CN109115952A - 一种mof诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法 - Google Patents

一种mof诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法 Download PDF

Info

Publication number
CN109115952A
CN109115952A CN201810861983.6A CN201810861983A CN109115952A CN 109115952 A CN109115952 A CN 109115952A CN 201810861983 A CN201810861983 A CN 201810861983A CN 109115952 A CN109115952 A CN 109115952A
Authority
CN
China
Prior art keywords
iron
mol
spindle
concentration
mof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810861983.6A
Other languages
English (en)
Inventor
宋鹏
位祺
王�琦
杨中喜
马振壬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810861983.6A priority Critical patent/CN109115952A/zh
Publication of CN109115952A publication Critical patent/CN109115952A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供一种MOF诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法。该制备方法具体包括:以六水合三氯化铁为原料,以N‑N二甲基甲酰胺(DMF)为溶剂,对苯二甲酸为有机连接剂,采用传统的溶剂热法,得到均匀纺锤体结构的MIL‑88‑Fe,在500°C下煅烧20分钟后得到多孔氧化铁纺锤体;进而以四氯合金酸和L‑赖氨酸为原料,柠檬酸三钠为还原剂,在其表面附着金纳米颗粒,最终得到MOF诱导氧化铁纺锤体复合金纳米颗粒气敏材料。本方法生产工艺简单,所得的氧化铁复合金纳米颗粒的气敏材料具有多孔兼吸附点结构,大幅度增加了材料的比表面积和吸附性,获得高灵敏度的新型气敏材料。

Description

一种MOF诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备 方法
技术领域
本发明涉及涉及一种MOF诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法,属于先进纳米功能材料制备工艺技术领域。
背景技术
进入21世纪后,全球工业迅速发展,为人类的发展带来巨大的益处,但是与此同时,环境污染问题也越来越严重,其中尤其是气体污染,不仅对社会财产产生巨大损失,同时也会给人类的身体健康产生巨大的挑战。因此,人们越来越重视对有毒气体的检测。例如,三乙胺作为一种易燃且有毒的气体,会对人体皮肤和黏膜有刺激性,浓度较高时会产生肺水肿甚至死亡。对于气体的检测方法有多种,其中由金属氧化物制备的半导体气敏传感器由于其灵敏度高,使用寿命长,成本低等优点而被广泛应用。主要的金属氧化物有SnO2、ZnO、Fe2O3等传统气敏材料,也有In2O3、NiO、CuO等新型气敏材料。本实验主要讨论的是Fe2O3的气敏性能。Fe2O3是一种典型的N型半导体,禁带宽度为2.2 eV,Fe2O3具有对气体检测可逆、吸脱附时间短、气敏稳定性好、原料易于获取、成本低等优点, 但其仍然存在工作温度偏高,灵敏不不高等缺陷,因此长久以来是气敏研究领域的重点。为了进一步提高Fe2O3气敏性能,可以通过与其他贵金属复合形成活性吸附点,加快金属氧化物与气体之间的吸脱附,从而提高材料整体的气敏性能。
对于纳米材料来说,其形态结构的变化会对材料的气敏性能产生较大的影响,不仅能够进一步改善Fe2O3气敏材料的选择性,还能使其灵敏度得到进一步提升。目前已经有多种形态的纳米结构Fe2O3被成功制备,如Guo 等人(L. Guo, N. Xie, C. Wang, Enhancedhydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowiresprepared by one-step electrospinning, Sens. Actuators B 255 (2018) 1015-1023.)对α-Fe2O3纳米管的成功制备并且该材料对H2S具有较好的气敏性。此外,利用MOF诱导的办法来制备金属半导体的方法越来越受研究界的关注。该方法利用有机物的形态具有多样性且易于控制的特点,通过煅烧去除有机物,得到的氧化物仍能保持原来的形态且形成多孔结构,这有利于提高材料的比表面积,从而改善其其气敏性。例如,Lü 等人(Y. Lü,W. Zhan, Y. He, MOF-templated synthesis of porous Co3O4 concave nanocubes withhigh specific surface area and their gas sensing properties, ACS Appl. Mater.Interfaces 6 (2014) 4186-4195.)发现MOF诱导的Co3O4纳米立方体具有较大的比表面积及优异的气敏性能。由于单一的气敏材料始终存在一定的限制,所以人们越来越关注对于贵金属复合气敏材料的制备。与其他贵金属复合后,一方面使氧化物半导体表面形成较多的活性位点,使得气敏材料能够吸附更多的测试气体;另一方面,在接触气体时,贵金属与不同金属氧化物之间的相互作用有利于加快电子传输,从而缩短气敏响应恢复时间,如Li等人(W. Li, H. Xu, T. Zhai, Enhanced triethylamine sensing properties bydesigning Au@ SnO2/MoS2 nanostructure directly on alumina tubes, Sens.Actuators B, 253 (2017) 97-107.)研究了复合金纳米颗粒后对气敏性的影响。Fe2O3虽然是一种传统的气敏材料,但是关于利用MOF诱导的方法制备气敏材料的研究较少,因此在这一领域还需要进一步探究。
发明内容
本发明的目的在于,提供一种MOF诱导氧化铁纺锤体复合金纳米颗粒的制备方法,该方法具有成本低、操作简单、产率高且不产生有毒物质,因此能够实现工业化的大规模生产。所得到的氧化铁纺锤体复合金纳米颗粒与纯氧化铁相比气敏性有了明显的提升,可以应用于气敏传感器领域。实现本发明目的的技术方案是:一种MOF诱导氧化铁纺锤体复合金纳米颗粒的制备方法,其特征在于:以六水合三氯化铁为原料,以N-N二甲基甲酰胺(DMF)为溶剂,对苯二甲酸为有机连接剂,采用传统的溶剂热法,得到均匀纺锤体结构的MIL-88-Fe,在500 °C下煅烧20分钟后得到多孔氧化铁纺锤体;进而以四氯合金酸和L-赖氨酸为原料,柠檬酸三钠为还原剂,在其表面附着金纳米颗粒,最终得到MOF诱导氧化铁纺锤体复合金纳米颗粒气敏材料。具体步骤如下:
(1)先量取15 ml N-N二甲基甲酰胺于烧杯中,再加入一定量的六水合三氯化铁和对苯二甲酸,其中六水合三氯化铁的浓度为0.005~0.015 mol/L,对苯二甲酸的浓度为0.005~0.015 mol/L, 控制六水合三氯化铁和对苯二甲酸的摩尔比为1:1;
(2)搅拌数分钟后,将所得溶液倒入40 ml反应釜中,在100~200 °C下保温2~4 h;获得的沉淀分别用N-N二甲基甲酰胺洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(3)秤取0.005~0.015 g 氧化铁粉末于烧杯中,加入15 ml的去离子水,氧化铁纺锤体的浓度为0.002~0.006 mol/L;之后量取1 ml的四氯合金酸(浓度为0.01 mol/L)和1 ml L-赖氨酸(浓度为0.01 mol/L)于烧杯中;其中,氧化铁与四氯合金酸的摩尔比为(0.2~0.6):1,氧化铁与L-赖氨酸的摩尔比为(0.2~0.6):1;超声数分钟后,用移液枪逐滴加入0.1 ml的柠檬酸三钠(浓度为0.1 mol/L),且氧化铁与柠檬酸三钠的摩尔比为(0.02~0.06):1,之后在室温下搅拌半小时;
(4)将步骤(3)所得的溶液用去离子水洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(5)将步骤(4)得到的离心产物倒入表面皿,在烘箱内60 °C保温6 h;之后将样品烘干;将烘干后的样品放到马弗炉中在300 °C下煅烧30 min, 即可获得MOF诱导氧化铁纺锤体复合金纳米颗粒的纳米结构。
附图说明
图1为MOF诱导氧化铁纺锤体与金纳米颗粒复合结构的XRD图谱。
图2为MOF诱导氧化铁纺锤体与金纳米颗粒复合结构的FESEM图。
图3为MOF诱导氧化铁纺锤体与金纳米颗粒复合结构的TEM图。
图4为最佳工作电压下MOF诱导氧化铁纺锤体与金纳米颗粒复合结构与纯氧化铁气敏元件对10-1000 ppm的乙醇气体的灵敏度曲线对比图。
图5为最佳工作电压下MOF诱导氧化铁纺锤体与金纳米颗粒复合结构与纯氧化铁气敏元件的响应恢复曲线对比。
具体实施方式
下面对本发明的实施例做详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
(1)先量取15 ml N-N二甲基甲酰胺于烧杯中,再加入一定量的六水合三氯化铁和对苯二甲酸,其中六水合三氯化铁的浓度为0.005 mol/L,对苯二甲酸的浓度为0.005 mol/L,控制六水合三氯化铁和对苯二甲酸的摩尔比为1:1;
(2)搅拌数分钟后,将所得溶液倒入40 ml反应釜中,在100 °C下保温2 h;获得的沉淀分别用N-N二甲基甲酰胺洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(3)秤取0.005 g 氧化铁粉末于烧杯中,加入15 ml的去离子水,氧化铁纺锤体的浓度为0.002 mol/L;之后量取1 ml的四氯合金酸(浓度为0.01 mol/L)和1 ml L-赖氨酸(浓度为0.01 mol/L)于烧杯中;其中,氧化铁与四氯合金酸的摩尔比为0.2:1,氧化铁与L-赖氨酸的摩尔比为0.2:1;超声数分钟后,用移液枪逐滴加入0.1 ml 的柠檬酸三钠(浓度为0.1mol/L),且氧化铁与柠檬酸三钠的摩尔比为0.02:1,之后在室温下搅拌半小时;
(4)将步骤(3)所得的溶液用去离子水洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(5)将步骤(4)得到的离心产物倒入表面皿,在烘箱内60 °C保温6 h;之后将样品烘干;将烘干后的样品放到马弗炉中在300 °C下煅烧30 min, 即可获得MOF诱导氧化铁纺锤体复合金纳米颗粒的纳米结构。
实施例2
(1)先量取15 ml N-N二甲基甲酰胺于烧杯中,再加入一定量的六水合三氯化铁和对苯二甲酸,其中六水合三氯化铁的浓度为0.01 mol/L,对苯二甲酸的浓度为0.01 mol/L, 控制六水合三氯化铁和对苯二甲酸的摩尔比为1:1;
(2)搅拌数分钟后,将所得溶液倒入40 ml反应釜中,在150 °C下保温3 h;获得的沉淀分别用N-N二甲基甲酰胺洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(3)秤取0.01 g 氧化铁粉末于烧杯中,加入15 ml的去离子水,氧化铁纺锤体的浓度为0.004 mol/L;之后量取1 ml的四氯合金酸(浓度为0.01 mol/L)和1 ml L-赖氨酸(浓度为0.01 mol/L)于烧杯中;其中,氧化铁与四氯合金酸的摩尔比为0.4:1,氧化铁与L-赖氨酸的摩尔比为0.4:1;超声数分钟后,用移液枪逐滴加入0.1 ml 的柠檬酸三钠(浓度为0.1 mol/L),且氧化铁与柠檬酸三钠的摩尔比为0.04:1,之后在室温下搅拌半小时;
(4)将步骤(3)所得的溶液用去离子水洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(5)将步骤(4)得到的离心产物倒入表面皿,在烘箱内60 °C保温6 h;之后将样品烘干;将烘干后的样品放到马弗炉中在300 °C下煅烧30 min, 即可获得MOF诱导氧化铁纺锤体复合金纳米颗粒的纳米结构。
实施例3
(1)先量取15 ml N-N二甲基甲酰胺于烧杯中,再加入一定量的六水合三氯化铁和对苯二甲酸,其中六水合三氯化铁的浓度为0.015 mol/L,对苯二甲酸的浓度为0.015 mol/L,控制六水合三氯化铁和对苯二甲酸的摩尔比为1:1;
(2)搅拌数分钟后,将所得溶液倒入40 ml反应釜中,在200 °C下保温4 h;获得的沉淀分别用N-N二甲基甲酰胺洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(3)秤取0.015 g 氧化铁粉末于烧杯中,加入15 ml的去离子水,氧化铁纺锤体的浓度为0.006 mol/L;之后量取1 ml的四氯合金酸(浓度为0.01 mol/L)和1 ml L-赖氨酸(浓度为0.01 mol/L)于烧杯中;其中,氧化铁与四氯合金酸的摩尔比为0.6:1,氧化铁与L-赖氨酸的摩尔比为0.6:1;超声数分钟后,用移液枪逐滴加入0.1 ml 的柠檬酸三钠(浓度为0.1mol/L),且氧化铁与柠檬酸三钠的摩尔比为0.06:1,之后在室温下搅拌半小时;
(4)将步骤(3)所得的溶液用去离子水洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(5)将步骤(4)得到的离心产物倒入表面皿,在烘箱内60 °C保温6 h;之后将样品烘干;将烘干后的样品放到马弗炉中在300 °C下煅烧30 min, 即可获得MOF诱导氧化铁纺锤体复合金纳米颗粒的纳米结构。

Claims (1)

1.一种MOF诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法,具体合成步骤如下:
(1)先量取15 ml N-N二甲基甲酰胺于烧杯中,再加入一定量的六水合三氯化铁和对苯二甲酸,其中六水合三氯化铁的浓度为0.005~0.015 mol/L,对苯二甲酸的浓度为0.005~0.015 mol/L, 控制六水合三氯化铁和对苯二甲酸的摩尔比为1:1;
(2)搅拌数分钟后,将所得溶液倒入40 ml反应釜中,在100~200 °C下保温2~4h;获得的沉淀分别用N-N二甲基甲酰胺洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(3)秤取0.005~0.015 g 氧化铁粉末于烧杯中,加入15 ml的去离子水,氧化铁纺锤体的浓度为0.002~0.006 mol/L;之后量取1 ml的四氯合金酸(浓度为0.01 mol/L)和1 ml L-赖氨酸(浓度为0.01 mol/L)于烧杯中;其中,氧化铁与四氯合金酸的摩尔比为(0.2~0.6):1,氧化铁与L-赖氨酸的摩尔比为(0.2~0.6):1;超声数分钟后,用移液枪逐滴加入0.1 ml的柠檬酸三钠(浓度为0.1 mol/L),且氧化铁与柠檬酸三钠的摩尔比为(0.02~0.06):1,之后在室温下搅拌半小时;
(4)将步骤(3)所得的溶液用去离子水洗涤三次,无水乙醇洗涤两次(该过程中适当使用超声清洗器进行分散,减少颗粒的团聚现象);
(5)将步骤(4)得到的离心产物倒入表面皿,在烘箱内60 °C保温6 h;之后将样品烘干;将烘干后的样品放到马弗炉中在300 °C下煅烧30 min, 即可获得MOF诱导氧化铁纺锤体复合金纳米颗粒的纳米结构。
CN201810861983.6A 2018-08-01 2018-08-01 一种mof诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法 Pending CN109115952A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810861983.6A CN109115952A (zh) 2018-08-01 2018-08-01 一种mof诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810861983.6A CN109115952A (zh) 2018-08-01 2018-08-01 一种mof诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法

Publications (1)

Publication Number Publication Date
CN109115952A true CN109115952A (zh) 2019-01-01

Family

ID=64863795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810861983.6A Pending CN109115952A (zh) 2018-08-01 2018-08-01 一种mof诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法

Country Status (1)

Country Link
CN (1) CN109115952A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161561A (zh) * 2021-04-26 2021-07-23 昆明理工大学 一种修饰有MOFs衍生Fe2O3的碳布及其制备方法和应用
CN113451570A (zh) * 2021-06-28 2021-09-28 东北大学 一种mof衍生核壳结构锂离子电池负极材料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596656A (zh) * 2016-12-15 2017-04-26 福州大学 一种基于mof模板法合成的二氧化钛负载三氧化二铁纳米异质结构的气敏元件
CN106770496A (zh) * 2017-01-04 2017-05-31 福州大学 一种锌掺杂的三氧化二铁复合结构气敏元件的制备方法
CN106986390A (zh) * 2017-04-07 2017-07-28 三峡大学 一种检测酒精的气敏材料及其制备方法
CN107876064A (zh) * 2017-07-13 2018-04-06 济南大学 一种Au/rGO/Fe2O3三元复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596656A (zh) * 2016-12-15 2017-04-26 福州大学 一种基于mof模板法合成的二氧化钛负载三氧化二铁纳米异质结构的气敏元件
CN106770496A (zh) * 2017-01-04 2017-05-31 福州大学 一种锌掺杂的三氧化二铁复合结构气敏元件的制备方法
CN106986390A (zh) * 2017-04-07 2017-07-28 三峡大学 一种检测酒精的气敏材料及其制备方法
CN107876064A (zh) * 2017-07-13 2018-04-06 济南大学 一种Au/rGO/Fe2O3三元复合材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161561A (zh) * 2021-04-26 2021-07-23 昆明理工大学 一种修饰有MOFs衍生Fe2O3的碳布及其制备方法和应用
CN113451570A (zh) * 2021-06-28 2021-09-28 东北大学 一种mof衍生核壳结构锂离子电池负极材料及制备方法

Similar Documents

Publication Publication Date Title
Han et al. Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination
Liu et al. Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit
Ma et al. Enhanced formaldehyde sensing performance at ppb level with Pt-doped nanosheet-assembled In2O3 hollow microspheres
Xu et al. Multi-metal functionalized tungsten oxide nanowires enabling ultra-sensitive detection of triethylamine
Cai et al. Synthesis of tin dioxide (SnO2) hollow nanospheres and its ethanol-sensing performance augmented by gold nanoparticle decoration
Zhou et al. Highly sensitive C2H2 gas sensor based on Ag modified ZnO nanorods
Li et al. Design and application of highly responsive and selective rGO-SnO2 nanocomposites for NO2 monitoring
Liu et al. Mesoporous Au@ ZnO flower-like nanostructure for enhanced formaldehyde sensing performance
Yuan et al. Zeolitic imidazolate framework-derived n-ZnO/p-Co3O4 heterojunction by ion-etching method for superior CO toxic gas sensor
Yin et al. Ag nanoparticles-modified Fe2O3@ MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature
Zhang et al. Interfacial energy barrier tuning of hierarchical Bi2O3/WO3 heterojunctions for advanced triethylamine sensor
Tang et al. Enhanced ppb-level formaldehyde sensing performance over Pt deposited SnO2 nanospheres
Xu et al. Oxygen vacancy engineering on cerium oxide nanowires for room-temperature linalool detection in rice aging
CN105036068B (zh) 一种适于低温酒精传感器的复合材料及其应用
Okechukwu et al. Concomitant in situ FTIR and impedance measurements to address the 2-methylcyclopentanone vapor-sensing mechanism in MnO2–polymer nanocomposites
CN109052496A (zh) 一种RuO2-In2O3纳米复合材料的制备方法
Li et al. NH3 sensing performance of Pt-doped WO3· 0.33 H2O microshuttles induced from scheelite leaching solution
CN109115952A (zh) 一种mof诱导氧化铁纺锤体复合金纳米颗粒气敏材料的制备方法
CN108802015B (zh) 基于肽传感器的玉米赤霉烯酮电化学发光传感器的制备
Morsy et al. Low cost alcoholic breath sensor based on SnO 2 Modified with CNTs and graphene
An et al. Design of Au@ Ag/BiOCl–OV photocatalyst and its application in selective alcohol oxidation driven by plasmonic carriers using O 2 as the oxidant
Qin et al. A ZnO/ZnFe 2 O 4 n–n heterojunction and Au loading synergistically improve the sensing performance of acetone
Si et al. One-pot hydrothermal synthesis of nano-sheet assembled NiO/ZnO microspheres for efficient sulfur dioxide detection
Gayathri et al. Enhanced ammonia gas sensing by cost-effective SnO2 gas sensor: Influence of effective Mo doping
Deng Sensing Mechanism and Evaluation Criteria of Semiconducting Metal Oxides Gas Sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190101