦距为Fmn的球面波组成,其中:
Figure BDA0002321954390000087
对应球面波的能量分布为|aman|2。根据公式(7)、中心焦点的焦距以及各个非中心焦点的焦距计算获得f1、f2。示例性的,所要设计的为三焦点光学元件,设三焦点光学元件的三个焦点依次为F(-1,1)、F(0,1)、F(1,1),基于公式(7)根据以下公式计算出f1和f2的值:
Figure BDA0002321954390000091
F(0,1)=f2
Figure BDA0002321954390000092
优选的在具体设计过程中,综合考虑光学元件的加工难度和衍射效率,第二相位函数可以采用以下表达式:
Figure BDA0002321954390000093
可选的,若多焦点光学元件包括两个焦点,确定出的第一相位函数可以为:
Figure BDA0002321954390000094
若多焦点光学元件包括三个焦点,确定出的第一相位函数为:
Figure BDA0002321954390000095
若多焦点光学元件包括五个焦点,确定出的第一相位函数为:
Figure BDA0002321954390000096
S12:根据以下公式获得所述多焦点光学元件各个台阶的高度,以设计获得所述多焦点光学元件:
kdΔn=W(ρ);
其中,Δn表示所述多焦点光学元件的折射率与空气折射率的差异量,d表示所述多焦点光学元件上径向坐标为ρ处的台阶高度。
通过上一步骤确定出了多焦点光学元件的第一相位函数Φ1(ξ)和第二相位函数Φ2(ξ),那么根据中心焦点的焦距以及各个非中心焦点与中心焦点的间距可以计算获得各个焦点的焦距,将获得的第一相位函数Φ1(ξ)、第二相位函数Φ2(ξ)以及f1、f2代入到预设公式W(ρ)中,能够得到预设公式W(ρ)。
进一步,根据公式kdΔn=W(ρ)计算出多焦点光学元件各个台阶的高度,从而设计出多焦点光学元件。
通过本实施例方法设计的多焦点光学元件使用一片光学衍射元件即可实现多焦点汇聚,并且对焦点数量和焦距可以调控,设计自由度高。通过本实施例方法设计的多焦点光学元件可以应用于复眼光学元件。
本实施例方法设计得到的多焦点光学元件可以应用于仿生复眼结构中,得到复眼多焦点光学元件,能够应用于各类光学系统中。
相应的,本发明实施例还提供一种多焦点光学元件,采用以上所述的多焦点光学元件设计方法得到,所得到的多焦点光学元件使用一片光学衍射元件即可实现多焦点汇聚,并且对焦点数量和焦距可以调控,设计自由度高。
示例性的,在一具体实例中根据以上所述方法设计了包含三个焦点的平面三焦点衍射元件,请参考图2、图3和图4,图2为本具体实例的三焦点光学元件的设计原理示意图,图3为本具体实例的三焦点光学元件仿真获得的能量分布图,图4为本具体实例的三焦点光学元件和传统单焦点光学元件的点扩散函数,本方法设计的三焦点光学元件的焦距分别为43.75mm、50mm和58.33mm,图4中上面三幅图分别为三焦点光学元件焦距为43.75mm、50mm和58.33mm三个焦点的点扩散函数,三个传统单焦点光学元件的焦距分别为43.75mm、50mm和58.33mm。图4中下面三幅图分别为焦距为43.75mm单焦点光学元件的点扩散函数、焦距为50mm单焦点光学元件的点扩散函数和焦距为58.33mm单焦点光学元件的点扩散函数,根据图3所示的仿真结果可以看到,使用本方法设计的三焦点光学元件在光轴方向有三个焦点,各个焦点清晰可辨。图4中各图标注的数值是对应点扩散函数的半高宽数值,通过点扩散函数对比可发现,三焦点光学元件对应的点扩散函数与传统单焦点光学元件对应的点扩散函数保持高度一致,表明本方法设计获得的多焦点光学元件的分辨率与传统单焦点衍射元件区别不大。
在又一具体实例中根据以上所述方法设计了包含五个焦点的五焦点光学元件,请参考图5,图5为本具体实例的五焦点光学元件仿真获得的能量分布图,其中横坐标表示垂轴距离,纵坐标表示轴向距离。单位均为微米,由图可看出,在光轴方向有五个焦点,各个焦点清晰可辨。
在又一具体实例中根据以上所述方法设计了包含两个焦点的双焦点光学元件,请参考图6,图6为本具体实例的双焦点光学元件和单焦点光学元件进行成像仿真的结果示意图,其中像距为250mm,物距分别为62.5mm和1000mm。第一行左图为焦距为50mm单焦点光学元件的示意图,右三幅图依次为原始成像物、该单焦点光学元件在物距62.5mm、1000mm成像仿真的结果图,第二行左图为焦距为200mm单焦点光学元件的示意图,右三幅图依次为原始成像物、该单焦点光学元件在物距62.5mm、1000mm成像仿真的结果图,第三行左图为包含焦距50mm、焦距200mm两个焦点的双焦点光学元件的示意图,右三幅图依次为原始成像物、该双焦点光学元件在物距62.5mm、1000mm成像仿真的结果图。通过对比可以发现,传统单焦点透镜只能在像面所对应的共轭物面进行清晰成像,而使用本方法所设计的双焦点衍射元件能够同时在两个共轭物面进行成像,验证了多焦点衍射元件成像的可行性。
以上对本发明所提供的一种多焦点光学元件及其设计方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (7)

1.一种多焦点光学元件设计方法,其特征在于,所述多焦点光学元件包括位于中间的第一组台阶以及若干组环绕所述第一组台阶的呈环状的台阶,所述设计方法包括:
确定所述多焦点光学元件包含的焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距;
根据预设公式、焦点数量、中心焦点的焦距以及各个非中心焦点与中心焦点的间距确定出第一相位函数Φ1(ξ)、第二相位函数Φ2(ξ)以及f1、f2,其中第一相位函数Φ1(ξ)用于描述所述多焦点光学元件的分光作用,第二相位函数Φ2(ξ)用于描述所述多焦点光学元件的聚焦光束作用,所述预设公式为入射光通过所述多焦点光学元件后透射光的复振幅的表达式,如下:
Figure FDA0002321954380000011
其中,ρ表示所述多焦点光学元件的径向坐标,ρ∈[0,R],R表示所述多焦点光学元件的半径,I0(ρ)表示入射光振幅的空间分布,f1和f2为根据中心焦点的焦距以及各个非中心焦点的焦距计算获得,k表示波矢,
Figure FDA0002321954380000012
λ表示入射光波长;
根据以下公式获得所述多焦点光学元件各个台阶的高度,以设计获得所述多焦点光学元件:
kdΔn=W(ρ);
其中,Δn表示所述多焦点光学元件的折射率与空气折射率的差异量,d表示所述多焦点光学元件上径向坐标为ρ处的台阶高度。
2.根据权利要求1所述的多焦点光学元件设计方法,其特征在于,根据预设公式和焦点数量确定出第一相位函数Φ1(ξ)的方法包括:获得相位函数exp[iΦ1(ξ)]的傅里叶级数表达式,获得的相位函数exp[iΦ1(ξ)]的傅里叶级数表达式包含的傅里叶级数与焦点数量相同,根据得到的相位函数exp[iΦ1(ξ)]的傅里叶级数表达式确定出第一相位函数Φ1(ξ);
根据预设公式和焦点数量确定出第二相位函数Φ2(ξ)的方法包括:获得相位函数exp[iΦ2(ξ)]的傅里叶级数表达式,获得的相位函数exp[iΦ2(ξ)]的傅里叶级数表达式包含的傅里叶级数与焦点数量相同,根据得到的相位函数exp[iΦ2(ξ)]的傅里叶级数表达式,确定出第二相位函数Φ2(ξ)。
3.根据权利要求2所述的多焦点光学元件设计方法,其特征在于,相位函数exp[iΦ(ξ)]的傅里叶级数表达式为:
exp[iΦ(ξ)]=∑nanexp(inξ);
其中,
Figure FDA0002321954380000021
4.根据权利要求1所述的多焦点光学元件设计方法,其特征在于,根据以下公式、中心焦点的焦距以及各个非中心焦点的焦距计算获得f1、f2
Figure FDA0002321954380000022
其中,exp[iΦ1(ξ)]=∑mamexp(imξ),
Figure FDA0002321954380000023
exp[iΦ2(ξ)]=∑nanexp(inξ),
Figure FDA0002321954380000024
5.根据权利要求1-4任一项所述的多焦点光学元件设计方法,其特征在于,确定出的第二相位函数为:
Figure FDA0002321954380000025
6.根据权利要求1-4任一项所述的多焦点光学元件设计方法,其特征在于,若所述多焦点光学元件包括两个焦点,确定出的第一相位函数为:
Figure FDA0002321954380000031
若所述多焦点光学元件包括三个焦点,确定出的第一相位函数为:
Figure FDA0002321954380000032
若所述多焦点光学元件包括五个焦点,确定出的第一相位函数为:
Figure FDA0002321954380000033
7.一种多焦点光学元件,其特征在于,采用权利要求1-6任一项所述的多焦点光学元件设计方法设计得到。
CN201911301657.0A 2019-12-17 2019-12-17 一种多焦点光学元件及其设计方法 Active CN110989062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911301657.0A CN110989062B (zh) 2019-12-17 2019-12-17 一种多焦点光学元件及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911301657.0A CN110989062B (zh) 2019-12-17 2019-12-17 一种多焦点光学元件及其设计方法

Publications (2)

Publication Number Publication Date
CN110989062A CN110989062A (zh) 2020-04-10
CN110989062B true CN110989062B (zh) 2021-05-04

Family

ID=70094729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911301657.0A Active CN110989062B (zh) 2019-12-17 2019-12-17 一种多焦点光学元件及其设计方法

Country Status (1)

Country Link
CN (1) CN110989062B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679427A (zh) * 2020-06-19 2020-09-18 中南大学 光学成像元件设计方法、制作方法及其光学成像元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143426A (zh) * 2018-09-19 2019-01-04 苏州大学 一种位相编码菲涅尔透镜
CN109211134A (zh) * 2018-08-23 2019-01-15 西安交通大学 一种衍射光学元件生成超细线激光三维形貌的测量方法
CN109597156A (zh) * 2018-12-28 2019-04-09 长江大学 一种波带片及其构造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144483A (en) * 1986-05-14 1992-09-01 Cohen Allen L Diffractive multifocal optical device
KR100741980B1 (ko) * 2005-07-06 2007-07-23 엘지전자 주식회사 다초점 렌즈
JP5203160B2 (ja) * 2008-12-05 2013-06-05 Hoya株式会社 回折型多焦点レンズ
CN105467601A (zh) * 2016-01-15 2016-04-06 北京润和微光科技有限公司 一种利用二元波带片设计衍射多焦点元件实现轴向多焦点的方法
CN105467617A (zh) * 2016-02-16 2016-04-06 侯绪华 离焦渐进式多焦点隐形眼镜
KR20230144098A (ko) * 2017-02-14 2023-10-13 데이브, 자그래트 나타바르 회절형 다초점 이식 가능 렌즈 장치
CN106842388B (zh) * 2017-04-06 2019-02-12 中国科学院光电技术研究所 一种多焦点仿生复眼结构的成形方法
CN107212949B (zh) * 2017-07-12 2019-05-14 无锡蕾明视康科技有限公司 一种多焦点人工晶状体
KR101997358B1 (ko) * 2017-11-30 2019-07-08 오스템임플란트 주식회사 초점 조절방식 광학 스캐너의 초점면들을 이용한 복합 초점 이미지 생성 장치 및 그 방법
CN109581558B (zh) * 2018-12-26 2021-01-15 中国科学院长春光学精密机械与物理研究所 一种多焦点衍射元件的制备方法及多焦点衍射元件
CN110470245B (zh) * 2019-08-21 2021-02-26 浙江大学 一种基于菲涅尔波带片衍射信息融合的相位恢复检测装置及相位恢复方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211134A (zh) * 2018-08-23 2019-01-15 西安交通大学 一种衍射光学元件生成超细线激光三维形貌的测量方法
CN109143426A (zh) * 2018-09-19 2019-01-04 苏州大学 一种位相编码菲涅尔透镜
CN109597156A (zh) * 2018-12-28 2019-04-09 长江大学 一种波带片及其构造方法

Also Published As

Publication number Publication date
CN110989062A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
Blanchard et al. Simultaneous multiplane imaging with a distorted diffraction grating
Duparre et al. Investigation of computer-generated diffractive beam shapers for flattening of single-modal CO 2 laser beams
CN102239439B (zh) 衍射型多焦点透镜
Kazanskiy et al. Binary beam splitter
Dickey et al. Laser beam shaping techniques
US11119255B2 (en) Highly efficient data representation of dense polygonal structures
Wang et al. RISE: robust iterative surface extension for sub-nanometer X-ray mirror fabrication
Grewe et al. Aberration analysis of optimized Alvarez–Lohmann lenses
Grewe et al. Diffractive array optics tuned by rotation
Jiang et al. Generation and control of tornado waves by means of ring swallowtail vortex beams
Khonina et al. Fractional axicon as a new type of diffractive optical element with conical focal region
CN110989062B (zh) 一种多焦点光学元件及其设计方法
Gorelick et al. Axilenses: Refractive micro-optical elements with arbitrary exponential profiles
CN115024859B (zh) 一种具有平滑相位分布的多焦点人工晶状体
Cuenat et al. Fast autofocusing using tiny transformer networks for digital holographic microscopy
Moh et al. High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate
Sieber et al. Design studies of varifocal rotation optics
Sun et al. U-Net convolutional neural network-based modification method for precise fabrication of three-dimensional microstructures using laser direct writing lithography
CN113126290B (zh) 一种用于产生可控多焦点阵列的相位调制方法
Dwivedi et al. Axicon aberration leading to short-range nondiverging optical array and elliptical dark hollow beam
Gonzalez-Utrera et al. Modeling, fabrication, and metrology of 3D printed Alvarez lenses prototypes
Ghebjagh et al. Rotationally tunable multi-focal diffractive moiré lenses
Kley et al. Fabrication and properties of refractive micro-optical beam-shaping elements
Szatkowski et al. Quantifying the quality of optical vortices by evaluating their intensity distributions
Jia et al. Multifocal multilevel diffractive lens by wavelength multiplexing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant