CN109137140A - 一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法 - Google Patents

一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法 Download PDF

Info

Publication number
CN109137140A
CN109137140A CN201810873542.8A CN201810873542A CN109137140A CN 109137140 A CN109137140 A CN 109137140A CN 201810873542 A CN201810873542 A CN 201810873542A CN 109137140 A CN109137140 A CN 109137140A
Authority
CN
China
Prior art keywords
silver
melamine
chain
nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810873542.8A
Other languages
English (en)
Inventor
韩成良
沈寿国
姚李
林阿真
陈晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN201810873542.8A priority Critical patent/CN109137140A/zh
Publication of CN109137140A publication Critical patent/CN109137140A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种银‑三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法,涉及纳米结构材料的制备技术领域。将硝酸银水溶液与三聚氰胺固体混合,经过超声反应,出现白色混浊物质,将此白色混浊物质与反应体系分离、洗涤并干燥后即得到纯净的银‑三聚氰胺配合物纳米纤维;将纯净的银‑三聚氰胺配合物纳米纤维分散到去离子水中,超声分散后得到胶体溶液;然后加入NaBH4水溶液,通过原位还原反应可以得到链状的Ag纳米材料。本发明以AgNO3为银源,以三聚氰胺为有效络合剂和绿色廉价模板剂,以硼氢化钠为还原剂,在室温下快速制备出了银‑三聚氰胺配合物纳米纤维和链状银纳米材料。

Description

一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备 方法
技术领域
本发明涉及纳米结构材料的制备技术领域,具体是涉及一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法。
背景技术
一维纳米结构材料(包括纳米管、纳米棒、纳米线、纳米纤维、纳米带以及同轴纳米电缆等)是指材料单元在两个方向上的尺寸为纳米尺度(1~100nm)、另外一个方向上的尺寸为宏观尺度的新型结构材料。一维纳米材料由于其具有区别于其它材料的超高比表面积和低维特性而显示出独特的物理特性,并在纳米电子学、纳米光电子学、复合材料、传感器、催化剂、超高密度存储和扫描探针显微镜等领域具有潜在的应用前景。
一维纳米材料的制备方法有很多,包括模扳法、自组装法、溶液法、电弧法、热解法、激光烧蚀法、超临界流体法、物理溅射法和气相热化学合成法等等。但是这些方法普遍存在制备时间长、后处理过程复杂或者制备条件苛刻,难以普及等问题。因此寻求低温以及温和的实验控制条件对一维纳米结构材料的制备和研究意义重大。
发明内容
本发明针对已有制备一维Ag纳米材料技术中所存在的不足之处,提供一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法。此方法整个工艺原料易得、方法简便易行,操作简单而且产率高。
为了实现上述目的,本发明所采用的技术方案为:一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法,以AgNO3为银源,以三聚氰胺为有效络合剂和绿色廉价模板剂,以硼氢化钠为还原剂,在室温下快速制备出了银-三聚氰胺配合物纳米纤维和链状银纳米材料。
作为本发明制备方法的优选技术方案,制备方法步骤如下:
1)、将100mL浓度为0.01mol/L的硝酸银水溶液与0.2g的三聚氰胺固体混合,经过超声反应,出现白色混浊物质,将此白色混浊物质与反应体系分离、洗涤并干燥后即得到纯净的银-三聚氰胺配合物纳米纤维;
2)、将0.5g纯净的银-三聚氰胺配合物纳米纤维分散到100mL去离子水中,超声分散后得到胶体溶液;然后加入10mL浓度为10g/L的NaBH4水溶液,通过还原反应可以得到链状的Ag纳米材料。
作为本发明制备方法的进一步优选技术方案,银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备过程中,反应时间均为1~5min,反应温度均为室温。
制备方法步骤1)中,三聚氰胺固体的使用量与AgNO3水溶液的浓度有关:当AgNO3水溶液浓度和体积一定时,随着三聚氰胺固体的加入,在超声辅助作用下,Ag+将快速与三聚氰胺发生络合反应,得到白色的银-三聚氰胺配合物纤维。步骤2)中硼氢化钠的使用量与银-三聚氰胺配合物纳米纤维的量有关:当银-三聚氰胺配合物纤维的量一定时,随着NaBH4水溶液的加入,银-三聚氰胺配合物纤维中的Ag+将快速原位被还原成Ag0,从而得到了链状黑色的银纳米材料。
本发明以AgNO3为银源,以三聚氰胺为有效络合剂和绿色廉价模板剂,以硼氢化钠为还原剂,在室温下快速制备出了银-三聚氰胺配合物纳米纤维和链状银纳米材料。和已有制备方法相比,本发明还具有以下优点:
1)、实现了一维银配合物纤维的宏量方便制备,为高性能一维Ag纳米材料的制提供了一种新的方法。
2)、本发明方法中无需特殊实验仪器和设备,操作方便、成本低廉,同时,获得的产物纯度高、产量大。
附图说明
图1为实施例1中制备中间产物银-三聚氰胺配合物纳米纤维的形态和化学组成;
图2为利用AgNO3-乙醇溶液代替AgNO3水溶液制备银-三聚氰胺配合物纳米纤维的形态;
图3为实施例2中制备最终产物链状银纳米材料的形态和结构分析。
具体实施方式
以下结合实施例和附图对本发明的银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法作出进一步的详述。本发明方法所得产物的结构、形态性能分别采用X射线粉末衍射(XRD,D3500)和场发射扫描电子显微镜(FE-SEM,SU8010)来表征和分析。
实施例1
银-三聚氰胺配合物纳米纤维的制备与表征:
将0.2g三聚氰胺加入到100mL浓度为0.01mol/L AgNO3水溶液中,经过超声快反应5分钟后,采用反复离心分离和超声洗涤,最后可获得白色的银-三聚氰胺配合物纳米纤维。
采用扫描电子显微镜对上述产物进行表征可知,本实施例获得的产物的形状为纤维,长度可达10μm(见图1a和图1b),直径约为80nm(见图1c);EDS分析结果表明,配合物纤维的化学组成主要有C、N、O和Ag(见图1d,其中Si为衬底,Pt为样品蒸镀导电层),依据该实验数据可初步认为是银-三聚氰胺配合物纤维。上述配位反应可用式子(1)来分别表示。
值得强调的是,反应介质对银-三聚氰胺配合物纳米纤维的形态有很大影响:当以95%乙醇为反应介质(代替前述用于溶解AgNO3的水)时,得到的是呈带状的银-三聚氰胺配合物(见图2a和图2b)。即反应体系中存在的一定量的乙醇将对最终产物的形态有影响。
实施例2
链状银纳米材料的制备与表征:
将0.5g银-三聚氰胺配合物纳米纤维加入到100mL去离子水中,超声分散10分钟后得到胶体溶液。接着,将10mL配置好的NaBH4溶液(0.5g的NaBH4溶解于50ml的水中)快速加入到上述胶体溶液中,快速反应5分钟后,经数次离心和洗涤即可得到链状Ag纳米材料。
首先,用SEM对产物的形态进行观察,可知,在该实验条件下,获得的产物的形状为链状,链长约为1~10μm(见图3a和图3b),链的直径约为20nm(见图3c)。接着,利用X衍射手段对产物进行物相分析并与块体Ag标准XRD衍射普(PDF,No.040783)进行比较后得知,实验得到的链状产物为Ag(见图3d)。
基于上述实验结果,一维链状Ag纳米材料的形成过程可以看成由以下两个过程组成:首先,银-三聚氰胺配合物纤维中的Ag+原位被硼氢化钠还原成Ag0(见反应式子(2));接着,长大的Ag纳米颗粒将以三聚氰胺纤维为模板进行自组装形成了一维链状Ag纳米材料。
比较上述两个实例中结果可得出:表面粗糙的链状Ag的直径(~20nm)要小于表面光滑的银-三聚氰胺配合物纤维的直径(~80nm),这说明银-三聚氰胺配合物纤维在被还原成Ag的过程中,直径较大的配合物纤维中原位形成的Ag纳米颗粒将彼此相互联结和自组装形成了直径较小的链状Ag纳米材料,而三聚氰胺模板将部分或全部被肢解掉了。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (3)

1.一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法,其特征在于,以AgNO3为银源,以三聚氰胺为有效络合剂和绿色廉价模板剂,以硼氢化钠为还原剂,在室温下快速制备出了银-三聚氰胺配合物纳米纤维和链状银纳米材料。
2.如权利要求1所述的制备方法,其特征在于,步骤如下:
1)、将100mL浓度为0.01mol/L的硝酸银水溶液与0.2g的三聚氰胺固体混合,经过超声反应,出现白色混浊物质,将此白色混浊物质与反应体系分离、洗涤并干燥后即得到纯净的银-三聚氰胺配合物纳米纤维;
2)、将0.5g纯净的银-三聚氰胺配合物纳米纤维分散到100mL去离子水中,超声分散后得到胶体溶液;然后加入10mL浓度为10g/L的NaBH4水溶液,通过还原反应可以得到链状的Ag纳米材料。
3.如权利要求2所述的制备方法,其特征在于,银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备过程中,反应时间均为1~5min,反应温度均为室温。
CN201810873542.8A 2018-08-02 2018-08-02 一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法 Pending CN109137140A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810873542.8A CN109137140A (zh) 2018-08-02 2018-08-02 一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810873542.8A CN109137140A (zh) 2018-08-02 2018-08-02 一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法

Publications (1)

Publication Number Publication Date
CN109137140A true CN109137140A (zh) 2019-01-04

Family

ID=64798711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810873542.8A Pending CN109137140A (zh) 2018-08-02 2018-08-02 一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN109137140A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002593A (zh) * 2015-07-10 2015-10-28 东华大学 一种纳米材料改性三聚氰胺纤维的制备方法
CN105174211A (zh) * 2015-10-12 2015-12-23 海南大学 一种具有表面增强拉曼活性银基复合纳米材料的制备方法及其所得产品和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002593A (zh) * 2015-07-10 2015-10-28 东华大学 一种纳米材料改性三聚氰胺纤维的制备方法
CN105174211A (zh) * 2015-10-12 2015-12-23 海南大学 一种具有表面增强拉曼活性银基复合纳米材料的制备方法及其所得产品和应用

Similar Documents

Publication Publication Date Title
DE69728410T2 (de) Makroskopisch manipulierbare, aus nanoröhrenanordnungen hergestellte vorrichtungen
Wu et al. ZnO–ZnS heterostructures with enhanced optical and photocatalytic properties
Ahmed et al. Synthesis of multi-walled carbon nanotubes decorated with ZnO/Ag nanoparticles by co-precipitation method
Fan et al. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions
Meng et al. CuS/MoS 2 nanocomposite with high solar photocatalytic activity
JP5990565B2 (ja) 銀ナノフィラメントの製造方法
CN103754837A (zh) 利用多孔氧化铋为模板制备含铋纳米空心球的方法
CN103878387A (zh) 微波加热快速规模化制备五边形截面银纳米线的方法
CN1319685C (zh) 一种纳米金属镍粉的制备方法
Hossain et al. Synergetic effect in raman scattering of ZnO nanoparticles in ZnO–CNT fibers: a way to enhance the G and 2D band
Tian et al. Synthesis and growth mechanism of various SiO2 nanostructures from straight to helical morphologies
Ma et al. Optically active chiral Ag nanowires
Yan et al. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids: An efficient SERS substrate and nanocatalyst
Zhang et al. Photocatalytic performance of Cu 2 O and Ag/Cu 2 O composite octahedra prepared by a propanetriol-reduced process
CN104445102A (zh) 一种通过前驱体的酸化剥离氧化来合成超薄Se纳米片的方法及其应用
CN109137140A (zh) 一种银-三聚氰胺配合物纳米纤维及链状银纳米材料的制备方法
CN108178181B (zh) 一种中空管状的CuS纳米材料及其制备方法
Dong et al. A very simple and low cost route to Bi2S3 nanorods bundles and dandelion-like nanostructures
Kumar et al. Chemically derived graphene nanoribbons from carbon nanotubes for supercapacitor application
Dhall et al. Effect of oxide nanoparticles on structural properties of multiwalled carbon nanotubes
Lai et al. Large-scale synthesis and surface plasmon resonance properties of angled silver/silver homojunction nanowires
Hai et al. Synthesis of ternary core-shell carbon sphere@ α-Fe2O3@ Ag composites and their application for simultaneous voltammetric detection of uric acid, xanthine, and hypoxanthine
CN108500292A (zh) 一种链状金属镍纳米粉体的制备方法
CN104275492A (zh) 一种糖葫芦状一维金纳米粒子的制备方法
Cao et al. Synthesis of Gold Nanoparticle Using Halloysites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190104

RJ01 Rejection of invention patent application after publication