CN109136590A - A kind of packet header mixed rare earth concentrate decomposition processing process - Google Patents

A kind of packet header mixed rare earth concentrate decomposition processing process Download PDF

Info

Publication number
CN109136590A
CN109136590A CN201811102617.9A CN201811102617A CN109136590A CN 109136590 A CN109136590 A CN 109136590A CN 201811102617 A CN201811102617 A CN 201811102617A CN 109136590 A CN109136590 A CN 109136590A
Authority
CN
China
Prior art keywords
rare earth
hydrochloric acid
activation
calcination
mine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811102617.9A
Other languages
Chinese (zh)
Inventor
郭小龙
白立忠
韩满璇
杨发军
张国强
李向东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GANSU RARE EARTH NEW MATERIAL CO Ltd
Original Assignee
GANSU RARE EARTH NEW MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GANSU RARE EARTH NEW MATERIAL CO Ltd filed Critical GANSU RARE EARTH NEW MATERIAL CO Ltd
Priority to CN201811102617.9A priority Critical patent/CN109136590A/en
Publication of CN109136590A publication Critical patent/CN109136590A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

A kind of packet header mixed rare earth concentrate decomposition processing process, comprising the following steps: packet header mixed rare earth concentrate is carried out calcination for activation by step 1 at a temperature of 350-600 DEG C, and activation time is 1-6 hours, obtains calcination for activation mine;Step 2, calcination for activation are mining, and 3mol/L-8mol/L hydrochloric acid solution carries out the excellent molten leaching of adverse current, obtains the few cerium re chloride and the excellent phase analysis of hydrochloric acid of Low acid;Leached mud and water lotion must be dehydrated after the excellent phase analysis rinse dehydration of step 3, hydrochloric acid;Step 4, dehydration leached mud and the concentrated sulfuric acid are mixed in proportion with quality, are roasted, and obtain sulfuric acid baking mine;Step 5, sulfuric acid baking mine carry out subsequent water logging, neutralize removal of impurities process, obtain rare earth sulfate solution.The method that the present invention uses hydrochloric acid counterflow leaching, earth solution is conducive to subsequent extraction and separation at concentrations up to 250g/L, the leaching for avoiding quadrivalent cerium is leached in hydrochloric acid optimization, it is possible to prevente effectively from the leaching of coordination fluorine, to avoid generating rare earth fluoride three-phase object in extraction process.

Description

A kind of packet header mixed rare earth concentrate decomposition processing process
Technical field
The present invention relates to field of hydrometallurgy, and in particular to packet header mixed rare earth concentrate decomposition processing process always.
Background technique
China's rare earth resources 80% originate from Inner Mongol packet header, and Baotou rare earth mine is mainly the mixing of bastnaesite and monazite Mine, since the place of production their relative amount of difference is 9:1-1.1.The chemical formula of bastnaesite is REFCO3, the chemistry of monazite Formula is REPO4, their chemical property is different, and monazite is more difficult to decompose than bastnaesite.Currently, domestic processing packet header mixed type The main method of rare earth ore concentrate has concentrated sulfuric acid high-temperature roasting method and concentrated base decomposition method.Concentrated sulfuric acid high-temperature roasting method technique is the concentrated sulfuric acid Strengthen Roasting Decomposition-water logging-neutralization removal of impurities, obtaining pure mixing rare earth sulfate solution, (mixing sulfuric acid rare earth solubility is low, dense Highest is spent only to 30-40g/L REO), one rare earth compound of production list is then separated using P507/P204 abstraction and type-reverting, or Mixed chlorinated rare earth solution is prepared using carbon ammonium precipitation-dissolving with hydrochloric acid, prepares single rare earth compound using extraction and separation.It should Although method realizes large-scale industrial production, not high to rare earth grade requirement, still, also brings at the same time more serious Environmental problem.Firstly, waste residue amount is big.Waste residue accounts for about 90% or more of concentrate amount.Secondly, exhaust gas.In concentrated sulfuric acid high-temperature calcination process It is middle to generate a large amount of gas containing S, F, subsequent recycle using the spraying method and mixed acid solution of the exhaust gas, it is difficult to utilize. Again, a large amount of waste water (spent shower water, sulfuric acid wastewater containing, amine wastewater of sulphuric acid etc.) of concentrated sulfuric acid high-temperature technology generation seriously pollutes environment. Concentrated base decomposition method is high (> 55%) to the grade requirement of rare earth ore concentrate;Secondly caustic digestion process is carried out in reactor tank, is operated Journey is batch operation, limits its large-scale application.
In order to solve above-mentioned industry bottleneck problem, researching and developing that other more environmentally friendly rare earth extraction separation methods become must It wants.If CN 108165732 discloses a kind of process of two-step method processing Baotou rare earth ore concentrate, specially first by baotite Oxidizing roasting is leached to obtain the first sulphuric leachate and monazite with sulfuric acid solution, and monazite uses concentrated sulfuric acid low-temperature bake, water again The second sulphuric leachate is obtained after leaching.This method is whole all to use sulfuric acid leaching, and since sulfuric acid rare earth solubility is low, concentration is only capable of reaching To 30-40g/LREO, whole be transformed into after high concentration re chloride is needed to carry out extraction and separation again, this process can generate greatly The sulfuric acid wastewater containing of the low concentration of amount;In addition, the first step uses sulfuric acid leaching, the quadrivalent cerium and fluorine coordination in bastnaesite are leached, Quadrivalent cerium is needed to add H2O2Reduction reextraction additionally consumes chemical reagent, fluorine element is also needed to be further processed, process It is relatively complicated.
Summary of the invention
The present invention provides a kind of packet header mixed rare earth concentrate decomposition processing process, individually roasts compared to the concentrated sulfuric acid and alkali Resolution process, exhaust gas and wastewater flow rate are greatly reduced, and subsequent extraction and separation acid and alkali consumption is much less, and have cost advantage and subtract Light environmental pollution advantage.
The technical solution adopted in the present invention is as follows:
A kind of packet header mixed rare earth concentrate decomposition processing process, comprising the following steps:
Packet header mixed rare earth concentrate is carried out calcination for activation by step 1 at a temperature of 350-600 DEG C, and activation time is that 1-6 is small When, obtain calcination for activation mine;
Step 2, calcination for activation are mining, and 3mol/L-8mol/L hydrochloric acid solution carries out the excellent molten leaching of adverse current, obtains few cerium of Low acid Re chloride and the excellent phase analysis of hydrochloric acid;
Leached mud and water lotion must be dehydrated after the excellent phase analysis rinse dehydration of step 3, hydrochloric acid;
Step 4, dehydration leached mud and the concentrated sulfuric acid are ratio mixing, the roasting of 1:0.8-1.5 with mass ratio, obtain sulfuric acid baking Mine;
Step 5, sulfuric acid baking mine carry out subsequent water logging, neutralize removal of impurities process, obtain rare earth sulfate solution.
The temperature of calcination for activation is preferably 400-500 DEG C in step 1, and activation time is preferably 2-3 hours.
The concentration of hydrochloric acid solution described in step 2 is preferably 3mol/L-6mol/L.
It is counterflow leaching that hydrochloric acid optimization, which is leached, in step 2, and series is 2-5 grades, and every grade of extraction time is 1-2 hours, few cerium The concentration of REO is 150-250g/L, pH value 3.5-4.5 in re chloride.
Concentration in step 3 in water lotion containing REO is 10-40g/L, hydrogen ion concentration 0.6-1.0mol/L, the water Washing lotion will prepare hydrochloric acid solution and continue to leach calcination for activation mine, form closed cycle.
The maturing temperature of slag acid blend is 200-450 DEG C in step 4, calcining time 1-4h.
Concentration in step 5 in obtained rare earth sulfate solution containing REO is 30-40g/L, pH value 1.0-4.5.
The beneficial effects of the present invention are:
The present invention handles packet header mischmetal mine using the excellent molten-concentrated sulfuric acid low-temperature bake of calcination for activation-hydrochloric acid, compared to the concentrated sulfuric acid Individually roasting and caustic digestion processing, exhaust gas and wastewater flow rate are greatly reduced, and subsequent extraction and separation acid and alkali consumption is much less, and is had Cost advantage and mitigation environmental pollution advantage.
The present invention uses the concentration of REO in leachate after the excellent molten activation mine of hydrochloric acid adverse current for 150-250g/L, and pH value is 3.5-4.5 saves sulfuric acid rare earth and is transformed into rare earth chloride process, and can save neutralization removal of impurities process, reduces disappearing for lye Consumption, leachate can be directly entered next procedure and carry out extraction and separation.
The present invention is leached using hydrochloric acid optimization, avoids the leaching of quadrivalent cerium, so that it may the leaching of coordination fluorine is effectively avoided, To avoid generating rare earth fluoride three-phase object in extraction process.
The present invention is reduced using the excellent molten method of hydrochloric acid adverse current, the consumption of hydrochloric acid, the acidity of excellent solution is lower, is omitted With removal of impurities process, the consumption of liquid alkaline is reduced.The excellent molten slag of hydrochloric acid is carrying out concentrated sulfuric acid roasting than reducing about 2/3 on ore quality When, sulfuric acid consumption about reduces 2/3, alleviates the treating capacity of subsequent exhaust gas and waste water significantly.Packet header mixing provided by the invention The water consume of type Rare Earth Concentrate Decomposition treatment process integrated artistic about reduces 2/3;In addition, since the content of few cerium rare earth chloride is long-range In the content of sulfuric acid rare earth, the production efficiency of extraction separation process is substantially increased, overall efficiency is significant.
Detailed description of the invention
Fig. 1 is process flow diagram of the invention.
Specific embodiment
A kind of packet header mixed rare earth concentrate decomposition processing process, comprising the following steps:
Packet header mixed rare earth concentrate is carried out calcination for activation by step 1 at a temperature of 350-600 DEG C, and activation time is that 1-6 is small When, obtain calcination for activation mine;
Step 2, calcination for activation are mining, and 3mol/L-8mol/L hydrochloric acid solution carries out the excellent molten leaching of adverse current, obtains few cerium of Low acid Re chloride and the excellent phase analysis of hydrochloric acid;
Leached mud and water lotion must be dehydrated after the excellent phase analysis rinse dehydration of step 3, hydrochloric acid;
Step 4, dehydration leached mud and the concentrated sulfuric acid are ratio mixing, the roasting of 1:0.8-1.5 with mass ratio, obtain sulfuric acid baking Mine;
Step 5, sulfuric acid baking mine carry out subsequent water logging, neutralize removal of impurities process, obtain rare earth sulfate solution.
Further, the temperature of calcination for activation is preferably 400-500 DEG C in step 1, and activation time is preferably 2-3 hours.
Further, the concentration of hydrochloric acid solution described in step 2 is preferably 3mol/L-6mol/L.
Further, it is counterflow leaching that hydrochloric acid optimization, which is leached, in step 2, and series is 2-5 grades, and every grade of extraction time is 1-2 Hour, the concentration of REO is 150-250g/L, pH value 3.5-4.5 in few cerium re chloride.
Further, the concentration in step 3 in water lotion containing REO is 10-40g/L, hydrogen ion concentration 0.6- 1.0mol/L, which, which will prepare hydrochloric acid solution, continues to leach calcination for activation mine, forms closed cycle.
Further, the maturing temperature of slag acid blend is 200-450 DEG C in step 4, calcining time 1-4h.
Further, the concentration in step 5 in obtained rare earth sulfate solution containing REO is 30-40g/L, and pH value is 1.0-4.5。
Present invention be described in more detail combined with specific embodiments below.
Embodiment 1, a kind of packet header mixed rare earth concentrate decomposition processing process, comprising the following steps:
The packet header 300g mixed rare earth concentrates are carried out calcination for activation by step 1, and temperature is 500 DEG C, time 2h, obtain 256g roasting Burn mine;
Step 2 will roast 3 stage countercurrent leachings of mining hydrochloric acid solution progress, obtain being 170g/L acidity containing REO being that PH is about 3.5 mixed chlorinated rare earth solution and salt acid leaching slag;The concentration of the hydrochloric acid solution is 6mol/L;The re chloride It is directly entered extracted products technique;
Step 3, salt acid leaching slag are dried after being dehydrated with 200mL water washing, obtain the dry slag of 150g and 200mL water lotion, and water lotion is used Next group calcination for activation mine is leached in preparing hydrochloric acid solution;
Step 4,150g leach dry slag and the concentrated sulfuric acid and mix in 1:1.2 ratio;Slag acid blend roasts 1.5 under the conditions of 380 DEG C Hour, obtain sulfuric acid baking mine 245g;
Step 6,245g sulfuric acid baking mine carry out subsequent water logging, neutralize the processes such as removal of impurities, rare earth sulfate solution are obtained, under One step process.Extraction temperature is 25 DEG C, time 2h, obtains the sulfuric acid rare earth leachate that 2000mL contains REO, the REO's Concentration is 35g/L.
Embodiment 2
A kind of packet header mixed rare earth concentrate decomposition processing process, comprising the following steps:
The north 300g rare earth ore concentrate is carried out calcination for activation by step 1, and temperature is 450 DEG C, time 2.5h, obtains 261g roasting Mine;
Step 2 will roast 2 stage countercurrent leachings of mining hydrochloric acid solution progress, obtain being 150g/L acidity containing REO being that PH is about 4.5 mixed chlorinated rare earth solution and salt acid leaching slag;The concentration of the hydrochloric acid solution is 5mol/L;The re chloride It is directly entered extracted products technique;
Step 3, salt acid leaching slag are dried after being dehydrated with 200mL water washing, obtain the dry slag of 160g and 200mL water lotion, and water lotion is used Next group calcination for activation mine is leached in preparing hydrochloric acid solution;
Step 4,160g leach dry slag and the concentrated sulfuric acid and mix in 1:1.5 ratio;It is small that slag acid blend roasts 3 under the conditions of 350 DEG C When, obtain sulfuric acid baking mine 260g;
Step 6,260g sulfuric acid baking mine carry out subsequent water logging, neutralize the processes such as removal of impurities, rare earth sulfate solution are obtained, under One step process.Extraction temperature is 25 DEG C, time 2h, obtains the sulfuric acid rare earth leachate that 2000mL contains REO, the REO's Concentration is 40g/L.
Embodiment 3
A kind of packet header mixed rare earth concentrate decomposition processing process, comprising the following steps:
The north 300g rare earth ore concentrate is carried out calcination for activation by step 1, and temperature is 400 DEG C, and time 4h obtains 275g roasted ore;
Step 2 will roast mining hydrochloric acid solution and carry out 5 stage countercurrent leachings, obtain being 250g/L acidity containing REO be PH being about 4 Mixed chlorinated rare earth solution and salt acid leaching slag;The concentration of the hydrochloric acid solution is 8mol/L;The re chloride is straight It taps into extracted products technique;
Step 3, salt acid leaching slag are dried after being dehydrated with 200mL water washing, obtain the dry slag of 190g and 200mL water lotion, and water lotion is used Next group calcination for activation mine is leached in preparing hydrochloric acid solution;
Step 4,190g leach dry slag and the concentrated sulfuric acid and mix in 1:1.7 ratio;Slag acid blend roasts 1.5 under the conditions of 450 DEG C Hour, obtain sulfuric acid baking mine 320g;
Step 6,320g sulfuric acid baking mine carry out subsequent water logging, neutralize the processes such as removal of impurities, rare earth sulfate solution are obtained, under One step process.Extraction temperature is 25 DEG C, time 2h, obtains the sulfuric acid rare earth leachate that 2900mL contains REO, the REO's Concentration is 37g/L.

Claims (7)

1. a kind of packet header mixed rare earth concentrate decomposition processing process, it is characterized in that: the following steps are included:
Packet header mixed rare earth concentrate is carried out calcination for activation by step 1 at a temperature of 350-600 DEG C, and activation time is that 1-6 is small When, obtain calcination for activation mine;
Step 2, calcination for activation are mining, and 3mol/L-8mol/L hydrochloric acid solution carries out the excellent molten leaching of adverse current, obtains few cerium of Low acid Re chloride and the excellent phase analysis of hydrochloric acid;
Leached mud and water lotion must be dehydrated after the excellent phase analysis rinse dehydration of step 3, hydrochloric acid;
Step 4, dehydration leached mud and the concentrated sulfuric acid are ratio mixing, the roasting of 1:0.8-1.5 with mass ratio, obtain sulfuric acid baking Mine;
Step 5, sulfuric acid baking mine carry out subsequent water logging, neutralize removal of impurities process, obtain rare earth sulfate solution.
2. process according to claim 1, which is characterized in that the temperature of calcination for activation is preferably 400- in step 1 500 DEG C, activation time is preferably 2-3 hours.
3. process according to claim 1, which is characterized in that the concentration of hydrochloric acid solution described in step 2 is preferably 3mol/L-6mol/L。
4. process according to claim 1, which is characterized in that it is counterflow leaching, grade that hydrochloric acid optimization, which is leached, in step 2 Number is 2-5 grades, and every grade of extraction time is 1-2 hours, and the concentration of REO is 150-250g/L, pH value in few cerium re chloride For 3.5-4.5.
5. process according to claim 1, which is characterized in that the concentration in step 3 in water lotion containing REO is 10-40g/L, hydrogen ion concentration 0.6-1.0mol/L, which, which will prepare hydrochloric acid solution, continues to leach calcination for activation mine, shape At closed cycle.
6. process according to claim 1, which is characterized in that the maturing temperature of slag acid blend is in step 4 200-450 DEG C, calcining time 1-4h.
7. process according to claim 1, which is characterized in that contain in obtained rare earth sulfate solution in step 5 The concentration for having REO is 30-40g/L, pH value 1.0-4.5.
CN201811102617.9A 2018-09-20 2018-09-20 A kind of packet header mixed rare earth concentrate decomposition processing process Pending CN109136590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811102617.9A CN109136590A (en) 2018-09-20 2018-09-20 A kind of packet header mixed rare earth concentrate decomposition processing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811102617.9A CN109136590A (en) 2018-09-20 2018-09-20 A kind of packet header mixed rare earth concentrate decomposition processing process

Publications (1)

Publication Number Publication Date
CN109136590A true CN109136590A (en) 2019-01-04

Family

ID=64822963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811102617.9A Pending CN109136590A (en) 2018-09-20 2018-09-20 A kind of packet header mixed rare earth concentrate decomposition processing process

Country Status (1)

Country Link
CN (1) CN109136590A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030084A1 (en) * 2018-08-10 2020-02-13 有研稀土新材料股份有限公司 Process for smelting and separating rare earth concentrate using combination method
CN110923439A (en) * 2019-12-09 2020-03-27 四川省冕宁县方兴稀土有限公司 Method for improving rare earth ore conversion rate in rare earth wet smelting
CN111549216A (en) * 2020-05-22 2020-08-18 包头稀土研究院 Method for decomposing rare earth concentrate
CN111926181A (en) * 2020-08-19 2020-11-13 中国科学院过程工程研究所 Method for stepwise recovering valuable components in rare earth concentrate
CN113621837A (en) * 2021-08-20 2021-11-09 湖北省地质实验测试中心(国土资源部武汉矿产资源监督检测中心) Rare earth extraction method for low-grade fine-fraction rare earth ore
CN114249308A (en) * 2021-11-19 2022-03-29 四川大学 Method for extracting phosphorus resource and rare earth resource in phosphorus-containing mixed rare earth concentrate
CN114314635A (en) * 2022-01-06 2022-04-12 四川江铜稀土有限责任公司 Method for extracting rare earth and recovering fluorine from bastnaesite high-grade leaching residue
CN114752788A (en) * 2022-04-24 2022-07-15 华卫国 Roasting method of rare earth ore concentrate added with active agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238931A (en) * 1985-04-13 1986-10-24 Seitetsu Kagaku Co Ltd Treatment of rare earth concentrate fines
CN102146512A (en) * 2010-02-08 2011-08-10 北京有色金属研究总院 Hamartite smelting separation process
CN103103349A (en) * 2013-02-05 2013-05-15 内蒙古科技大学 Method for decomposing bayan obo rare earth ore concentrate by acid and alkali combination at low temperature
CN103397213A (en) * 2013-07-22 2013-11-20 葛新芳 Method for decomposing and extracting Baotou rare earth ore through mixed alkali roasting process
CN104046804A (en) * 2014-06-25 2014-09-17 包头华美稀土高科有限公司 Method for improving concentration of rear earth in lixivium of rear-earth concentrated sulfuric acid roasted ore
CN108165732A (en) * 2017-12-28 2018-06-15 中国科学院长春应用化学研究所 A kind of process of two-step method processing Baotou rare earth ore concentrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238931A (en) * 1985-04-13 1986-10-24 Seitetsu Kagaku Co Ltd Treatment of rare earth concentrate fines
CN102146512A (en) * 2010-02-08 2011-08-10 北京有色金属研究总院 Hamartite smelting separation process
CN103103349A (en) * 2013-02-05 2013-05-15 内蒙古科技大学 Method for decomposing bayan obo rare earth ore concentrate by acid and alkali combination at low temperature
CN103397213A (en) * 2013-07-22 2013-11-20 葛新芳 Method for decomposing and extracting Baotou rare earth ore through mixed alkali roasting process
CN104046804A (en) * 2014-06-25 2014-09-17 包头华美稀土高科有限公司 Method for improving concentration of rear earth in lixivium of rear-earth concentrated sulfuric acid roasted ore
CN108165732A (en) * 2017-12-28 2018-06-15 中国科学院长春应用化学研究所 A kind of process of two-step method processing Baotou rare earth ore concentrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030084A1 (en) * 2018-08-10 2020-02-13 有研稀土新材料股份有限公司 Process for smelting and separating rare earth concentrate using combination method
CN110923439A (en) * 2019-12-09 2020-03-27 四川省冕宁县方兴稀土有限公司 Method for improving rare earth ore conversion rate in rare earth wet smelting
CN111549216A (en) * 2020-05-22 2020-08-18 包头稀土研究院 Method for decomposing rare earth concentrate
CN111926181A (en) * 2020-08-19 2020-11-13 中国科学院过程工程研究所 Method for stepwise recovering valuable components in rare earth concentrate
CN113621837A (en) * 2021-08-20 2021-11-09 湖北省地质实验测试中心(国土资源部武汉矿产资源监督检测中心) Rare earth extraction method for low-grade fine-fraction rare earth ore
CN114249308A (en) * 2021-11-19 2022-03-29 四川大学 Method for extracting phosphorus resource and rare earth resource in phosphorus-containing mixed rare earth concentrate
CN114249308B (en) * 2021-11-19 2023-09-08 四川大学 Method for extracting phosphorus resources and rare earth resources in phosphorus-containing mixed rare earth concentrate
CN114314635A (en) * 2022-01-06 2022-04-12 四川江铜稀土有限责任公司 Method for extracting rare earth and recovering fluorine from bastnaesite high-grade leaching residue
CN114314635B (en) * 2022-01-06 2023-08-25 中稀(凉山)稀土有限公司 Method for extracting rare earth from bastnaesite optimal leaching slag and recovering fluorine
CN114752788A (en) * 2022-04-24 2022-07-15 华卫国 Roasting method of rare earth ore concentrate added with active agent

Similar Documents

Publication Publication Date Title
CN109136590A (en) A kind of packet header mixed rare earth concentrate decomposition processing process
CN106129511B (en) A method of the comprehensively recovering valuable metal from waste and old lithium ion battery material
CN104805302B (en) A kind of method that vanadium and titanium are extracted from titanium slag containing vanadium
CN101824554B (en) Liquid alkali roasting decomposition extraction process of mixed rare earth concentrates
CN103103349B (en) Method for decomposing bayan obo rare earth ore concentrate by acid and alkali combination at low temperature
CN105256156B (en) Process for decomposing fluorine-containing rare earth molten salt waste residues
CN102212674A (en) Process for comprehensively recovering liquid alkali roasting resource of mixed rare earth concentrate
CN108517423B (en) Method for extracting lithium and lithium salt by roasting lepidolite in rotary kiln
CN104404243B (en) A kind of method of soda acid associating low-temperature decomposition low-grade Weishan rare earth ore concentrate
CN106048265B (en) A kind of extracting method of bastnaesite rare earth elements
CN103361495A (en) Method for extracting niobium from Bayan Obo mine tailing
CN107739840A (en) A kind of method of efficient-decomposition recovering rare earth electrolysis fused salt waste residue middle rare earth
CN103555954A (en) Method for recovering rare earth elements from waste nickel-metal hydride batteries
CN106337135A (en) Novel method for producing vanadium pentoxide through ammonium-free vanadium precipitation
CN102251106A (en) Method for decomposing rare earth concentrate in Baotou by alkaline process
CN109811122A (en) The extracting method of rare earth oxide
CN105985735B (en) The preparation method of high cerium mischmetal polishing powder
CN103014316B (en) Novel method for processing lepidolite material
CN102899488B (en) Resource transforming method for separating rare earth from fluorine by utilizing rare earth ore concentrate hydrochloric leachate
CN108165732B (en) A kind of process of two-step method processing Baotou rare earth ore concentrate
CN109811135A (en) The method and device of selective extraction rare earth oxide from red mud
CN103352117B (en) Method for extracting niobium from low-grade niobium ore
CN109022834A (en) A kind of roasting decomposition process of mischmetal mine
CN106011465B (en) A kind of method that high pressure leaches Baotou rare earth ore deposit
CN110055404A (en) A kind of method that Cold pretreatment concentrated sulfuric acid roasting decomposes high-grade mixed rare earth concentrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190104