CN109142529A - 一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法 - Google Patents

一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法 Download PDF

Info

Publication number
CN109142529A
CN109142529A CN201810992008.9A CN201810992008A CN109142529A CN 109142529 A CN109142529 A CN 109142529A CN 201810992008 A CN201810992008 A CN 201810992008A CN 109142529 A CN109142529 A CN 109142529A
Authority
CN
China
Prior art keywords
beam welding
titanium alloy
cycle fatigue
super high
fatigue life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810992008.9A
Other languages
English (en)
Other versions
CN109142529B (zh
Inventor
聂宝华
陈东初
黄绮玲
赵子华
陆镓聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Monisek Space Technology Co ltd
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201810992008.9A priority Critical patent/CN109142529B/zh
Publication of CN109142529A publication Critical patent/CN109142529A/zh
Application granted granted Critical
Publication of CN109142529B publication Critical patent/CN109142529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

本发明公开了一种高强钛合金电子束焊接结构超高周疲劳寿命预测方法,采用超声疲劳试验获取高强钛合金电子束焊接接头超高周疲劳性能,基于纳米裂纹扩展理论,引入电子束焊接缺陷尺寸参数,建立超高周疲劳寿命损耗方程,定量预测不同电子束焊接缺陷的高强钛合金焊接结构超高周疲劳寿命。本发明通过超声疲劳试验,建立含电子束焊接缺陷尺寸参数的超高周疲劳寿命损耗方程;只需要通过金相剖面或无损检测,获得电子束焊接缺陷尺寸,即可定量预测不同电子束焊接缺陷的高强钛合金焊接结构超高周疲劳寿命。该方法避免了大量的电子束焊接接头超高周疲劳试验,即可完成超高周疲劳寿命评估,具有简单、快速、经济优势。

Description

一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法
技术领域
本发明属于有色金属技术领域,特别涉及一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法。
背景技术
高强钛合金具有高强轻质、耐高温、耐腐蚀与成型性优良等优点,在航空结构、航空发动机压气机叶片、汽轮机叶片等领域得到广泛运用。钛合金结构部件往往采用电子束焊接成型,在高速运转时承受高频振动疲劳载荷,在长期服役过程中承受的循环载荷可达109周次,即超高周疲劳。该种焊接方法高比能量,焊缝热影响区小,但仍不可避免存在焊接气孔等缺陷,超高周疲劳裂纹优先在这些焊接气孔萌生扩展至断裂。针对高强钛合金电子束焊接结构部件超高周疲劳寿命预测,是保障高强钛合金结构高可靠性服役的基础。
对于高强钛合金电子束焊接接头超高周疲劳而言,超高周疲劳裂纹萌生于焊接气孔,非连续性纳米级扩展,形成细晶粒区,疲劳损伤是非线性损伤特征,但目前非线性寿命损耗方程主要是以唯象方式,未直接反映电子束焊接缺陷尺寸,因此目前的寿命模型不能准确的预测高强钛合金电子束焊接结构超高周疲劳寿命。
发明内容
本发明提供一种高强钛合金电子束焊接结构超高周疲劳寿命预测方法,采用超声疲劳试验获取高强钛合金电子束焊接接头超高周疲劳性能,基于纳米裂纹扩展理论,引入电子束焊接缺陷尺寸参数,建立超高周疲劳寿命损耗方程,定量预测不同电子束焊接缺陷的高强钛合金焊接结构超高周疲劳寿命。
为解决上述问题,本发明采用下述技术手段。
一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法,包括以下步骤:
(1)取x个高强度钛合金电子束焊接接头,x>1,并分别标记为试样1~x,对试样1~x进行进行超高次疲劳试验,获得试样1~x的应力幅Δσ及所对应的疲劳寿命N;
(2)对试样1~x进行扫描显微镜或金相观测,测得试样1~x的电子塑焊接接气孔尺寸alnc;根据公式(α)计算缺陷应力强度因子ΔKInc
(3)依据Paris公式,变换公式(α)为公式(β):
其中ΔKth为疲劳裂纹扩展有效门槛值,其计算公式为其中μ为材料切变模量,b为材料晶格伯氏矢量,C与m为材料常数,公式(β)即为钛合金电子束焊接接头超高周疲劳寿命方程。
进一步地,将步骤(1)中所得到的数据进行线性拟合并结合公式(θ)计算得到C与m的数值,公式(θ)为:
进一步地,步骤(1)中所进行的超高周次疲劳试验,其中试验频率为20kHz。
本发明的有益效果为:通过超声疲劳试验,建立含电子束焊接缺陷尺寸参数的超高周疲劳寿命损耗方程;只需要通过金相剖面或无损检测,获得电子束焊接缺陷尺寸,即可定量预测不同电子束焊接缺陷的高强钛合金焊接结构超高周疲劳寿命。该方法避免了大量的电子束焊接接头超高周疲劳试验,即可完成超高周疲劳寿命评估,具有简单、快速、经济优势。
具体实施方式
以下将结合实施例对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,文中所提到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
实施例1
一种高强钛合金电子束焊接结构超高周疲劳寿命预测模型,包括以下步骤:
(1)取10个高强钛合金电子塑焊接接头,并依次标记为试样1~10,对试样1~10采用超声疲劳方法进行超高周次疲劳试验,试验频率20kHz,获得试样1~10的应力幅Δσ及其对应的疲劳寿命N的数值,具体数值见表1;
(2)对试样1~10的高强钛合金的疲劳断口进行扫描电子显微镜观察,测得试样1~10的电子束焊接气孔尺寸aInc,具体数值见表1;并计算疲劳裂纹扩展有效门槛值其中μ为材料切变模量,b为材料晶格伯氏矢量;
根据公式(α),公式(α)为:为分别计算试样1~10的缺陷应力强度因子ΔKInc,具体如表1所示;
表1高强钛合金电子束焊接接头超高周疲劳试验数据
(3)对表1中应力幅Δσ数据及其对应的疲劳寿命N数据进行线性拟合,并结合公式(θ),计算出m=12.9;C=6.43×10-20,公式(θ)为:
(4)将上述步骤中计算出的参数带入公式(β)中,公式(β)为:
即得到钛合金电子束焊接结构超高周疲劳寿命方程为:
(5)对某一钛合金电子束焊接接头进行金相剖面,测得其焊接缺陷尺寸aInc为30μm,由公式(γ)计算:当应力幅Δσ=600MPa,其超高周疲劳寿命Nf=3.97×106周次。
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (3)

1.一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法,其特征在于,包括以下步骤:
(1)取x个高强度钛合金电子束焊接接头,x>1,并分别标记为试样1~x,对试样1~x进行进行超高次疲劳试验,获得试样1~x的应力幅Δσ及所对应的疲劳寿命N;
(2)对试样1~x进行扫描显微镜或金相观测,测得试样1~x的电子束焊接接孔尺寸alnc;根据公式(α)计算缺陷应力强度因子ΔKInc
(3)依据Paris公式,变换公式(α)为公式(β):
其中ΔKth为疲劳裂纹扩展有效门槛值,其计算公式为其中μ为材料切变模量,b为材料晶格伯氏矢量,C与m为材料常数,公式(β)即为钛合金电子束焊接接头超高周疲劳寿命方程。
2.根据权利要求1所述的一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法,其特征在于,将步骤(1)中所得到的数据进行线性拟合并结合公式(θ)计算得到C与m的数值,公式(θ)为
3.据权利要求1所述的一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法,其特征在于,步骤(1)中所进行的超高周次疲劳试验,其中试验频率为20kHz。
CN201810992008.9A 2018-08-27 2018-08-27 一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法 Active CN109142529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810992008.9A CN109142529B (zh) 2018-08-27 2018-08-27 一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810992008.9A CN109142529B (zh) 2018-08-27 2018-08-27 一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法

Publications (2)

Publication Number Publication Date
CN109142529A true CN109142529A (zh) 2019-01-04
CN109142529B CN109142529B (zh) 2021-08-03

Family

ID=64828939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810992008.9A Active CN109142529B (zh) 2018-08-27 2018-08-27 一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法

Country Status (1)

Country Link
CN (1) CN109142529B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883859A (zh) * 2019-02-14 2019-06-14 上海交通大学 非均匀组织焊接接头低周疲劳过程中分区应变测试方法
CN110609052A (zh) * 2019-08-26 2019-12-24 武汉钢铁有限公司 圆柱形金属材料的疲劳寿命预测方法、装置及电子设备
CN111751199A (zh) * 2020-06-09 2020-10-09 西北工业大学 基于eifs分布的疲劳寿命预测方法
CN113392504A (zh) * 2021-05-18 2021-09-14 中国科学院力学研究所 一种预测缺陷对高周和超高周疲劳强度影响的方法
CN113987889A (zh) * 2021-11-17 2022-01-28 大连交通大学 一种焊接结构超高周疲劳主s-n曲线拟合及寿命预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507895A (zh) * 2011-11-01 2012-06-20 东南大学 用于铸钢节点内有明显缺陷的铸钢节点疲劳寿命估算方法
CN105628373A (zh) * 2016-03-21 2016-06-01 金陵科技学院 一种焊接钢结构的疲劳损伤计算方法
CN105956315A (zh) * 2016-05-17 2016-09-21 北京航空航天大学 一种可进行疲劳裂纹扩展速率估算和寿命预测的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507895A (zh) * 2011-11-01 2012-06-20 东南大学 用于铸钢节点内有明显缺陷的铸钢节点疲劳寿命估算方法
CN105628373A (zh) * 2016-03-21 2016-06-01 金陵科技学院 一种焊接钢结构的疲劳损伤计算方法
CN105956315A (zh) * 2016-05-17 2016-09-21 北京航空航天大学 一种可进行疲劳裂纹扩展速率估算和寿命预测的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAOHUA XIE等: "Effect of Basketweave Microstructure on Very High Cycle Fatigue Behavior of TC21 Titanium Alloy", 《METALS》 *
马婧等: "TC21钛合金电子束焊接接头超高周疲劳行为研究", 《机械工程学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883859A (zh) * 2019-02-14 2019-06-14 上海交通大学 非均匀组织焊接接头低周疲劳过程中分区应变测试方法
CN110609052A (zh) * 2019-08-26 2019-12-24 武汉钢铁有限公司 圆柱形金属材料的疲劳寿命预测方法、装置及电子设备
CN110609052B (zh) * 2019-08-26 2022-06-07 武汉钢铁有限公司 圆柱形金属材料的疲劳寿命预测方法、装置及电子设备
CN111751199A (zh) * 2020-06-09 2020-10-09 西北工业大学 基于eifs分布的疲劳寿命预测方法
CN111751199B (zh) * 2020-06-09 2021-07-09 西北工业大学 基于eifs分布的疲劳寿命预测方法
CN113392504A (zh) * 2021-05-18 2021-09-14 中国科学院力学研究所 一种预测缺陷对高周和超高周疲劳强度影响的方法
CN113392504B (zh) * 2021-05-18 2024-02-02 中国科学院力学研究所 一种预测缺陷对高周和超高周疲劳强度影响的方法
CN113987889A (zh) * 2021-11-17 2022-01-28 大连交通大学 一种焊接结构超高周疲劳主s-n曲线拟合及寿命预测方法

Also Published As

Publication number Publication date
CN109142529B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN109142529A (zh) 一种高强钛合金电子束焊接接头超高周疲劳寿命预测方法
Ma et al. Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: Experiments and numerical simulations
Mokaberi et al. Fatigue fracture analysis of gas turbine compressor blades
Ambriz et al. Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061-T6 aluminum alloy
Ottersböck et al. Effect of weld defects on the fatigue strength of ultra high-strength steels
CN108613889A (zh) 一种基于循环寿命的钛合金钝缺口疲劳强度损失系数评估方法
Schaumann et al. Influence of weld defects on the fatigue resistance of thick steel plates
Wang et al. Effect of weld defects on the mechanical properties of stainless-steel weldments on large cruise ship
Bartsch et al. An experimental investigation into the influence of incorrect root gaps in welded-in transverse stiffeners on fatigue performance
Yang et al. The effect of inclusions and pores on creep crack propagation of linear friction welded joints of GH4169 superalloy
Nascimento et al. Considerations on corrosion and weld repair effects on the fatigue strength of a steel structure critical to the flight-safety
Alhussein et al. Influence of sandblasting and hydrogen on tensile and fatigue properties of pipeline API 5L X52 steel
Zhu et al. Failure mechanisms and fatigue strength reduction factor of a Cr-Ni-Mo-V steel welded joint up to ultra-long life regime
Haque Investigation on welding defects of alloys using TIG and MIG welding
Bucior et al. Analysis of the possibilities of improving the selected properties surface layer of butt joints made using the FSW method
Ou et al. Mechanisms for creep rupture of 12Cr/alloy 4715 dissimilar weldments
Kalpana et al. Implementation of generalized regression neural network to establish a relation between vibration parameters and time of vibration for welded joints
CN116189824A (zh) 一种航空发动机用高温合金焊接接头疲劳寿命预测方法
Ganesan et al. Understanding the influence of environmental conditions on the low cycle fatigue behaviour of high strength low alloy (HSLA) steel under air and corrosive (3.5% NaCl) conditions
Anami et al. Fatigue strength of welded joints made of high‐strength steels
Miura et al. Effect of thermal aging on fracture toughness of austenitic stainless steel welds
Bjurman et al. Fracture mechanical testing of in service thermally aged cast stainless steel
Bleicher et al. A comparison of the fatigue strength of repair welded nodular cast iron materials for usage in wind energy components
Gericke et al. Improvement of fatigue strength in heavy steel offshore-constructions through arc brazing
Ajide et al. Effect of Post-Weld Heat-Treatment on Corrosion and Microstructure Properties of Electric Arc WeldedMild Steels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231205

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 528000 No. 18, Jiangwan Road, Chancheng District, Guangdong, Foshan

Patentee before: FOSHAN University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240227

Address after: 730050 Factory Building 3, No. 926 Huashan Road, Lanzhou New Area, Lanzhou New Area, Lanzhou City, Gansu Province, China

Patentee after: Lanzhou Monisek Space Technology Co.,Ltd.

Country or region after: China

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

Country or region before: China