CN109136215A - 一种固定化硫酸盐还原菌颗粒的制备方法及其应用 - Google Patents

一种固定化硫酸盐还原菌颗粒的制备方法及其应用 Download PDF

Info

Publication number
CN109136215A
CN109136215A CN201810965981.1A CN201810965981A CN109136215A CN 109136215 A CN109136215 A CN 109136215A CN 201810965981 A CN201810965981 A CN 201810965981A CN 109136215 A CN109136215 A CN 109136215A
Authority
CN
China
Prior art keywords
sulfate
reducing bacteria
sulfate reducing
immobilization
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810965981.1A
Other languages
English (en)
Inventor
阎佳
张鸿郭
王思霁
钟铿锵
肖唐付
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN201810965981.1A priority Critical patent/CN109136215A/zh
Publication of CN109136215A publication Critical patent/CN109136215A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种固定化硫酸盐还原菌颗粒的制备方法及其应用,属于废水生物处理技术领域,该制备方法包括以下步骤:将氧化石墨烯溶胶加入到硫酸盐还原菌培养基中,搅拌混合;向硫酸盐还原菌培养基中再加入硫酸盐还原菌菌液,搅拌混合;在pH值为2~12、温度为10~45℃的厌氧条件下培养18~72h,得到的颗粒物即为固定化硫酸盐还原菌颗粒。本发明制备方法是以还原的氧化石墨烯为生物载体来固定硫酸盐还原菌,提高硫酸盐还原菌的活性,削弱重金属对硫酸盐还原菌的影响;同时,该制备方法简便,产物中固定化硫酸盐还原菌的稳定性好,其可广泛推广使用。

Description

一种固定化硫酸盐还原菌颗粒的制备方法及其应用
技术领域
本发明属于废水生物处理技术领域,尤其涉及一种固定化硫酸盐还原菌颗粒的制备方法及其应用。
背景技术
硫酸盐广泛存在于生活污水、工业废水以及农业废水中,浓度范围较宽;不妥善处理将会对环境造成严重的污染。人体硫酸盐中毒的症状有消化不良、腹泻等。此外,工业硫酸盐废水(如矿山废水、脱硫废水等)常含有铜、镍、铬、铅、金、银、汞等重金属离子或其络合离子。由于这类重金属离子在自然环境下化学性质稳定,其可在生物体内累积,具有慢性毒性;不妥善处理将会对农业、渔业等产生严重影响,并危害人体健康。重金属污染是我国水环境面临的严峻问题之一,迫切需要开发高效经济的重金属废水处理方法。
目前常用的重金属废水处理方法有用物理法、化学法,其是转移重金属离子的存在位置和物理化学形态。由于重金属废水成分复杂、浓度差异较大,处理达标要求较为严格,传统的处理技术存在一些技术问题:处理剂使用量大、能耗高、反应不易控制、反应较慢,效果不理想、出水水质差、残渣不稳定、二次污染和回收贵金属难等。
硫酸盐还原菌可将硫酸盐还原为硫化物,并同时去除有机物,产生的硫化物可与金属离子形成重金属沉淀,从而实现硫酸盐、有机物以及重金属的同步去除。然而,重金属对微生物具有普遍的毒性,重金属明显地抑制硫酸盐还原菌的活性。微生物固定化技术可有效维持微生物量,削弱环境因素及毒性物质对微生物的影响。然而,传统的微生物固定化技术具有需要加入高分子聚合物载体和交联剂,长期运行后稳定性较差。
发明内容
本发明目的在于克服现有技术存在的不足,而提供一种固定化硫酸盐还原菌颗粒的制备方法及其应用,该制备方法是以还原的氧化石墨烯为生物载体来固定硫酸盐还原菌,提高硫酸盐还原菌的活性,削弱重金属对硫酸盐还原菌的影响;且该制备方法简便,产物中固定化硫酸盐还原菌的稳定性好,其可广泛推广使用。
为实现上述目的,本发明采取的技术方案为:一种固定化硫酸盐还原菌颗粒的制备方法,其依次包括以下步骤:
S1)将氧化石墨烯溶胶加入到硫酸盐还原菌培养基中,搅拌混合;
S2)向所述硫酸盐还原菌培养基中再加入硫酸盐还原菌菌液,搅拌混合;
S3)在pH值为2~12、温度为10~45℃的厌氧条件下培养18~72h,得到的颗粒物即为固定化硫酸盐还原菌颗粒(BY-rGO颗粒);
所述氧化石墨烯溶胶与所述硫酸盐还原菌培养基的体积比为0.4%~1.2%,所述硫酸盐还原菌菌液与所述硫酸盐还原菌培养基的体积比为1%,所述硫酸盐还原菌菌液中硫酸盐还原菌的浓度为1×1010~3×1010cfu/ml。
氧化石墨烯(GO)由于具有强度高、比表面积大、导电能力强以及基质传递等特性,本发明采用硫酸盐还原菌还原氧化石墨烯,还原的氧化石墨烯(rGO)可作为硫酸盐还原菌的优良载体。同时,本发明对氧化石墨烯溶胶和硫酸盐还原菌的比例进行限定,若超出上述范围,硫酸盐还原菌因毒性而受到抑制。
优选地,硫酸盐还原菌菌液的菌为异养型硫酸盐还原菌纯菌;以氮气置换气体,以维持严格的厌氧环境。
作为上述技术方案的改进,在步骤S3)中,硫酸盐还原菌培养的时间为18h。
作为上述技术方案的改进,所述硫酸盐还原菌培养基是以硫酸钠为硫源和以乳酸钠为碳源,pH调节剂为盐酸或氢氧化钠。
另外,本发明还提供一种采用所述的制备方法制备出的固定化硫酸盐还原菌颗粒,即BY-rGO颗粒。
另外,本发明还提供所述的固定化硫酸盐还原菌颗粒在培养硫酸盐还原菌中的应用,硫酸盐还原菌培养时的温度为10~45℃,pH值为2~12。与未固定化的硫酸盐还原菌相比,本发明固定化硫酸盐还原菌颗粒中硫酸盐还原菌能在10~45℃,pH值为2~12正常生长。
另外,本发明还提供所述的固定化硫酸盐还原菌颗粒在净化硫酸盐废水中的应用,硫酸盐废水净化时的温度为30~45℃,pH值为4~8。当净化废水时的温度为30~45℃,pH值为4~8时,本发明固定化硫酸盐还原菌颗粒能较好地去除硫酸盐和重金属。
本发明的有益效果在于:本发明提供一种固定化硫酸盐还原菌颗粒的制备方法及其应用,本发明的制备方法具有以下优点:
1)硫酸盐还原菌还原氧化石墨烯,通过还原态的氧化石墨烯的自组装过程形成固定化BY-rGO颗粒,无需加入聚合物载体及交联剂;
2)BY-rGO颗粒通过自组装形成,稳定行强,不产生二次污染;
3)BY-rGO颗粒的粒径大且均匀,沉降性能好,短时间内即可自行沉淀;
4)本发明促进硫酸盐还原菌的生长和活性,削弱了不良环境因素、重金属对硫酸盐还原菌的毒性,加速对重金属的去除,适于矿山、电镀、脱硫等行业的含重金属的硫酸盐废水处理。
附图说明
图1显示本发明固定化硫酸盐还原菌颗粒的制备及废水处理的示意图;
图2显示不同温度对硫酸盐还原菌生长及硫酸盐去除效率的影响;2a显示不同温度下硫酸盐还原菌的生长状况,2b显示不同温度下硫酸盐去除率;其中,表示硫酸盐还原菌未固定化,■表示硫酸盐还原菌固定化;
图3显示不同pH对硫酸盐还原菌生长及硫酸盐去除效率的影响;3a显示不同pH下硫酸盐还原菌的生长状况,3b显示不同pH下的硫酸盐去除率;其中,表示硫酸盐还原菌未固定化,■表示硫酸盐还原菌固定化;
图4显示不同重金属对硫酸盐还原菌生长、硫酸盐去除效率以及重金属去除率的影响;4a显示不同重金属对硫酸盐还原菌生长状况的影响,4b显示不同重金属对硫酸盐去除率的影响,4C显示不同重金属对重金属去除率的影响;其中,表示硫酸盐还原菌未固定化,■表示硫酸盐还原菌固定化。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例和附图对本发明作进一步说明。
实施例1
本实施例提供一种固定化硫酸盐还原菌颗粒的制备方法,如图1所示,其依次包括以下步骤:
S1)将0.2ml氧化石墨烯溶胶加入50ml的硫酸盐还原菌培养基中,即两者的体积比为0.4%,搅拌混合;
S2)将培养基pH值调节为7.5,向硫酸盐还原菌培养基中接种0.5ml硫酸盐还原菌菌液(浓度为2.1×1010cfu/ml),硫酸盐还原菌菌液与硫酸盐还原菌培养基的体积比为1%,搅拌混合;
S3)通入氮气20min,以保证厌氧培养环境,密封后30℃下培养18h后进入稳定期,所得黑色颗粒物即为BY-rGO颗粒。
实施例2
本实施例提供一种固定化硫酸盐还原菌颗粒的制备方法,其类似于实施例1,区别在于:在S1)将0.4ml氧化石墨烯溶胶加入50ml的硫酸盐还原菌培养基中,即两者的体积比为0.8%。
实施例3
本实施例提供一种固定化硫酸盐还原菌颗粒的制备方法,其类似于实施例1,区别在于:在S1)将0.6ml氧化石墨烯溶胶加入50ml的硫酸盐还原菌培养基中,即两者的体积比为1.2%。
实施例4
本实施例提供一种固定化硫酸盐还原菌颗粒的制备方法,其类似于实施例1,区别在于:在S2)中,硫酸盐还原菌菌液中硫酸盐还原菌的浓度为1×1010cfu/ml。
实施例5
本实施例提供一种固定化硫酸盐还原菌颗粒的制备方法,其类似于实施例1,区别在于:在S2)中,硫酸盐还原菌菌液中硫酸盐还原菌的浓度为3×1010cfu/ml。
对上述实施例1~5硫酸盐还原菌培养18h后的菌液的浓度进行测定,其最大生长量可达固定化前的3~4倍(OD600max=0.8,8~9×1010cfu/ml),固定后的硫酸盐还原菌生长速率比固定前提高30%~50%,本发明制备方法明显加快了硫酸盐还原菌的生长,加速了硫酸盐还原过程。
温度对硫酸盐还原菌生长和硫酸盐去除率的影响
采用实施例2制备的rGO-BY颗粒为研究对象,比较其在不同温度下固定化前后的硫酸盐还原菌生长和硫酸盐去除率。
结果如图2所示,固定化的硫酸盐还原菌在10~45℃范围内均可生长,并实现硫酸盐还原,硫酸盐去除率稳定高于70%;而未固定化的硫酸盐还原菌,在10℃下不能生长,且在10℃和45℃条件下,硫酸盐去除率低于30%。
硫酸盐还原菌生物固定化后,可在不良条件下提高硫酸盐生物活性,越是极端条件差别越大,越接近最适温度差别越小;固化前的硫酸盐还原菌在2或10℃时,仍能去除少量硫酸盐,原因在于:硫酸盐还原菌的培养基中含有少量钙离子形成硫酸盐沉淀。
由此可见,本发明采用还原的氧化石墨烯对硫酸盐还原菌进行固定化后,硫酸盐还原菌生长速率和硫酸盐去除速率均明显得到提高,明显减弱了温度对硫酸盐还原菌的影响:1)在15℃条件下,硫酸盐还原菌生长速率由固定前0.012h-1,提高至固定后0.14h-1,提高10倍以上;2)在15℃条件下,硫酸盐还原效率由固定前50%提高到固定后75%,可提高约1.5倍。
pH对硫酸盐还原菌生长和硫酸盐去除率的影响
采用实施例2制备的rGO-BY颗粒为研究对象,比较其在不同pH条件下固定化前后的硫酸盐还原菌生长和硫酸盐去除率。
结果如图3所示,固定化的硫酸盐还原菌在pH值为2~12范围内均可生长,并实现硫酸盐还原,硫酸盐去除率稳定高于50%;而未固定化的硫酸盐还原菌,在pH低于4或高于10条件下,不能生长,硫酸盐去除效率低于25%。
由此可见,本发明采用还原的氧化石墨烯对硫酸盐还原菌进行固定化后,硫酸盐还原菌生长速率和硫酸盐去除速率均明显得到提高,明显减弱了pH对硫酸盐还原菌的影响:1)硫酸盐还原菌生长速率由固定前0.02~0.06h-1提高到固定后0.1~0.15h-1;2)在极端pH值为12条件下,硫酸盐去除率由固定前5%提高到固定后55%。
重金属对硫酸盐还原菌生长、硫酸盐的去除效率以及重金属去除效率的影响
采用实施例2制备的rGO-BY颗粒为研究对象,比较其在不同重金属存在条件下,固定化前后的硫酸盐还原菌生长、硫酸盐去除率和重金属去除率。测定时的温度为30℃、pH值为7.5,重金属的浓度为1mM。
结果如图4所示,固定化的硫酸盐还原菌在有1mM的金属离子存在时,硫酸盐还原菌能正常生长,可以有效去除硫酸盐,以及有效去除重金属离子-Cu2+、Ni2+、Cd2+、Fe3+、Tl+、Pb2+,形成金属硫化物沉淀:1)在有1mM的金属离子存在时,硫酸盐还原菌生长速率由固定前的0.02~0.04h-1提高至固定后的0.125~0.145h-1,可提高4倍以上;2)固定后硫酸盐还原菌对硫酸盐的去除率也得到提高;3)24h内,硫酸盐还原菌对Cu2+去的去除率由固定前40%提高至固定后90%,对Fe3+的去除率由固定前24%提高至固定后78%,对Pb2+的去除率由固定前50%提高至固定后98%,对Cd2+的去除率由固定前14%提高至固定后50%,对Ni2+的去除率由固定前47%提高至固定后99%,对Tl+的去除率由固定前35%提高至固定后92%,去除效率可提高2~4倍,明显削弱了重金属对硫酸盐还原菌的毒性作用。
另外,在图4中,4b中硫酸盐去除率是在4d后测定的,4c中重金属去除率是24h后测定的,固定化硫酸盐还原菌在24h内,可显著加速硫酸盐还原产生硫离子,硫化物与重金属产生沉淀。
上述仅提供实施例2制备的rGO-BY颗粒为研究对象进行活性测定,本发明其他实施例制备的rGO-BY颗粒也可以取得类似的实验效果。
最后所应当说明的是,以上实施例用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者同等替换,而不脱离本发明技术方案的实质和范围。

Claims (6)

1.一种固定化硫酸盐还原菌颗粒的制备方法,其特征在于,依次包括以下步骤:
S1)将氧化石墨烯溶胶加入到硫酸盐还原菌培养基中,搅拌混合;
S2)向所述硫酸盐还原菌培养基中再加入硫酸盐还原菌菌液,搅拌混合;
S3)在pH值为2~12、温度为10~45℃的厌氧条件下培养18~72h,得到的颗粒物即为固定化硫酸盐还原菌颗粒;
所述氧化石墨烯溶胶与所述硫酸盐还原菌培养基的体积比为0.4%~1.2%,所述硫酸盐还原菌菌液与所述硫酸盐还原菌培养基的体积比为1%,所述硫酸盐还原菌菌液中硫酸盐还原菌的浓度为1×1010~3×1010cfu/ml。
2.如权利要求1所述的制备方法,其特征在于,在步骤S3)中,硫酸盐还原菌培养的时间为18h。
3.如权利要求1所述的制备方法,其特征在于,所述硫酸盐还原菌培养基是以硫酸钠为硫源和以乳酸钠为碳源,pH调节剂为盐酸或氢氧化钠。
4.一种采用如权利要求1~3所述的制备方法制备出的固定化硫酸盐还原菌颗粒。
5.如权利要求4所述的固定化硫酸盐还原菌颗粒在培养硫酸盐还原菌中的应用,其特征在于,硫酸盐还原菌培养时的温度为10~45℃,pH值为2~12。
6.如权利要求4所述的固定化硫酸盐还原菌颗粒在净化硫酸盐废水中的应用,其特征在于,硫酸盐废水净化时的温度为30~45℃,pH值为4~8。
CN201810965981.1A 2018-08-22 2018-08-22 一种固定化硫酸盐还原菌颗粒的制备方法及其应用 Pending CN109136215A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810965981.1A CN109136215A (zh) 2018-08-22 2018-08-22 一种固定化硫酸盐还原菌颗粒的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810965981.1A CN109136215A (zh) 2018-08-22 2018-08-22 一种固定化硫酸盐还原菌颗粒的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN109136215A true CN109136215A (zh) 2019-01-04

Family

ID=64791024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810965981.1A Pending CN109136215A (zh) 2018-08-22 2018-08-22 一种固定化硫酸盐还原菌颗粒的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109136215A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268806A (zh) * 2020-01-10 2020-06-12 中山大学 一种利用脱硫弧菌自组装三维石墨烯生物复合材料的制备及其应用
CN114570764A (zh) * 2022-04-20 2022-06-03 中南大学 一种锑矿区污染土壤的微生物修复方法
CN115108685A (zh) * 2022-07-28 2022-09-27 湖南中森环境科技有限公司 一种用于矿井酸性废水原位治理的改性活性炭载体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255177A (zh) * 2013-01-17 2013-08-21 华中科技大学 一种生物还原制备氮硫同时掺杂石墨烯的方法
CN104651347A (zh) * 2015-02-26 2015-05-27 辽宁工程技术大学 一种硫酸盐还原菌固定化颗粒及其制备和使用方法
CN106636057A (zh) * 2016-11-30 2017-05-10 湖南大学 一种营养源固定硫酸盐还原菌小球及其制备方法与用途
CN106861654A (zh) * 2017-03-07 2017-06-20 辽宁工程技术大学 一种处理酸性矿山废水的固定化颗粒及其制备和使用方法
CN108102956A (zh) * 2017-12-18 2018-06-01 曲阜师范大学 一种石墨烯基复合材料固定化反硝化细菌的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255177A (zh) * 2013-01-17 2013-08-21 华中科技大学 一种生物还原制备氮硫同时掺杂石墨烯的方法
CN104651347A (zh) * 2015-02-26 2015-05-27 辽宁工程技术大学 一种硫酸盐还原菌固定化颗粒及其制备和使用方法
CN106636057A (zh) * 2016-11-30 2017-05-10 湖南大学 一种营养源固定硫酸盐还原菌小球及其制备方法与用途
CN106861654A (zh) * 2017-03-07 2017-06-20 辽宁工程技术大学 一种处理酸性矿山废水的固定化颗粒及其制备和使用方法
CN108102956A (zh) * 2017-12-18 2018-06-01 曲阜师范大学 一种石墨烯基复合材料固定化反硝化细菌的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIA YAN等: ""Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles"", 《BIORESOURCE TECHNOLOGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111268806A (zh) * 2020-01-10 2020-06-12 中山大学 一种利用脱硫弧菌自组装三维石墨烯生物复合材料的制备及其应用
CN114570764A (zh) * 2022-04-20 2022-06-03 中南大学 一种锑矿区污染土壤的微生物修复方法
CN115108685A (zh) * 2022-07-28 2022-09-27 湖南中森环境科技有限公司 一种用于矿井酸性废水原位治理的改性活性炭载体
CN115108685B (zh) * 2022-07-28 2023-10-20 湖南中森环境科技有限公司 一种用于矿井酸性废水原位治理的改性活性炭载体

Similar Documents

Publication Publication Date Title
CN109136215A (zh) 一种固定化硫酸盐还原菌颗粒的制备方法及其应用
CN112960781B (zh) 一种基于生物纳米杂合体系的有机污染物降解方法
CN110951642B (zh) 一种固定微生物还原吸附重金属铬的方法
CN111996133A (zh) 一种硫酸盐还原菌生物强化应用的方法
Xu et al. Denitrification potential of sodium alginate gel beads immobilized iron–carbon, Zoogloea sp. L2, and riboflavin: performance optimization and mechanism
Sathishkumar et al. Enhanced biological nitrate removal by gC3N4/TiO2 composite and role of extracellular polymeric substances
CN103275908B (zh) 一株低温脱氮荧光假单胞杆菌
CN114908002A (zh) 一种生物纳米硒强化复合菌株及其应用
CN1160023A (zh) 治理各种电镀废水的复合功能菌
CN106396124B (zh) 海绵铁与微生物协同去除硫酸盐和Cu(Ⅱ)废水的方法
CN114011436A (zh) 一种三维复合材料催化剂的制备方法及其应用
CN112250197B (zh) 一种运用细菌解毒作用处理含铜含铬工业废水的方法
CN1785843A (zh) 一种实现低c/n比高浓度氨氮废水短程硝化的方法
CN112111531B (zh) 一种提高丙酸厌氧产甲烷的方法
CN111018131A (zh) 一种降解磺胺甲噁唑的方法
CN114686401A (zh) 生物FeS纳米粒子强化微生物菌剂及其制备方法与应用于脱氮的方法
CN106916763B (zh) 一种用于降解黑臭水体底泥的微生物菌剂及其制备方法
CN112358041B (zh) 一种同步反硝化脱氮和产甲烷除cod的颗粒污泥培养方法
CN109081438A (zh) 一种提高厌氧氨氧化颗粒污泥对纳米零价铁耐受性的培养方法
CN110724649B (zh) 高效生物淋滤复合菌系及其污泥脱铬过程中的应用
CN110104768B (zh) 一种耐受纳米材料的反硝化污泥的培养方法
CN111924980A (zh) 纺锤形赖氨酸芽孢杆菌去除富营养废水中六价铬的应用
CN106190896B (zh) 一种人造光合反硝化脱氮菌剂及其制备方法和应用
CN112322548A (zh) 一种超级耐砷的脱硫螺旋菌及应用
CN115286119B (zh) 一种以矿物/生物质为载体用于去除六价铬的微生物强化药剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190104

WD01 Invention patent application deemed withdrawn after publication