CN109126781B - 一种超薄的RhPdH纳米片材料及其制备方法与应用 - Google Patents

一种超薄的RhPdH纳米片材料及其制备方法与应用 Download PDF

Info

Publication number
CN109126781B
CN109126781B CN201811101361.XA CN201811101361A CN109126781B CN 109126781 B CN109126781 B CN 109126781B CN 201811101361 A CN201811101361 A CN 201811101361A CN 109126781 B CN109126781 B CN 109126781B
Authority
CN
China
Prior art keywords
rhpdh
nanosheet
ultrathin
hydrogen evolution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811101361.XA
Other languages
English (en)
Other versions
CN109126781A (zh
Inventor
崔小强
武建栋
范锦昌
刘畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201811101361.XA priority Critical patent/CN109126781B/zh
Publication of CN109126781A publication Critical patent/CN109126781A/zh
Application granted granted Critical
Publication of CN109126781B publication Critical patent/CN109126781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超薄的RhPdH纳米片的制备及其在电催化析氢方面的应用。RhPdH纳米片的尺寸范围为200~325nm,其厚度范围为1.5~2nm。该材料通过一步溶剂热法成功制备,Rh(acac)3和Pd(acac)2为前驱体盐,甲醛为溶剂,聚乙烯吡咯烷酮为表面覆盖剂,并在此基础上引入CO气体,得到了纯净的超薄RhPdH纳米片结构。并对其进行了电催化析氢性能的研究,RhPdH纳米片表现出优良的电催化析氢性能,同时表现了超高的电催化析氢稳定性。

Description

一种超薄的RhPdH纳米片材料及其制备方法与应用
技术领域
本发明属于清洁可持续新型能源制备应用领域,特别涉及一种超薄的RhPdH纳米片材料及其制备方法与应用。
背景技术
贵金属不同晶面对于催化活性的影响巨大,使高催化活性的晶面裸露在外成为研究的热点,于是贵金属的形貌调控应运而生。比如,当裸露晶面是(111)面时,往往呈现四面体或八面体的形貌,当(100)晶面裸露在外时呈现的是立方体的形貌。正是由于不同的裸露晶面构筑了贵金属纳米材料千姿百态的形貌。
经过几十年的发展与进步,在贵金属以及非贵金属的形貌调控方面取得了巨大的突破,一维的纳米棒,纳米线,二维的纳米片,纳米盘,三维的纳米立方体、四面体、截角八面体等形貌被成功地制备出来,使得这个大家族逐渐丰富。
二维材料由于具有高的电子迁移率、量子霍尔效应、优良的热导率以及超导性能,成为形貌调控的重点,受到研究者的广泛关注。人们又将二维材料分为层状二维材料和非层状二维材料,层状二维材料包括石墨烯、六方氮化硼、黑磷、MOFs、COFs、MXenes、MoS2等,它们具有强的层内化学键和弱的层间范德华键,具有轻微的晶格扭曲,而非层状二维材料主要包括金属及其合金,它们在三个维度方向上都具有强的化学键,并且有明显的晶格扭曲,表面原子处于低配位状态且拥有丰富的表面悬键,这赋予它优异的催化性能。
非层状二维材料的目前为止合成出的种类不多,主要集中在金属及其合金。单金属纳米片Pd、Rh、Ru、Au、Ir,双金属合金纳米片PtCu、PdCu、RhW,多金属纳米片PtAgCo、PdPtAg、PdCuBiMn等都有所报道。
PdH由于具有表面自清洁的特点,且H原子嵌入Pd的晶格使其催化活性大幅度提高,引起了研究人员的广泛关注。由于H原子进入Pd的晶格造成其对CO气体分子的吸附能力下降,使得对形貌的调控能力大大降低,很难形成纳米片的结构,文献中所涉及的形貌都是纳米粒子。所以要想进一步提高该体系的催化活性,必须使其表面积进一步增大,暴露更多的活性位点。由于二维片层材料本身特有的比表面积大的特点,是我们研究努力的方向。
本发明通过合理的设计,突破了现有技术的难题,通过引入Rh元素,形成氢化金属合金纳米片结构。
发明内容
本发明的目的在于针对现有技术的不足,提供一种超薄的RhPdH纳米片材料合成方法及其制备方法与应用。
本发明的目的是通过以下技术方案实现的:一种超薄的RhPdH纳米片电催化析氢材料,Rh、Pd、H三元素组成面心立方的合金结构,纳米片尺寸范围为200~325nm,厚度范围为1.5~2nm。
一种上述超薄的RhPdH纳米片电催化析氢材料的制备方法,包括以下步骤:
(1)称取前驱体盐Rh(acac)3和Pd(acac)2各6~10mg溶解在5~10mL的甲醛溶剂中,同时加入聚乙烯吡咯烷酮110~130mg,置于室温搅拌均匀,待前驱体盐完全溶解,形成均匀的浅黄色溶液。
(2)将上述溶液转移至水热釜中,通入一定量的CO气体,使溶液中CO气体饱和,将水热釜密封,置于马弗炉中在160℃反应6~8h。
(3)待上述混合溶液冷却到室温,用丙酮和乙醇的混合溶液进行离心、洗涤,得到超薄的RhPdH纳米片电催化析氢材料。
上述超薄RhPdH纳米片材料在电催化析氢反应中的应用。
本发明的有益效果是:
(1)本发明公开的超薄RhPdH纳米片电催化析氢材料,H原子进入RhPd合金的晶格,活化了RhPd合金的电催化析氢性能。通过引入Rh元素,调节了Pd对CO气体的吸附能力,形成了超薄RhPdH纳米片结构。超薄的RhPdH纳米片材料特有的片层结构,与其他形貌相比,拥有更大的比表面积,暴露更多的催化活性位点,使其电催化析氢性能进一步提高。
(2)采用简单的一步溶剂热法实现制备,旨在提供一种产率较高、方法简易、具有较优越电催化析氢催化性能的RhPdH纳米片的合成方法。其中,甲醛溶剂分解产生CO和H2,氢渗入铑钯合金的晶格,形成RhPdH合金,而CO气体起着形貌调控的作用,由于甲醛溶剂产生的CO气体不足,故再通入CO气体,使甲醛溶剂中CO气体饱和,加之聚乙烯吡咯烷酮的塑形作用,最终形成超薄的RHPdH纳米片结构。
附图说明
图1是本发明制备的超薄RhPdH纳米片的XRD图。
图2是本发明制备的超薄RhPdH纳米片材料的形貌图。a为超薄RhPdH纳米片的扫描电子显微镜图,b为超薄RhPdH纳米片的透射电子显微镜图,c为超薄RhPdH纳米片的高分辨透射电子显微镜图。
图3是本发明制备的超薄RhPdH纳米片边缘立起的高分辨透射电子显微镜图。
图4是本发明制备的超薄RhPdH纳米片的EDS图。
图5是为制备过程中未通入CO气体,其他条件保持不变的高分辨透射电子显微镜图。
图6是本发明制备的超薄RhPdH纳米片材料马弗炉中反应4h和马弗炉中反应6h的XRD对比图。分别以RhPdH-4、RhPdH-6表示马弗炉中反应4h和马弗炉中反应6h的超薄RhPdH纳米片。
图7是本发明制备的超薄RhPdH纳米片材料在1M氢氧化钾溶液中电催化析氢的极化曲线(Polarization curves),分别与Rh/C、Pt/C以及Rh nanosheets进行对比。
图8是本发明制备的超薄RhPdH纳米片材料在1M氢氧化钾中的稳定性测试曲线(Durability test)。
图9是本发明制备的超薄RhPdH纳米片材料析氢反应后与析氢反应前的XRD对比图。
具体实施方式
以下结合附图和实施例进一步说明本发明。
实施例1
本实施例制备超薄RhPdH纳米片材料,具体包括以下步骤:
(1)称取前驱体盐Rh(acac)3和Pd(acac)2各8mg溶解在6mL的甲醛溶剂中,同时加入聚乙烯吡咯烷酮120mg,置于室温剧烈搅拌1h,待前驱体盐完全溶解,形成均匀的浅黄色溶液。
(2)将上述溶液转入10mL的水热釜中,控制CO的流量为500mL min-1,连续通入8min,使溶液中CO气体饱和,将水热釜密封,置于马弗炉中在160℃反应6h。
(3)待上述混合溶液冷却到室温,用丙酮和乙醇的混合溶液进行离心、洗涤,反复操作5次,将得到的产物溶解在4mL乙醇中,备用。
图1是本发明制备的超薄RhPdH纳米片的XRD图。由XRD图可以看出相较Pd和Rh的标准PDF卡片,该衍射峰有明显的左移,说明了该材料并非单纯的RhPd合金,而是二者的氢化合金。
图2为本发明制备的超薄RhPdH纳米片的形貌谱图,图2a,图2b分别为本发明制备的超薄RhPdH纳米片扫描电子显微镜图和透射电子显微镜图,可以明显地看出为薄片结构。图2c为本发明制备的超薄RhPdH纳米片的高分辨透射电子显微镜图,晶面间距为0.236nm,对应RhPdH纳米片的(111)面,相对于RhPd合金(111)面的晶面间距有明显的晶格膨胀,并且与XRD图谱完全吻合。
图3为本发明制备的超薄RhPdH纳米片翘起边缘的高分辨透射电子显微镜图,其可以直观地反映RhPdH纳米片厚度,大约为1.652nm。
图4为本发明制备的超薄RhPdH纳米片的EDS图,Pd、Rh元素的比例为44.9:55.1。
图5为在合成过程中保持其它条件不变的情况下,不通CO气体的透射电子显微镜图,所得到的纳米片含有较多的颗粒杂质,并非纯净的纳米片结构。
图6为本发明制备的超薄RhPdH纳米片的XRD图,同时也给出了马弗炉中反应4h的XRD对比图,可以看出两者的氢化程度不同,马弗炉中反应6h超薄RhPdH纳米片的氢化程度更高。
用本实施例所制备的超薄RhPdH纳米片材料进行电催化析氢性能测试,主要步骤如下:
将实施例所制备的超薄RhPdH纳米片材料滴到玻碳电极上,通过ICP-MS测试,保证其负载量为15微克每平方厘米,以玻碳电极为工作电极(WE)、饱和银/氯化银电极为参比电极(RE)、铂片为对电极(CE)组成三电极体系,以1M氢氧化钾为电解液。在进行电化学测试前,通入饱和氮气,除去溶液中的氧气。并对电极进行校准E(RHE)=E(Ag/AgCl)+0.059pH+0.197V。并在保证贵金属负载量一致的情况下,马弗炉中反应6h超薄RhPdH纳米片材料Rh/C、Pt/C、Rh nanosheets以及马弗炉中反应4h的超薄RhPdH纳米片材料进行电催化析氢性能的对比。
图7为不同催化剂的催化析氢性能比较,电流密度为10mA/cm2,RhPdH-6的过电势为-54mv,明显优于其它材料的性能。
图8为RhPdH-6在-0.9V~-1.6V vs Ag/AgCl进行循环伏安稳定性测试,发现循环5000圈后材料的活性基本没有降低,说明了RhPdH-6材料超高的电催化析氢活性。
图9为超薄RhPdH纳米片材料析氢反应前后的XRD对比图,发现超薄RhPdH纳米片中的H并未脱出,更加证明了该材料的超高稳定性。
实施例2
(1)称取前驱体盐Rh(acac)3 10mg,Pd(acac)2 6mg溶解在8mL的甲醛溶剂中,同时加入聚乙烯吡咯烷酮110mg,置于室温搅拌1h,待前驱体盐完全溶解,形成均匀的浅黄色溶液。
(2)将上述溶液转入20mL的水热釜中,控制CO的流量为400mL min-1,连续通入数分钟,使溶液中CO气体饱和,将水热釜密封,置于马弗炉中在160℃反应7h。
(3)待上述混合溶液冷却到室温,用丙酮和乙醇的混合溶液进行离心、洗涤,反复操作5次,将得到的产物溶解在4mL乙醇中,备用。
经表征,按照上述步骤制备得到的产物中,Rh、Pd、H三元素组成面心立方的合金结构,纳米片尺寸范围为200~325nm,厚度范围为1.5~2nm。按照实施例1的方法进行电催化析氢性能测试,结果表明,该材料也具有超高的电催化析氢活性和稳定性。
实施例3
(1)称取前驱体盐Rh(acac)3 6mg,Pd(acac)2 8mg溶解在5mL的甲醛溶剂中,同时加入聚乙烯吡咯烷酮130mg,置于室温搅拌1h,待前驱体盐完全溶解,形成均匀的浅黄色溶液。
(2)将上述溶液转入20mL的水热釜中,控制CO的流量为600mL min-1,连续通入数分钟,使溶液中CO气体饱和,将水热釜密封,置于马弗炉中在160℃反应8h。
(3)待上述混合溶液冷却到室温,用丙酮和乙醇的混合溶液进行离心、洗涤,反复操作5次,将得到的产物溶解在4mL乙醇中,备用。
经表征,按照上述步骤制备得到的产物中,Rh、Pd、H三元素组成面心立方的合金结构,纳米片尺寸范围为200~325nm,厚度范围为1.5~2nm。按照实施例1的方法进行电催化析氢性能测试,结果表明,该材料也具有超高的电催化析氢活性和稳定性。

Claims (2)

1.一种超薄的RhPdH纳米片电催化析氢材料的制备方法,其特征在于,包括以下步骤:
(1)称取前驱体盐Rh(acac)3和Pd(acac)2各6~10 mg溶解在5~10 mL的甲醛溶剂中,同时加入聚乙烯吡咯烷酮110~130 mg,置于室温搅拌均匀,待前驱体盐完全溶解,形成均匀的浅黄色溶液;
(2)将上述溶液转移至水热釜中,通入一定量的CO气体,使溶液中CO气体饱和,将水热釜密封,置于马弗炉中在160℃反应6~8 h;
(3)待步骤(2)得到的混合溶液冷却到室温,用丙酮和乙醇的混合溶液进行离心、洗涤,得到超薄的RhPdH纳米片电催化析氢材料;所述RhPdH纳米片电催化析氢材料为Rh、Pd、H三元素组成面心立方的合金结构,纳米片尺寸范围为200~325 nm,厚度范围为1.5~2 nm。
2.一种权利要求1所述制备方法制得的超薄的RhPdH纳米片电催化析氢材料在电催化析氢反应中的应用。
CN201811101361.XA 2018-09-20 2018-09-20 一种超薄的RhPdH纳米片材料及其制备方法与应用 Active CN109126781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811101361.XA CN109126781B (zh) 2018-09-20 2018-09-20 一种超薄的RhPdH纳米片材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811101361.XA CN109126781B (zh) 2018-09-20 2018-09-20 一种超薄的RhPdH纳米片材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109126781A CN109126781A (zh) 2019-01-04
CN109126781B true CN109126781B (zh) 2021-06-04

Family

ID=64815427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811101361.XA Active CN109126781B (zh) 2018-09-20 2018-09-20 一种超薄的RhPdH纳米片材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109126781B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110449184B (zh) * 2019-08-12 2021-08-06 吉林大学 氢化钯纳米片的制备方法及其应用
CN110449163B (zh) * 2019-08-15 2021-11-26 上海交通大学 一种制备双金属合金二维纳米材料结构的方法
CN112643045B (zh) * 2020-12-18 2023-04-18 华侨大学 钯钌超薄纳米片及其制备方法和其作为电催化剂的应用
CN114990573A (zh) * 2022-06-06 2022-09-02 济南大学 一种自组装二维Ir金属烯电催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740786A (zh) * 2009-12-14 2010-06-16 浙江大学 一种PtRu/石墨烯纳米电催化剂及其制备方法
CN102728849A (zh) * 2012-05-08 2012-10-17 清华大学 一种自支撑的、单原子层厚的贵金属纳米片及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740786A (zh) * 2009-12-14 2010-06-16 浙江大学 一种PtRu/石墨烯纳米电催化剂及其制备方法
CN102728849A (zh) * 2012-05-08 2012-10-17 清华大学 一种自支撑的、单原子层厚的贵金属纳米片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"一氧化碳辅助钯、铂纳米晶的形貌控制";吴炳辉,等;《中国科学:化学》;20121231;全文 *

Also Published As

Publication number Publication date
CN109126781A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
Gong et al. Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation
CN109126781B (zh) 一种超薄的RhPdH纳米片材料及其制备方法与应用
Yang et al. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery
Zhang et al. MOF-assisted synthesis of octahedral carbon-supported PtCu nanoalloy catalysts for an efficient hydrogen evolution reaction
Huang et al. L-proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions
Li et al. Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries
Mousavi et al. Fabrication of copper centered metal organic framework and nitrogen, sulfur dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction
Weng et al. Dendrite-like PtAg alloyed nanocrystals: Highly active and durable advanced electrocatalysts for oxygen reduction and ethylene glycol oxidation reactions
Chen et al. Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction
Ding et al. RhRu alloyed nanoparticles confined within metal organic frameworks for electrochemical hydrogen evolution at all pH values
Yang et al. Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction
Huang et al. Two-step etching fabrication of tunable ternary rhombic dodecahedral nanoframes for enhanced oxygen reduction electrocatalysis
Wang et al. Synthesis of ultrafine low loading Pd–Cu alloy catalysts supported on graphene with excellent electrocatalytic performance for formic acid oxidation
Zeng et al. One-pot controllable epitaxial growth of Pd-based heterostructures for enhanced formic acid oxidation
Luo et al. Studies on the synthesis and electrocatalytic properties of hollow PdAu nanocatalysts
Chang et al. Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation
Hu et al. Improved oxygen reduction reaction via a partially oxidized Co-CoO catalyst on N-doped carbon synthesized by a facile sand-bath method
Lim et al. Hollow hierarchical zinc cobalt sulfides derived from bimetallic-organic-framework as a non-precious electrocatalyst for oxygen reduction reaction
Zhou et al. PtCo incorporated porous carbon nanofiber as a promising oxygen reduction electrocatalyst
Liu et al. Tailored design of PdRh bimetallene nanoribbons by solvent-induced strategy for efficient alkaline hydrogen evolution
Shen et al. One-pot synthesis of ultrafine decahedral platinum crystal decorated graphite nanosheets for the electro-oxidation of formic acid
Yang et al. Secondary reduction strategy synthesis of Pt–Co nanoparticle catalysts towards boosting the activity of proton exchange membrane fuel cells
Wang et al. One-step CO assisted synthesis of hierarchical porous PdRuCu nanosheets as advanced bifunctional catalysts for hydrogen evolution and glycerol oxidation
Duan et al. Boron-doped iridium nanosheets array for energy-saving hydrogen production by hydrazine-assisted water electrolysis
CN112643045B (zh) 钯钌超薄纳米片及其制备方法和其作为电催化剂的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant