CN109119881B - 一种电光调q开关触发电路及控制方法 - Google Patents

一种电光调q开关触发电路及控制方法 Download PDF

Info

Publication number
CN109119881B
CN109119881B CN201811309576.0A CN201811309576A CN109119881B CN 109119881 B CN109119881 B CN 109119881B CN 201811309576 A CN201811309576 A CN 201811309576A CN 109119881 B CN109119881 B CN 109119881B
Authority
CN
China
Prior art keywords
switch
circuit
pin
capacitor
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811309576.0A
Other languages
English (en)
Other versions
CN109119881A (zh
Inventor
许茂恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Laser Source Technology Co ltd
Original Assignee
Shandong Laser Source Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Laser Source Technology Co ltd filed Critical Shandong Laser Source Technology Co ltd
Priority to CN201811309576.0A priority Critical patent/CN109119881B/zh
Publication of CN109119881A publication Critical patent/CN109119881A/zh
Application granted granted Critical
Publication of CN109119881B publication Critical patent/CN109119881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种电光调Q开关触发电路,包括延时电路和激光电源,所述延时电路的输入端与光强检测电路连接,所述延时电路的输出端与三极管Q1的基极连接,所述三极管Q1的集电极与电源DC4000V和Q开关连接,所述激光电源与可控硅Q2的阳极连接,所述可控硅Q2的控制极与出光控制电路连接,所述可控硅Q2的阴极与泵浦源连接,所述光强检测电路设置在所述泵浦源与所述Q开关之间。本发明有益效果:触发基准时刻更靠近最大反转粒子数时刻,避开了电气回路延时的影响,减少了光学器件老化的影响,使激光脉冲输出强度更稳定,增加了脉冲功率,大大的提升了电光调Q激光器的性能。

Description

一种电光调Q开关触发电路及控制方法
技术领域
本发明涉及电光调Q激光设备技术领域,具体为一种电光调Q开关触发电路及控制方法。
背景技术
在电光调Q激光设备中,激光脉冲光强度是激光性能的重要考核指标,而Q开关的开关时刻对激光强度有着决定性的作用。理想状态下,当泵浦源内反转粒子数达到最大时,打开Q开关此时会输出最大强度的激光脉冲。但反转粒子数测量难以实现。
传统的Q开关控制方式为,在以泵浦源开始工作为基准进行延时一定时间后触发Q开关打开,延时时间一般在出厂调试时,测得最合适的值,然后固化在控制器中。这种控制方式,在外部环境因素变化引起电气参数改变时,其最大反转粒子数时刻相对泵浦源开始工作时刻发生改变,导致脉冲激光强度下降,并且随着时间推移,电气元器件老化,光学器件老化,必然导致最大反转粒子数时刻改变,而固定延时的Q开关触发方式必然会降低激光脉冲强度。
同时,目前市场上普遍应用的用偏振镜片和普克尔盒(电光调Q开关)做成的电光调Q激光器都使用了电光调Q开关驱动电源(以下称驱动电源),原理是由控制器根据氙灯闪光信号延时后启动晶压驱动电路。驱动电源体积较大,须与激光器(普克尔盒)分别安装并须通过调整氙灯电源与激光器适配;由于是分别安装,其晶压引线较长(40cm以上双线),分布参数影响了电光调Q晶体电压的上升(下降)时间,激光器输出的巨脉宽多为10~20ns,不易获得更窄的巨脉宽输出。
发明内容
本发明的目的在于提供一种电光调Q开关触发电路及方法,具备提升电光调Q激光器性能的优点,解决了在外部环境因素变化引起电气参数改变时,其最大反转粒子数时刻相对泵浦源开始工作时刻发生改变,导致脉冲激光强度下降,并且随着时间推移,电气元器件老化,光学器件老化,必然导致最大反转粒子数时刻改变,而固定延时的Q开关触发方式必然会降低激光脉冲强度的问题。
为实现上述目的,本发明提供如下技术方案:
一种电光调Q开关触发电路,包括延时电路和激光电源,所述延时电路的输入端与光强检测电路连接,所述延时电路的输出端与三极管Q1的基极连接,所述三极管Q1的集电极与电源DC4000V和Q开关连接,所述激光电源与可控硅Q2的阳极连接,所述可控硅Q2的控制极与出光控制电路连接,所述可控硅Q2的阴极与泵浦源连接,所述光强检测电路设置在所述泵浦源与所述Q开关之间。
进一步地,所述三极管Q1的发射极与接地端GND1连接,所述激光电源还与电容C1连接,所述电容C1与接地端GND2连接。
优选地,所述Q开关具体为加压式Q开关或退压式Q开关。
进一步地,所述光强检测电路包括光电传感器,所述光电传感器为光敏电阻、光电二极管或光电三极管。
进一步地,所述延时电路包括8脚时基集成电路NE555,所述8脚时基集成电路NE555的引脚2与100P电容和1M电阻连接,所述100P电容与10K电阻连接,所述8脚时基集成电路NE555的引脚3与另一100P电容连接,所述另一100P电容与100K电阻和三极管8550的基极连接,所述三极管8550的集电极与另一100K电阻连接,所述8脚时基集成电路NE555的引脚6和引脚7与2n2电容和100K可变电阻连接,所述100K可变电阻连接与另一10K电阻连接,所述8脚时基集成电路NE555的引脚5与10n电容连接,所述10K电阻、所述1M电阻、所述另一10K电阻、所述100K电阻、所述三极管8550的发射极以及所述8脚时基集成电路NE555的引脚4和引脚8均与12V电源连接,所述所述8脚时基集成电路NE555的引脚1与所述10n电容、所述2n2电容、所述另一100K电阻和光强检测电路连接,所述光强检测电路与所述10K电阻和所述100P电容连接。
一种如上所述的电光调Q开关触发电路的控制方法,包括以下步骤:
步骤1:在激光器腔体泵浦源与Q开关之间放置光电传感器;
步骤2:触发电路检测泵浦源漏光强度,当泵浦源漏光达到预设强度以后,光电传感器信号经比较后触发延时电路,延时电路时间可调节;
步骤3:延时电路输出脉冲控制Q开关电源泄放Q开关晶体上的电压;
步骤4:当漏光强度达到设定值,Q开关打开,输出Q开关触发信号,使激光器输出激光脉冲。
优选地,所述Q开关为退压式Q开关。
优选地,所述Q开关控制方式是以光强度为触发,包含或不包含延时电路,控制Q开关进行状态切换。
与现有技术相比,本发明的有益效果如下:
本发明所述的电光调Q开关触发电路及控制方法,触发基准时刻更靠近最大反转粒子数时刻,避开了电气回路延时的影响,减少了光学器件老化的影响,使激光脉冲输出强度更稳定,通过用现代微电子技术提高了驱动电源的集成密度,改变了氙灯闪光信号的触发方式,由光电传感器直接接受氙灯闪光照射输出信号,经微分处理脉宽压缩后驱动高压电路,其输出晶压上升(下降)时间<5ns,本驱动电源的体积只有0.5吋3,直接安装于手持电光调Q激光器上,晶压引线只有3cm(双线)长,不存在长晶压引线分布参数影响普克尔盒晶体电压变化速度,使激光器输出巨脉冲宽度<4ns,甚至<3ns,增加了脉冲功率,大大的提升了电光调Q激光器的性能,又由于本发明只须直流电源而毋须与氙灯电源作信号联接即可工作,延时时间针对激光器独立调节,提高了匹配度方便了应用。
附图说明
图1为本发明电路原理图一;
图2为本发明电路原理图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-2,本发明所述的一种电光调Q开关触发电路,包括延时电路和激光电源,其特征在于:所述延时电路的输入端与光强检测电路连接,所述延时电路的输出端与三极管Q1的基极连接,所述三极管Q1的集电极与电源DC4000V和Q开关连接,所述激光电源与可控硅Q2的阳极连接,所述可控硅Q2的控制极与出光控制电路连接,所述可控硅Q2的阴极与泵浦源连接,所述光强检测电路设置在所述泵浦源与所述Q开关之间。
具体地,三极管Q1还可以为高压MOS管,高压MOS管的源极、栅极、漏极分别对应于三极管Q1的发射极、基极、集电极;在激光器腔体泵浦源与Q开关之间放置光强检测电路,当泵浦源漏光达到一定强度以后,光强检测电路输出信号经比较器后触发延时电路,延时电路时间可调节,延时电路输出脉冲控制Q开关电源泄放Q开关晶体上的电压,Q开关打开,形成激光脉冲。
本发明所述的电光调Q开关触发电路,光强检测电路检测泵浦源漏光强度,当漏光强度达到设定值,输出Q开关触发信号,使激光器输出激光脉冲,这种触发方式,触发基准时刻更靠近最大反转粒子数时刻,避开了电气回路延时的影响,减少了光学器件老化的影响,使激光脉冲输出强度更稳定。
其中,所述三极管Q1的发射极与接地端GND1连接,所述激光电源还与电容C1连接,所述电容C1与接地端GND2连接。
其中,优选地,所述Q开关具体为加压式Q开关或退压式Q开关。
其中,优选地,所述光强检测电路包括光电传感器,所述光电传感器为光敏电阻、光电二极管或光电三极管。
其中,所述延时电路包括8脚时基集成电路NE555,所述8脚时基集成电路NE555的引脚2与100P电容和1M电阻连接,所述100P电容与10K电阻连接,所述8脚时基集成电路NE555的引脚3与另一100P电容连接,所述另一100P电容与100K电阻和三极管8550的基极连接,所述三极管8550的集电极与另一100K电阻连接,所述8脚时基集成电路NE555的引脚6和引脚7与2n2电容和100K可变电阻连接,所述100K可变电阻连接与另一10K电阻连接,所述8脚时基集成电路NE555的引脚5与10n电容连接,所述10K电阻、所述1M电阻、所述另一10K电阻、所述100K电阻、所述三极管8550的发射极以及所述8脚时基集成电路NE555的引脚4和引脚8均与12V电源连接,所述所述8脚时基集成电路NE555的引脚1与所述10n电容、所述2n2电容、所述另一100K电阻和光强检测电路连接,所述光强检测电路与所述10K电阻和所述100P电容连接。
其中,所述延时电路只需简单的电阻器、电容器,即可完成特定的振荡延时作用;延时范围极广,可由几微秒至几小时之久,可以根据实际需要进行调整;操作电源范围极大,输出电平及输入触发电平,均能与系列逻辑电路的高、低电平匹配;输出端的供给电流大,可直接推动多种自动控制的负载;计时精确度高、温度稳定度佳,且价格便宜。
一种如上所述的电光调Q开关触发电路的控制方法,包括以下步骤:
步骤1:在激光器腔体泵浦源与Q开关之间放置光电传感器;
步骤2:触发电路检测泵浦源漏光强度,当泵浦源漏光达到预设强度以后,光电传感器信号经比较后触发延时电路,延时电路时间可调节;
步骤3:延时电路输出脉冲控制Q开关电源泄放Q开关晶体上的电压;
步骤4:当漏光强度达到设定值,Q开关打开,输出Q开关触发信号,使激光器输出激光脉冲。
其中,优选地,所述Q开关为退压式Q开关。
其中,优选地,所述Q开关控制方式是以光强度为触发,包含或不包含延时电路,控制Q开关进行状态切换。
本发明所述的电光调Q开关触发电路,主要用于电光调Q,光强检测电路检测漏光强度只用于触发,形成一个触发起始时刻,更加适用于需要进行精准控制的场景,例如医疗美容等。
综上所述,本发明所述的电光调Q开关触发电路及控制方法,触发基准时刻更靠近最大反转粒子数时刻,避开了电气回路延时的影响,减少了光学器件老化的影响,使激光脉冲输出强度更稳定,通过用现代微电子技术提高了驱动电源的集成密度,改变了氙灯闪光信号的触发方式,由光电传感器直接接受氙灯闪光照射输出信号,经微分处理脉宽压缩后驱动高压电路,其输出晶压上升(下降)时间<5ns,本驱动电源的体积只有0.5吋3,直接安装于手持电光调Q激光器上,晶压引线只有3cm(双线)长,不存在长晶压引线分布参数影响普克尔盒晶体电压变化速度,使激光器输出巨脉冲宽度<4ns,甚至<3ns,增加了脉冲功率,大大的提升了电光调Q激光器的性能,又由于本发明只须直流电源而毋须与氙灯电源作信号联接即可工作,延时时间针对激光器独立调节,提高了匹配度方便了应用。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种电光调Q开关触发电路,包括延时电路和激光电源,其特征在于:所述延时电路的输入端与光强检测电路连接,所述延时电路的输出端与三极管Q1的基极连接,所述三极管Q1的集电极与电源DC4000V和Q开关连接,所述激光电源与可控硅Q2的阳极连接,所述可控硅Q2的控制极与出光控制电路连接,所述可控硅Q2的阴极与泵浦源连接,所述光强检测电路设置在所述泵浦源与所述Q开关之间;所述Q开关具体为加压式Q开关或退压式Q开关;所述延时电路包括8脚时基集成电路NE555,所述8脚时基集成电路NE555的引脚2与100P电容和1M电阻连接,所述100P电容与10K电阻连接,所述8脚时基集成电路NE555的引脚3与另一100P电容连接,所述另一100P电容与100K电阻和三极管8550的基极连接,所述三极管8550的集电极与另一100K电阻连接,所述8脚时基集成电路NE555的引脚6和引脚7与2n2电容和100K可变电阻连接,所述100K可变电阻连接与另一10K电阻连接,所述8脚时基集成电路NE555的引脚5与10n电容连接,所述10K电阻、所述1M电阻、所述另一10K电阻、所述100K电阻、所述三极管8550的发射极以及所述8脚时基集成电路NE555的引脚4和引脚8均与12V电源连接,所述所述8脚时基集成电路NE555的引脚1与所述10n电容、所述2n2电容、所述另一100K电阻和光强检测电路连接,所述光强检测电路与所述10K电阻和所述100P电容连接。
2.根据权利要求1所述的一种电光调Q开关触发电路,其特征在于:所述三极管Q1的发射极与接地端GND1连接,所述激光电源还与电容C1连接,所述电容C1与接地端GND2连接。
3.根据权利要求1所述的一种电光调Q开关触发电路,其特征在于:所述光强检测电路包括光电传感器,所述光电传感器为光敏电阻、光电二极管或光电三极管。
4.一种如权利要求1所述的电光调Q开关触发电路的控制方法,其特征在于,包括以下步骤:
步骤1:在激光器腔体泵浦源与Q开关之间放置光电传感器;
步骤2:触发电路检测泵浦源漏光强度,当泵浦源漏光达到预设强度以后,光电传感器信号经比较后触发延时电路,延时电路时间可调节;
步骤3:延时电路输出脉冲控制Q开关电源泄放Q开关晶体上的电压;
步骤4:当漏光强度达到设定值,Q开关打开,输出Q开关触发信号,使激光器输出激光脉冲。
5.根据权利要求4所述的一种电光调Q开关触发电路的控制方法,其特征在于:所述Q开关为退压式Q开关。
6.根据权利要求4所述的一种电光调Q开关触发电路的控制方法,其特征在于:所述Q开关控制方式是以光强度为触发,包含延时电路,控制Q开关进行状态切换。
CN201811309576.0A 2018-11-05 2018-11-05 一种电光调q开关触发电路及控制方法 Active CN109119881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811309576.0A CN109119881B (zh) 2018-11-05 2018-11-05 一种电光调q开关触发电路及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811309576.0A CN109119881B (zh) 2018-11-05 2018-11-05 一种电光调q开关触发电路及控制方法

Publications (2)

Publication Number Publication Date
CN109119881A CN109119881A (zh) 2019-01-01
CN109119881B true CN109119881B (zh) 2024-04-02

Family

ID=64853887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811309576.0A Active CN109119881B (zh) 2018-11-05 2018-11-05 一种电光调q开关触发电路及控制方法

Country Status (1)

Country Link
CN (1) CN109119881B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110597152B (zh) * 2019-10-21 2024-04-30 航宇救生装备有限公司 基于微控制器的防强闪光镜片开关态自适应控制电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990048056A (ko) * 1997-12-08 1999-07-05 박호군 음향 광학 변조기를 이용한 큐 스위치된 펄스형 고체 레이저에 있어서의 레이저 출력 펄스 에너지 안정화 장치
CN2392281Y (zh) * 1999-09-03 2000-08-16 中国科学院安徽光学精密机械研究所 球隙放电下灯泵激光器的q开关同步信号产生器
CN103779776A (zh) * 2013-10-10 2014-05-07 中国科学院上海光学精密机械研究所 基于电光晶体调谐腔长的种子注入单频脉冲激光器
CN208820227U (zh) * 2018-11-05 2019-05-03 山东镭之源激光科技股份有限公司 一种电光调q开关触发电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101682593B1 (ko) * 2015-05-26 2016-12-05 한국과학기술연구원 단일 펄스 레이저 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990048056A (ko) * 1997-12-08 1999-07-05 박호군 음향 광학 변조기를 이용한 큐 스위치된 펄스형 고체 레이저에 있어서의 레이저 출력 펄스 에너지 안정화 장치
CN2392281Y (zh) * 1999-09-03 2000-08-16 中国科学院安徽光学精密机械研究所 球隙放电下灯泵激光器的q开关同步信号产生器
CN103779776A (zh) * 2013-10-10 2014-05-07 中国科学院上海光学精密机械研究所 基于电光晶体调谐腔长的种子注入单频脉冲激光器
CN208820227U (zh) * 2018-11-05 2019-05-03 山东镭之源激光科技股份有限公司 一种电光调q开关触发电路

Also Published As

Publication number Publication date
CN109119881A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
US7936189B2 (en) Driver circuit and method for reducing electromagnetic interference
CN106602865B (zh) 一种储能电容充电电路及脉冲激光电源
CN109119881B (zh) 一种电光调q开关触发电路及控制方法
CN104754845A (zh) 脉冲氙灯仿真测试电路
CN204886695U (zh) 一种电荷泵电路
CN115327334A (zh) 一种功率器件动态阈值电压Vth测量系统
CN208820227U (zh) 一种电光调q开关触发电路
TW201143265A (en) A heterodyne dual slope frequency generation method for the load change of power supply
CN107294386A (zh) 直流电源控制电路
CN102411382A (zh) 防温度过冲的温控电路
CN203658532U (zh) 一种功率单板上的开关管测试电路
CN104185345A (zh) 一种用于led恒流驱动电路的控制装置
CN103066907A (zh) 电动汽车增程器永磁发电机稳压控制器
CN111416275A (zh) 激光器监测电路、激光器校准系统及方法
CN114844493B (zh) 一种双驱动级联器件的延时驱动电路
CN203645128U (zh) 纳秒脉冲激光电源硬件电路
CN104180839A (zh) 一种关于振弦传感器的快速测量方法及检测电路
CN210222220U (zh) 高精度恒流数控电子负载
CN214754674U (zh) 一种超快脉冲激光器驱动电路及激光测距装置
CN107949135B (zh) 一种基于igbt与cmos双回路调节氙灯驱动电路
CN220139436U (zh) 一种延时可调控制变压器自激振荡输出脉冲电路
CN220673967U (zh) 一种脉冲氙灯控制触发电路
CN104965554B (zh) 一种缓冲驱动用高效率电荷泵稳压电源装置
CN204945231U (zh) 测量自锁气放管启动电压并泄放剩余电流装置
CN205195675U (zh) 一种快速启动的低功耗晶振电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant