CN109111341B - 焦炉煤气与转炉和/或高炉煤气合成乙二醇联产lng的方法 - Google Patents

焦炉煤气与转炉和/或高炉煤气合成乙二醇联产lng的方法 Download PDF

Info

Publication number
CN109111341B
CN109111341B CN201810826909.0A CN201810826909A CN109111341B CN 109111341 B CN109111341 B CN 109111341B CN 201810826909 A CN201810826909 A CN 201810826909A CN 109111341 B CN109111341 B CN 109111341B
Authority
CN
China
Prior art keywords
gas
converter
blast furnace
coke oven
furnace gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810826909.0A
Other languages
English (en)
Other versions
CN109111341A (zh
Inventor
杨勇
戴乐亭
汪武平
侯俊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Wex Chemical Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810826909.0A priority Critical patent/CN109111341B/zh
Publication of CN109111341A publication Critical patent/CN109111341A/zh
Application granted granted Critical
Publication of CN109111341B publication Critical patent/CN109111341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Industrial Gases (AREA)

Abstract

本发明涉及一种利用焦炉煤气和转炉煤气、高炉煤气合成乙二醇联产LNG的方法,属于化工技术领域,采用的技术方案为首先对焦炉煤气进行进行除尘和除焦油处理,再进行压缩处理,然后再进行粗脱硫;将脱硫处理后的焦炉煤气行除杂;将除杂后的气体压缩、精脱硫和除O2;然后气体通过胺法对CO2气体进行脱除;最后经深冷分离出产品LNG,同时分离出H2和富CO,然后对H2进行提纯;其次对转炉、高炉煤气进行除尘和脱焦油处理;在进行压缩、除杂,将除杂后的气体进行精脱硫和除O2,然后对气体进行CO2脱除处理;并将净化气与富CO气汇合后提纯CO气,最后将提纯的CO通过酯化‑羰基化循环合成产出DMO,DMO与提纯的氢气生产出乙二醇;本发明首次应用于合成乙二醇技术。

Description

焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法
技术领域
本发明涉及气体净化领域,具体涉及一种利用焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法及装置。
背景技术
焦炉煤气又称焦炉气,是指炼焦用煤在炼焦炉中经高温干馏后,在产出焦炭和焦油产品的同时所产生的一种可燃性气体,是炼焦工业的副产品。焦炉煤气的热值较高,通常用作高温工业炉的燃料或者城市煤气。
随着环保要求逐渐提高,新的焦化行业准入标准已明确规定焦炉煤气的利用率要超过98%,同时焦化行业市场低迷,产能过剩严重,人们开始意识到焦炉煤气的巨大利用价值,因此开发出了许多焦炉煤气利用技术,如焦炉煤气制液化天然气,焦炉煤气制甲醇等。
然而,焦炉煤气的主要成分是氢气和甲烷,还有少量一氧化碳、二氧化碳、氮气等组分,具有“富氢少碳”的特点。另外,转炉煤气和高炉煤气存在富碳少氢的特点,目前工业中仅采用单一气体生产某种产品,这样就会导致气体中部分有效组分不能充分利用,调节性较差,含有部分有效组分的尾气需另找出路或者只能用作燃料,造成能源浪费和环境污染。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种利用焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法。
本发明的技术解决方案是:一种焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法,包括如下步骤:
S0)、焦炉煤气与转炉和/或高炉煤气初净化
焦炉煤气初净化包括如下步骤:
S01)、除尘脱焦油:对焦炉煤气除尘和脱焦油,使焦炉煤气中的灰尘和焦油总量不高于3mg/Nm3
S02)、压缩:压缩经过步骤S01的焦炉煤气至0.58-0.62Mpa;
S03)、粗脱硫:对经过步骤S02的焦炉煤气粗脱硫,使焦炉煤气中的H2S含量不高于1mg/Nm3
S04)、除杂:对经过步骤S03的焦炉煤气除杂,使焦炉煤气中的杂质含量不高于0.1mg/Nm3
S05)、二次压缩:压缩经过步骤S04的焦炉煤气至4-4.2Mpa;
S06)、除氧精脱硫:对经过步骤S05的焦炉煤气除氧精脱硫,使焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧含量不高于1mg/Nm3
转炉和/或高炉煤气初净化包括如下步骤:
S01)、除尘脱焦油:对转炉和/或高炉煤气除尘和脱焦油,使转炉和/或高炉煤气中的灰尘和焦油总量不高于3mg/Nm3
S02)、压缩:压缩经过步骤S01的转炉和/或高炉煤气至0.95-1Mpa;
S03)、除杂:将步骤S02的转炉和/或高炉煤气除杂,使转炉和/或高炉煤气中的杂质含量不高于1mg/Nm3
S04)、除氧精脱硫:对经过步骤S03的转炉和/或高炉煤气除氧精脱硫,使焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧含量低于30mg/Nm3
S1)、转炉和/或高炉煤气的粗脱碳,转炉和/或高炉煤气的粗脱碳包括如下步骤:
采用变压吸附的方式对转炉和/或高炉煤气粗脱碳和去磷化氢;使经过变压吸附的转炉和/或高炉煤气的二氧化碳的体积分率为5.8-6.2%,磷化氢的含量为不超过磷化氢的含量为1-5PPM;
S2)、转炉和/或高炉煤气的脱碳,转炉和/或高炉煤气的脱碳包括如下步骤:
S21)、焦炉煤气与转炉和/或高炉煤气过滤、除杂,MDEA贫液加压
分别将焦炉煤气与转炉和/或高炉煤气过滤,除杂;同时,将MDEA溶液加压;
S22)、CO2分离
将经过步骤S21的焦炉煤气与转炉和/或高炉煤气分别与加压后的MDEA贫液逆向流动、传质换热,MDEA贫液吸收焦炉煤气与转炉和/或高炉煤气中的CO2形成MDEA富液;
S23)、焦炉煤气与转炉和/或高炉煤气净化
S231)、分别将步骤S22中分离CO2后的焦炉煤气与转炉和/或高炉煤气冷却;
S232)、分别将步骤S231中冷却的焦炉煤气与转炉和/或高炉煤气进行气液分离;
S233)、分别将步骤S232中气液分离后的焦炉煤气与转炉和/或高炉煤气过滤,分离掉机械杂质及游离液体,完成焦炉煤气与转炉和/或高炉煤气的脱碳;
S24)、MDEA贫液循环再生
S241)、分别将步骤S232中气液分离后的液体和步骤S233中分离出的机械杂质及游离液体混合,将步骤S22中的MDEA富液降压;
S242)、将步骤S241中的液体与机械杂质及游离液体混合物和降压后的MDEA富液闪蒸;
S243)、将闪蒸后的气体输送至放散系统放散,将闪蒸后的液体过滤脱除机械杂质后形成MDEA富液与后续工序形成的MDEA贫液换热升温;
S244)、将步骤S243中换热后的MDEA富液与气提蒸汽逆向流动、传质换热,通过气提蒸汽解析出MDEA富液中的酸性气体,完成MDEA富液的酸性气体的一次解析;
S245)、加热步骤S244完成酸性气体一次解析的MDEA富液,通过蒸汽解析出MDEA富液中的酸性气体,完成MDEA富液的酸性气体的二次解析,形成MDEA贫液;将完成气提的气提蒸汽冷却后进行气液分离,将气液分离后的气体排入大气,将气液分离后的液体升压后与步骤S241中的液体与机械杂质及游离液体混合物和降压后的MDEA富液一起闪蒸;
S246)、将步骤S245形成的MDEA贫液与步骤S243中的MDEA富液换热降温后冷却,形成步骤S21中的MDEA贫液。
S3)、合成乙二醇联产LNG
S31)、将经过步骤S2的焦炉煤气进行深冷分离出LNG,同时分离出纯度为95-97%,压力为3.3-3.5MPA的H2和分离出的纯度为60-70%,压力为0.3-0.4MPa的富CO;
S32)、将步骤S31分离出的H2提纯出纯度为99%的H2
S33)、将经过步骤S2的转炉和/或高炉煤气与步骤S31分离出的富CO混合后提纯出纯度为98%的CO;
S34)、将外界的氧气引入与步骤S33提纯出的CO合成DMO;
S35)、将步骤S32提纯出的H2与步骤S34合成的DMO合成乙二醇。
进一步的,步骤S34中的CO的含量与步骤S35中H2的含量比为1:2。
进一步的,步骤S1中,)采用变压吸附的方式对转炉和/或高炉煤气粗脱碳和去磷化氢;使经过变压吸附的转炉和/或高炉煤气的二氧化碳的体积分率为5.8-6.2%,磷化氢的含量为1-5PPM,具体包括如下步骤:转炉和/或高炉煤气经过气液分离脱除液体后进入吸附塔组,吸附塔组包括并联的8个吸附塔,吸附塔组吸附时,采用两塔吸附,五次均压的抽空工艺,各吸附塔依次经历吸附、一均降、二均降、三均降、四均降、五均降、逆放、抽空、五均升、四均升、三均升、二均升、一均升、终升步骤,从塔顶得到净化气,从塔底得到脱碳解析气。
进一步的,分别在闪蒸过程和气提蒸汽冷却后的气液分离过程中引入氮气进行氮封。
进一步的,对经过步骤S05的焦炉煤气除氧精脱硫,使焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧含量不高于1mg/Nm3,具体包括如下步骤:
S061)、换热升温:将压缩的焦炉煤气换热升温至180-300℃;
S062)、预加氢转化和一级加氢转化:将经过步骤S061的焦炉煤气依次进行预加氢转化和一级加氢转化,使经过步骤S061的焦炉煤气中的有机硫转化为硫化氢,氧加氢脱除,不饱和烃加氢饱和,同时去除杂质;
S063)、一级脱硫:将经过步骤S062的焦炉煤气进行一级脱硫,脱除无机硫和氯化氢;
S064)、二次换热升温:将经过S063的焦炉煤气换热升温至280-340℃;
S065)、二级加氢转化:将经过S064的焦炉煤气进行二次加氢反应,将经过S064的焦炉煤气中残余的有机硫转、不饱和烃和氧深度加氢转化;
S066)、二级精脱硫:将二级加氢转化后的焦炉煤气进行二级精脱硫。
进一步的,对经过步骤S03的转炉和/或高炉煤气除氧精脱硫,使焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧含量低于30mg/Nm3,具体包括如下步骤:
S041)、脱硫:将转炉和/或高炉煤气脱硫,脱除有机硫和无机硫;
S042)、混合:将经过步骤S041脱硫后的转炉和/或高炉煤气与氧气的体积分率为0.001-0.005%的脱氧煤气混合,控制混合后的混合煤气中,氧气的体积分率不大于0.7%;
S043)、脱氧:将经过步骤S2混合后的混合煤气脱氧,使脱氧后的脱氧煤气中,氧气的体积分率为0.001-0.005%;
S044)、掺混和精脱硫:将经过步骤S043脱氧后的脱氧煤气分流,一部分脱氧后的脱氧煤气与步骤S042中的经过步骤S041脱硫后的转炉和/或高炉煤气掺混,控制混合后的混合煤气中,氧气的体积分率不大于0.7%;剩余脱氧后的脱氧煤气进行精脱硫,形成净化气。
进一步的,步骤S0前,焦炉煤气流量为80000-85000Nm3/h,压力为0.004-0.006Mpa,温度为18-22℃;有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为60-65%,一氧化碳的体积分率为8-12%,氧的体积分率0.5-0.9%,二氧化碳的体积分率为2-4%,焦油和灰尘的含量为0.14-0.16g/Nm3,硫化氢的含量为50-150mg/Nm3,其他硫化物的含量为150-160mg/Nm3;转炉和/或高炉煤气的流量为28000-30000Nm3/h,压力为0.003-0.005Mpa,温度为18-22℃;有效成分中,一氧化碳的体积分率为40-60%,二氧化碳的体积分率为20-26%,氮气的体积分率为20-28%,氢气的体积分率为1-4%,氧气的体积分率为0.6-1%;磷化氢的含量为100-250mg/kg,焦油和灰尘的含量为0.01-0.02g/Nm3,硫化物的含量为16-18mg/Nm3
进一步的,步骤S1前,焦炉煤气的有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为55-60%,一氧化碳的体积分率为8-12%,氧的体积分率0.0005-0.0007%,二氧化碳的体积分率为2-4%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3;转炉和/或高炉煤气的流量为28000-30000Nm3/h,压力为0.8-0.85Mpa,温度为38-42℃;有效成分中,一氧化碳的体积分率为45-60%,二氧化碳的体积分率为20-26%,氮气的体积分率为20-28%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为100-250mg/kg,总硫含量不高于0.1mg/Nm3
进一步的,转炉和/或高炉煤气粗脱碳后,转炉和/或高炉煤气的有效成分中,一氧化碳的体积分率为55-65%,二氧化碳的体积分率为5.8-6.2%,氮气的体积分率为28-32%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为1-5PPM,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3
进一步的,步骤S233后,焦炉煤气的有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为57-62%,一氧化碳的体积分率为8-12%,氧的体积分率0.0005-0.0007%,二氧化碳的体积分率为0.0015-0.0019%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3;转炉和/或高炉煤气的有效成分中,一氧化碳的体积分率为60-70%,二氧化碳的体积分率为0.0015-0.0019%,氮气的体积分率为31-33%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为1-5PPM,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3
本发明与现有技术相比的优点在于:
1、本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法,充分利用炼焦和炼钢过程中产生的尾气,利用高炉煤气、转炉煤气多CO少H2和焦炉气多CH4、H2少CO的特点,合理净化及配比,使气体中有效气(CO、H2、CH4)100%利用,可以实现资源的高效充分利用,减少资源浪费和对环境的污染,为钢铁和化工单位联合产出优质高端精细化工产品开辟先河。
2、本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法中,焦炉煤气与转炉和/或高炉煤气的脱碳方法,相比于其他脱碳技术,提高了溶液费反应速率和吸收容量,降低了溶液的再生能耗,具有吸收速率快、吸收能力大和净化度高等优点,不仅可用于脱除二氧化碳,也可用于脱除硫化物,因此有着广泛的应用及发展前景,同时,对推动我国炼化工业的技术进步和经济发展具有十分重要的意义。
3、本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法中,创造性的通过变压吸附粗脱碳和MDEA溶液精脱碳两步工序完成转炉和/或高炉煤气的脱碳,实现了转炉和/或高炉煤气脱碳的突破,对推动我国炼钢工业的技术进步和经济发展具有十分重要的意义。
4、本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法中,通过变压吸附粗脱碳将转炉和/或高炉煤气中二氧化碳的含量将至5.8-6.2%,尤其6%,如果粗脱碳后的转炉和/或高炉煤气中二氧化碳的含量超过上述范围,则将大幅增加后续使用MDEA溶液对转炉和/或高炉煤气脱碳的负荷,使得脱碳成本大幅提高,无法实现产业化,如果粗脱碳后的转炉和/或高炉煤气中二氧化碳的含量低于上述范围,则无法实现MDEA溶液的有效循环,导致后续使用MDEA溶液对转炉和/或高炉煤气脱碳无法启动或者低效率运行。
5、本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法中,焦炉煤气除氧精脱硫的方法,采用两级焦炉煤气加氢除氧精脱硫工艺,其基本原理是根据化学反应热力学和动力学原理,利用一级加氢除氧脱硫工段将焦炉煤气中的大部分有机硫(例如COS、CS2、CH3SSCH3、甲硫醇等)转化成H2S,将大部分氧加氢脱除,将大部分不饱和烃加氢饱和,同时将其它杂质(砷、焦油、粉尘、苯、萘、氨、氢氰酸、硫化氢等)进行处理;经过处理的焦炉煤气再进入二级加氢除氧精脱硫工段,将剩余的有机硫、不饱和烃、微量氧等杂质进行二次深度加氢转化及处理,实现焦炉煤气深度净化。本发明的焦炉煤气除氧精脱硫的方法具有工艺流程简单、操作条件温和、运行可靠性和安全性好、负荷调节方便、自动化程度高等优点。与其他深度净化技术相比,在工艺、操作、维护、经济性、负荷调节等各方面存在着明显的优势。
6、本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法中,转炉和/或高炉煤气的除氧精脱硫,工艺简单,操作方便,采用将氧气含量较高的煤气与氧气含量低的合格煤气进行混合,然后将混合后的煤气通入脱氧反应器进行脱氧处理,得到合格的再生气,同时将一部分煤气经循环压缩机进行循环,用于氧气含量较高的煤气进行混合,以制得混合气,整个工艺简单,能耗小,能够实时在线连续对煤气进行脱氧处理。
附图说明
图1为本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法的流程图。
图2为实现本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG方法的装置示意图。
图3为本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG方法中转炉和/或高炉煤气粗脱碳装置的示意图。
图4为本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG方法中焦炉煤气除氧精脱硫方法的流程图。
图5为实现本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG方法中焦炉煤气除氧精脱硫方法的焦炉煤气除氧精脱硫装置的示意图。
图6为图5中焦炉煤气除氧精脱硫装置中预加氢反应器Ⅰ的结构示意图。
图7为图5中焦炉煤气除氧精脱硫装置中一级脱硫反应器Ⅰ的结构示意图。
图8为本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG方法中炉和/或高炉煤气除氧精脱硫方法的流程图。
图9为实现本发明的焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG方法中转炉和/或高炉煤气除氧精脱硫方法的转炉和/或高炉煤气除氧精脱硫装置的示意图。
图10为图9中转炉和/或高炉煤气除氧精脱硫装置中脱氧反应器的结构示意图。
具体实施方式
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1-10所示,一种焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法,所述焦炉煤气流量为80000-85000Nm3/h,压力为0.004-0.006Mpa,温度为18-22℃;有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为60-65%,一氧化碳的体积分率为8-12%,氧的体积分率0.5-0.9%,二氧化碳的体积分率为2-4%,焦油和灰尘的含量为0.14-0.16g/Nm3,硫化氢的含量为50-150mg/Nm3,其他硫化物的含量为150-160mg/Nm3。转炉和/或高炉煤气的流量为28000-30000Nm3/h,压力为0.003-0.005Mpa,温度为18-22℃;有效成分中,一氧化碳的体积分率为40-60%,二氧化碳的体积分率为20-26%,氮气的体积分率为20-28%,氢气的体积分率为1-4%,氧气的体积分率为0.6-1%;磷化氢的含量为100-250mg/kg,焦油和灰尘的含量为0.01-0.02g/Nm3,硫化物的含量为16-18mg/Nm3
包括如下步骤:
S0)、焦炉煤气与转炉和/或高炉煤气初净化
使用焦炉煤气初净化装置对焦炉煤气经过焦炉煤气初净化,所述焦炉煤气初净化装置包括依次连接的除尘脱焦油装置,压缩机,脱硫装置,TSA吸附装置和压缩机;优选的,所述除尘脱焦油装置为电捕焦油器,除尘脱焦油装置和脱硫装置之间的压缩机为螺杆压缩机,脱硫装置为以氧化铁为脱硫剂的脱硫装置,TSA吸附装置和除氧精脱硫装置之间的压缩机为离心压气机。
焦炉煤气初净化包括如下步骤:
S01)、除尘脱焦油:使用除尘脱焦油装置,优选电捕焦油器对所述焦炉煤气除尘和脱焦油,使所述焦炉煤气中的灰尘和焦油总量不高于3mg/Nm3
S02)、压缩:使用压缩机,优选螺杆压缩机压缩经过步骤S01的焦炉煤气至0.58-0.62Mpa,因为经过步骤S01的焦炉煤气内仍有焦油,采用其他类型的压缩机,焦炉煤气中的焦油会造成压缩机的损坏,而使用螺杆压缩机可以避免上述情况的发生。
S03)、粗脱硫:使用脱硫装置,优选以氧化铁为脱硫剂的脱硫装置对经过步骤S02的焦炉煤气粗脱硫,使焦炉煤气中的H2S含量不高于1mg/Nm3
S04)、除杂:使用TSA吸附装置对经过步骤S03的焦炉煤气除杂,使焦炉煤气中的杂质含量不高于0.1mg/Nm3;所述杂质为砷,焦油,灰尘,萘,苯,氢氰酸和氨中的一种或多种组合。
S05)、二次压缩:使用压缩机,优选离心压缩机压缩经过步骤S04的焦炉煤气至4-4.2Mpa,优选4Mpa以提高后续工序,譬如当后续工序包括除氧精脱硫,深冷分离时,提高焦炉煤气的压力,有助于提高除氧精脱硫和深冷分离的效果及效率。
S06)、除氧精脱硫:使用焦炉煤气除氧精脱硫装置对经过步骤S05的焦炉煤气除氧精脱硫,使焦炉煤气中的总硫含量不高于0.1PPM,氧含量不高于1PPM。
其中,所述焦炉煤气除氧精脱硫装置包括依次通过管路连通的第一换热器610,预加氢反应装置100,一级加氢反应器200,一级脱硫反应装置300,第二换热器620,二级加氢反应器400,二级精脱硫反应装置500,第三换热器630和支管路700;所述预加氢反应装置100包括并联的结构相同的预加氢反应器Ⅰ110和预加氢反应器Ⅱ120;所述一级脱硫反应装置300包括并联的结构相同的一级脱硫反应器Ⅰ310,一级脱硫反应器Ⅱ320和一级脱硫反应器Ⅲ330;所述二级精脱硫反应装置500包括并联的结构相同的二级脱硫反应器Ⅰ510和二级脱硫反应器Ⅱ520;所述预加氢反应器Ⅰ110,预加氢反应器Ⅱ120,一级加氢反应器200和二级加氢反应器400结构相同;所述一级脱硫反应器Ⅰ310,一级脱硫反应器Ⅱ320,一级脱硫反应器Ⅲ330,二级脱硫反应器Ⅰ510和二级脱硫反应器Ⅱ520结构相同,所述支管路700两端分别与连通一级加氢反应器200和一级脱硫反应装置300的管路以及连通二级加氢反应器400和二级精脱硫反应装置500的管路连通,通过设置支管路700,实现将一部分一级加氢转化后的焦炉煤气通过支管路700引入二级加氢前的焦炉煤气并混合,控制进行二级加氢前的焦炉煤气的总硫为10-15mg/m3,以维持二级加氢催化剂的动态硫平衡,保证其高效的加氢转化活性。
优选的,所述预加氢反应器Ⅰ110包括加氢反应器壳体101、加氢反应器气体入口102、加氢反应器气体出口103、加氢反应器下催化剂卸料口104-1、加氢反应器上催化剂卸料口104-2,加氢反应器下加氢剂层105-1,加氢反应器上加氢剂层105-2,加氢反应器第一栅板106-1,加氢反应器第二栅板106-2,加氢反应器第一丝网层107-1,加氢反应器第二丝网层107-2,加氢反应器第三丝网层107-3,加氢反应器第四丝网层107-4,加氢反应器第一瓷球过渡层108-1,加氢反应器第二瓷球过渡层108-2,加氢反应器第三瓷球过渡层108-3,加氢反应器第四瓷球过渡层108-4,加氢反应器第五瓷球过渡层108-5,加氢反应器第六瓷球过渡层108-6,加氢反应器第七瓷球过渡层108-7,加氢反应器第八瓷球过渡层108-8,加氢反应器下人孔109-1和加氢反应器上人孔109-2。所述加氢反应器壳体101包括依次固定连接的上封头,圆柱形主体和下封头;所述加氢反应器气体入口102设置在所述下封头外表面并与所述下封头的内腔连通,所述加氢反应器气体出口103设置在所述上封头外表面并与所述上封头的内腔连通,在所述圆柱形主体内,自下而上,依次固定连接有加氢反应器第一栅板106-1,加氢反应器第一丝网层107-1,加氢反应器第二丝网层107-2,加氢反应器第二栅板106-2,加氢反应器第三丝网层107-3和加氢反应器第四丝网层107-4;所述加氢反应器第一瓷球过渡层108-1和加氢反应器第二瓷球过渡层108-2自下而上依次设置,所述加氢反应器第一瓷球过渡层108-1设置在所述加氢反应器第一丝网层107-1上,所述加氢反应器下加氢剂层105-1设置在加氢反应器第二瓷球过渡层108-2和加氢反应器第二丝网层107-2之间;所述加氢反应器第三瓷球过渡层108-3和加氢反应器第四瓷球过渡层108-4自下而上依次设置,所述加氢反应器第三瓷球过渡层108-3设置在所述加氢反应器第二丝网层107-2上;所述加氢反应器第五瓷球过渡层108-5和加氢反应器第六瓷球过渡层108-6自下而上依次设置,所述加氢反应器第五瓷球过渡层108-5设置在所述加氢反应器第三丝网层107-3上,所述加氢反应器上加氢剂层105-2设置在加氢反应器第六瓷球过渡层108-6和加氢反应器第四丝网层107-4之间;所述加氢反应器第七瓷球过渡层108-7和加氢反应器第八瓷球过渡层108-8自下而上依次设置,所述加氢反应器第七瓷球过渡层108-7设置在所述加氢反应器第四丝网层107-4上;所述加氢反应器下催化剂卸料口104-1与所述圆柱形主体外表面固定连接且与所述加氢反应器下加氢剂层105-1连通;所述加氢反应器上催化剂卸料口104-2与所述圆柱形主体外表面固定连接且与所述加氢反应器上加氢剂层105-2连通;加氢剂分别通过加氢反应器下催化剂卸料口104-1和加氢反应器上催化剂卸料口104-2装卸;所述加氢反应器下人孔109-1与所述圆柱形主体外表面固定连接且与圆柱形主体内加氢反应器第四瓷球过渡层108-4和加氢反应器第二栅板106-2之间的空间连通;所述加氢反应器上人孔109-2与所述圆柱形主体外表面固定连接且与圆柱形主体内加氢反应器第八瓷球过渡层108-8和上封头之间的空间连通,瓷球分别通过加氢反应器下人孔109-1和加氢反应器上人孔109-2装卸。当一种加氢剂床层过高时会造成反应器内气体分布不均,而分为多个床层后,通过栅板和丝网的调节,可进一步使气体均匀分布,从而提高反应器加氢剂的利用率,延长加氢剂的使用周期。因此,本申请的加氢反应器加氢剂层可以设置为多层,在此,优选两层。
优选的,所述加氢反应器第一丝网层107-1,加氢反应器第二丝网层107-2,加氢反应器第三丝网层107-3,加氢反应器第四丝网层107-4均为两层丝网,所述两层丝网一方面起到支撑加氢反应器瓷球过渡层的作用,另一方面实现气体均布。
所述加氢反应器的工作原理为气体从反应器底部的气体入口102进入,依次通过加氢反应器第一栅板106-1,加氢反应器第一丝网层107-1,第一瓷球过渡层108-1和加氢反应器第二瓷球过渡层108-2后均匀进入加氢反应器下加氢剂层105-1,在加氢反应器下加氢剂层105-1,气体与加氢剂发生物理化学反应后,依次经过加氢反应器第二丝网层107-2,加氢反应器第三瓷球过渡层108-3,加氢反应器第四瓷球过渡层108-4,加氢反应器第二栅板106-2,加氢反应器第三丝网层107-3,加氢反应器第五瓷球过渡层108-5和加氢反应器第六瓷球过渡层108-6更加均匀的进入加氢反应器上加氢剂层105-2与加氢剂发生物理化学反应,反应后的气体经过加氢反应器第四丝网层107-4,加氢反应器第七瓷球过渡层108-7和加氢反应器第八瓷球过渡层108-8由加氢反应器气体出口103排出。
优选的,所述一级脱硫反应器Ⅰ310包括脱硫反应器壳体301、脱硫反应器气体入口302、脱硫反应器气体出口303、脱硫反应器下催化剂卸料口304-1、脱硫反应器上催化剂卸料口304-2,脱硫反应器下脱硫剂层305-1,脱硫反应器上脱硫剂层305-2,脱硫反应器第一栅板306-1,脱硫反应器第二栅板306-2,脱硫反应器第一丝网层307-1,脱硫反应器第二丝网层307-2,脱硫反应器第三丝网层307-3,脱硫反应器第四丝网层307-4,脱硫反应器第一瓷球过渡层308-1,脱硫反应器第二瓷球过渡层308-2,脱硫反应器第三瓷球过渡层308-3,脱硫反应器第四瓷球过渡层308-4,脱硫反应器第五瓷球过渡层308-5,脱硫反应器第六瓷球过渡层308-6,脱硫反应器第七瓷球过渡层308-7,脱硫反应器第八瓷球过渡层308-8,脱硫反应器下人孔309-1和脱硫反应器上人孔309-2。所述脱硫反应器壳体301包括依次固定连接的上封头,圆柱形主体和下封头;所述脱硫反应器气体入口302设置在所述下封头外表面并与所述下封头的内腔连通,所述脱硫反应器气体出口303设置在所述上封头外表面并与所述上封头的内腔连通,在所述圆柱形主体内,自下而上,依次固定连接有脱硫反应器第一栅板306-1,脱硫反应器第一丝网层307-1,脱硫反应器第二丝网层307-2,脱硫反应器第二栅板306-2,脱硫反应器第三丝网层307-3和脱硫反应器第四丝网层307-4;所述脱硫反应器第一瓷球过渡层308-1和脱硫反应器第二瓷球过渡层308-2自下而上依次设置,所述脱硫反应器第一瓷球过渡层308-1设置在所述脱硫反应器第一丝网层307-1上,所述脱硫反应器下脱硫剂层305-1设置在脱硫反应器第二瓷球过渡层308-2和脱硫反应器第二丝网层307-2之间;所述脱硫反应器第三瓷球过渡层308-3和脱硫反应器第四瓷球过渡层308-4自下而上依次设置,所述脱硫反应器第三瓷球过渡层308-3设置在所述脱硫反应器第二丝网层307-2上;所述脱硫反应器第五瓷球过渡层308-5和脱硫反应器第六瓷球过渡层308-6自下而上依次设置,所述脱硫反应器第五瓷球过渡层308-5设置在所述脱硫反应器第三丝网层307-3上,所述脱硫反应器上脱硫剂层305-2设置在脱硫反应器第六瓷球过渡层308-6和脱硫反应器第四丝网层307-4之间;所述脱硫反应器第七瓷球过渡层308-7和脱硫反应器第八瓷球过渡层308-8自下而上依次设置,所述脱硫反应器第七瓷球过渡层308-7设置在所述脱硫反应器第四丝网层307-4上;所述脱硫反应器下催化剂卸料口304-1与所述圆柱形主体外表面固定连接且与所述脱硫反应器下脱硫剂层305-1连通;所述脱硫反应器上催化剂卸料口304-2与所述圆柱形主体外表面固定连接且与所述脱硫反应器上脱硫剂层305-2连通;脱硫剂分别通过脱硫反应器下催化剂卸料口304-1和脱硫反应器上催化剂卸料口304-2装卸;所述脱硫反应器下人孔309-1与所述圆柱形主体外表面固定连接且与圆柱形主体内脱硫反应器第四瓷球过渡层308-4和脱硫反应器第二栅板306-2之间的空间连通;所述脱硫反应器上人孔309-2与所述圆柱形主体外表面固定连接且与圆柱形主体内脱硫反应器第八瓷球过渡层308-8和上封头之间的空间连通,瓷球分别通过脱硫反应器下人孔309-1和脱硫反应器上人孔309-2装卸。当一种脱硫剂床层过高时会造成反应器内气体分布不均,而分为多个床层后,通过栅板和丝网的调节,可进一步使气体均匀分布,从而提高反应器脱硫剂的利用率,延长脱硫剂的使用周期。因此,本申请的脱硫反应器脱硫剂层可以设置为多层,在此,优选两层。
优选的,所述脱硫反应器第一丝网层307-1,脱硫反应器第二丝网层307-2,脱硫反应器第三丝网层307-3,脱硫反应器第四丝网层307-4均为两层丝网,所述两层丝网一方面起到支撑脱硫反应器瓷球过渡层的作用,另一方面实现气体均布。
所述脱硫反应器的工作原理为气体从反应器底部的气体入口302进入,依次通过脱硫反应器第一栅板306-1,脱硫反应器第一丝网层307-1,第一瓷球过渡层308-1和脱硫反应器第二瓷球过渡层308-2后均匀进入脱硫反应器下脱硫剂层305-1,在脱硫反应器下脱硫剂层305-1,气体与脱硫剂发生物理化学反应后,依次经过脱硫反应器第二丝网层307-2,脱硫反应器第三瓷球过渡层308-3,脱硫反应器第四瓷球过渡层308-4,脱硫反应器第二栅板306-2,脱硫反应器第三丝网层307-3,脱硫反应器第五瓷球过渡层308-5和脱硫反应器第六瓷球过渡层308-6更加均匀的进入脱硫反应器上脱硫剂层305-2与脱硫剂发生物理化学反应,反应后的气体经过脱硫反应器第四丝网层307-4,脱硫反应器第七瓷球过渡层308-7和脱硫反应器第八瓷球过渡层308-8由脱硫反应器气体出口303排出。
优选的,所述加氢反应器第二瓷球过渡层108-2,加氢反应器第三瓷球过渡层108-3,加氢反应器第六瓷球过渡层108-6,加氢反应器第七瓷球过渡层108-7,脱硫反应器第二瓷球过渡层308-2,脱硫反应器第三瓷球过渡层308-3,脱硫反应器第六瓷球过渡层308-6和脱硫反应器第七瓷球过渡层308-7的层高为100mm,采用的瓷球的直径为6mm,所述加氢反应器第一瓷球过渡层108-1,加氢反应器第四瓷球过渡层108-4,加氢反应器第五瓷球过渡层108-5,加氢反应器第八瓷球过渡层108-8,脱硫反应器第一瓷球过渡层308-1,脱硫反应器第四瓷球过渡层308-4,脱硫反应器第五瓷球过渡层308-5和脱硫反应器第八瓷球过渡层308-8的层高为100-200mm,采用的瓷球的直径为13mm或25mm;将每层接触加氢剂或催化剂的瓷球设置为小直径瓷球,有助于使气体进一步均布,进而提高反应效率和加氢剂或催化剂的利用率。
所述除氧精脱硫的方法包括如下步骤:
S1)、换热升温:使用第一换热器610将压缩的焦炉煤气换热升温至180-300℃;
S2)、预加氢转化和一级加氢转化:将换热升温后的焦炉煤气依次通过预加氢反应装置100和一级加氢反应器200进行预加氢转化和一级加氢转化,将换热升温后的焦炉煤气中的有机硫转化为硫化氢,将换热升温后的焦炉煤气中的氧加氢脱除,将换热升温后的焦炉煤气中的不饱和烃加氢饱和,去除换热升温后的焦炉煤气中的杂质;所述有机硫为COS、CS2、CH3SSCH3、甲硫醇中的一种或多种组合;所述杂质为砷、焦油、粉尘、笨、萘、氨、氢氰酸中的一种或多种组合。
S3)、一级脱硫:将经过步骤S2的焦炉煤气通过一级脱硫反应装置300进行一级脱硫,脱除无机硫和氯化氢。优选的,所述一级脱硫反应装置300为中温脱硫槽,脱除一级加氢后的焦炉煤气中的无机硫和氯化氢;所述无机硫为硫化氢。
S4)、二次换热升温:将经过S3的焦炉煤气通过第二换热器620换热升温至280-340℃。
S5)、二级加氢转化:将经过S4的焦炉煤气通过二级加氢反应器400进行二次加氢反应,将经过S4的焦炉煤气中残余的有机硫转、不饱和烃和氧深度加氢转化,即将二次换热升温后的焦炉煤气中的有机硫转化为硫化氢,将二次换热升温后的焦炉煤气中的氧加氢脱除,将二次换热升温后的焦炉煤气中的不饱和烃加氢饱和。
S6)、二级精脱硫:将二级加氢转化后的焦炉煤气通过二级精脱硫反应装置500进行二级精脱硫,控制气体中的总硫脱除至不高于0.1PPM,并经过第三换热器630升温至后续工序所需温度。
优选的,将一部分一级加氢转化后的焦炉煤气通过支管路700引入二级加氢前的焦炉煤气并混合,控制进行二级加氢前的焦炉煤气的总硫为10-15mg/m3,优选12mg/m3,以维持二级加氢催化剂的动态硫平衡,保证其高效的加氢转化活性。
使用转炉和/或高炉煤气初净化装置对转炉和/或高炉煤气初净化,所述转炉和/或高炉煤气初净化装置包括依次连接的除尘脱焦油装置,压缩机,TSA吸附装置和除氧精脱硫装置;优选的,所述除尘脱焦油装置为电捕焦油器,所述压缩机为往复式压缩机,所述TSA吸附装置为变温碳吸附装置。
转炉和/或高炉煤气初净化包括如下步骤:
S01)、除尘脱焦油:使用除尘脱焦油装置,优选电捕焦油器对所述转炉和/或高炉煤气除尘和脱焦油,使所述转炉和/或高炉煤气中的灰尘和焦油总量不高于3mg/Nm3
S02)、压缩:使用压缩机,优选往复压缩机压缩经过步骤S01的转炉和/或高炉煤气至0.95-1Mpa。
S03)、除杂:使用TSA吸附装置,优选变温碳吸附装置,对步骤S02的转炉和/或高炉煤气除杂,使所述转炉和/或高炉煤气中的杂质含量不高于0.1mg/Nm3。所述杂质为焦油和/或灰尘。
S04)、除氧精脱硫:使用除氧精脱硫装置对经过步骤S03的转炉和/或高炉煤气除氧精脱硫,使所述焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧气的体积分率为0.001-0.005%。
所述除氧精脱硫装置包括转炉煤气换热器301,开工加热器302,循环气水冷器303,净化气水冷器304,水解脱硫开工加热器305,水解脱硫塔,精脱硫塔,脱氧反应器350,转炉和/或高炉煤气循环压缩机360,循环气分液罐370,其中,所述水解脱硫塔包括结构相同的第一水解脱硫塔310和第二水解脱硫塔320,所述第一水解脱硫塔310和第二水解脱硫塔320采用可串可并设置,正常生产为串联流程,当更换催化剂时采用并联操作,所述精脱硫塔包括结构相同的第一精脱硫塔330和第一精脱硫塔340,所述第一精脱硫塔330和第一精脱硫塔340并联设置,一开一备,塔内装有精脱硫剂,脱除气体中残余的硫醇及二甲基二硫化物。
转炉和/或高炉煤气气柜依次与转炉煤气换热器301,水解脱硫塔,脱氧反应器350连通,所述脱氧反应器350包括壳体351,上封头352-1,下封头352-2,若干换热管353,分气筒354,人孔管口355,催化剂自卸口356,进气口357,出气口358和泄压阀359;所述壳体351与上封头352-1和下封头352-2连接构成受压外壳;所述若干换热管353设置于所述壳体351内并与所述分气筒354固定连接,所述分气筒354固定连接于所述下封头352-2内,所述进气口357,出气口358和催化剂自卸口356分别固定连接于所述下封头352-2外表面,所述进气口357与所述分气筒354入口连通,所述分气筒354出口与所述若干换热管353连通,所述出气口358和催化剂自卸口356与所述下封头352-2内部连通,所述人孔管口355和泄压阀359分别与所述上封头352-1外表面固定连接并与所述上封头352-1内部连通。除氧催化剂从脱氧反应器350顶部的上封头352-1的人孔管口355装入,装在若干换热管353之间并由脱氧反应器350底部的下封头352-2的催化剂自卸口356卸料,进一步优选的,所述催化剂自卸口356卸料为2个,设置在所述下封头352-2两侧。进一步优选的,所述脱氧反应器350的操作压力为0.95-1.05Mpa,优选1Mpa,操作温度为50-160℃,优选56℃,催化剂填装颗粒径为ф3-4mm,壳体351内径为3700mm,脱氧反应器350整体高度为8000mm。所述脱氧反应器350出口设置两条支路,一条支路与连通水解脱硫塔出口与脱氧反应器350入口的管路连通,在该支路上,从脱氧反应器350出口至连通水解脱硫塔出口与脱氧反应器350入口的管路方向上,依次设置有循环气水冷器303,循环气分液罐370和转炉和/或高炉煤气循环压缩机360;另一条支路依次与转炉煤气换热器301,净化气水冷器304和精脱硫塔的入口连通;连通所述水解脱硫塔的入口与转炉和/或高炉煤气气柜的管路上设置有开工支路,所述水解脱硫开工加热器305设置在所述开工支路上,连通所述水解脱硫塔出口与脱氧反应器350入口的管路上设置有水解脱硫开工支路,所述开工加热器302设置在所述水解脱硫开工支路上。
所述除氧精脱硫包括如下步骤:
S041)、脱硫:所述转炉和/或高炉煤气经过转炉煤气换热器301与脱氧后氧气的体积分率不大于0.7%的脱氧煤气换热升温至55-65℃后进入水解脱硫塔脱除有机硫和无机硫,其具体过程为转炉和/或高炉煤气经过水解脱硫塔的有机硫水解催化剂将转炉和/或高炉煤气中的COS水解转化为H2S,然后进入水解脱硫塔的精脱硫剂床层,脱除气体中的H2S及其他硫化物,其他硫化物包括二甲基硫,甲硫醇和噻吩中的一种或多种组合。在转炉和/或高炉煤气脱氧前进行脱硫处理,避免了转炉和/或高炉煤气中的硫化物与脱氧反应器中的除氧催化剂反应以致除氧催化剂失效。转炉和/或高炉煤气脱硫前,将转炉和/或高炉煤气换热升温,提高了转炉和/或高炉煤气的脱硫效果。
S042)、混合:将经过步骤S041脱硫后的转炉和/或高炉煤气与氧气的体积分率为0.001-0.005%的脱氧循环煤气混合,控制混合后的混合煤气中,氧气的体积分率不大于0.7%。
S043)、脱氧:将经过步骤S042混合后的混合煤气脱氧,使脱氧后的脱氧煤气的氧气的体积分率为0.001-0.005%。
脱氧过程具体为经过步骤S042混合后的混合煤气由脱氧反应器350底部下封头352-2的进气口357进入分气筒354后分配至若干换热管353,所述经过步骤S042混合后的混合煤气由下而上与换热管353之间的除氧催化剂换热,换热后的经过步骤S042混合后的混合煤气出换热管353后自上而下穿过换热管353之间的除氧催化剂进行除氧反应,除氧反应后,气体由出气口358排出。优选的,当所述脱氧反应器350超出安全值时,泄压阀359自动打开,脱氧反应器350内的气体由泄压阀359排出。所述脱氧反应器采用分气筒354和均布的若干换热管,保证经过步骤S042混合后的混合煤气脱氧和除氧催化剂分布均匀,提高了除氧效率的同时整个脱氧反应器内的温度均匀,通过设置催化剂自卸口,实现了除氧催化剂的自卸,减少了除氧催化剂卸料的人工劳动强度。
S044)、掺混和精脱硫:经过步骤S043脱氧后的脱氧煤气分流分为两步分,一部分脱氧后的脱氧煤气经过循环气水冷器303冷却降温至35-45℃后经过循环气分液罐370进行气液分离,气液分离后的气体经过转炉和/或高炉煤气循环压缩机增压至0.93-0.98Mpa后作为步骤S042中的脱氧循环煤气与经过步骤S041脱硫后的转炉和/或高炉煤气掺混,保证混合后的混合煤气中,氧气的体积分率不大于0.7%,气液分离后的液体回收;另一部分脱氧后的脱氧煤气作为步骤S041中的氧气的体积分率为0.001-0.005%的脱氧煤气经过转炉煤气换热器301与转炉和/或高炉煤气换热降温至130-150℃后经过净化气水冷器304冷却至35-45℃后进入精脱硫塔脱硫,脱除气体中残余的硫醇及二甲基二硫化物,形成净化气,所述净化气的总硫含量不高于0.1mg/Nm3
优选的,设置有循环风机,所述循环风机与所述转炉和/或高炉煤气循环压缩机360并联设置,控制混合后的混合煤气中,氧气的体积分率不大于0.7%,经过步骤S043的脱氧后的脱氧煤气温度不高于160℃。由于转炉煤气氧含量较高,且氧含量波动较大,通过设置循环风机,降低了入口氧含量,实现了脱氧反应器内的除氧催化剂在较低的温度下长期稳定运行。
优选的,转炉和/或高炉煤气除氧精脱硫开工启动时,在步骤S041前,加热所述转炉和/或高炉煤气至55-65℃,以提高转炉和/或高炉煤气的脱硫效果;在步骤S043前,加热混合后的混合煤气至55-65℃,以提高脱氧效果;正常生产时,停止加热所述转炉和/或高炉煤气和混合后的混合煤气。
优选的,炉和/或高炉煤气除氧精脱硫开工启动时,控制进入步骤S041的转炉和/或高炉煤气的质量流量不大于脱氧反应器承受的极限值,在此,本申请的转炉和/或高炉煤气的质量流量为56791-88422kg/h,以保证和/或高炉煤气除氧精脱硫开工启动时,控制进入步骤S041的转炉和/或高炉煤气的质量流量不大于脱氧反应器承受的极限值。
所述转炉和/或高炉煤气除氧精脱硫装置开工前,除氧催化剂正常使用前需要进行还原,具体过程如下:
A)、启动转炉和/或高炉煤气循环压缩机360进行氮气循环,循环流程为转炉和/或高炉煤气循环压缩机360→转炉煤气换热器301→水解脱硫开工加热器305→水解脱硫塔→开工加热器302→脱氧反应器350→循环气水冷器303→循环气分液罐370后返回转炉和/或高炉煤气循环压缩机360。
B)、使用开工加热器302将氮气加热到170-180℃,最终将除氧催化剂升温至170℃后恒温,再逐步补入转炉和/或高炉煤气。
优选的,在补入转炉和/或高炉煤气之前需要对水解脱硫开工加热器305通过蒸汽加热将水解脱硫塔温度提温至60℃,然后将温度提温至180℃,控制进入脱氧反应器350的CO含量,直至CO的体积分率到3-4%并且进出口CO含量未发生变化,还原结束。
C)还原好后将脱氧反应器温度降至80℃,调整原料气量,开始正常生产。
所述转炉和/或高炉煤气除氧精脱硫装置停工时,逐步减少并直至停止转炉和/或高炉煤气进入装置,启动循环风机,加大循环量,脱氧反应器350改为循环流程,循环流程为转炉和/或高炉煤气循环压缩机360→转炉煤气换热器301→水解脱硫开工加热器305→水解脱硫塔→开工加热器302→脱氧反应器350→循环气水冷器303→循环气分液罐370后返回转炉和/或高炉煤气循环压缩机360,维持系统压力,然后将除氧催化剂温度逐步降至常温,停止循环风机。
焦炉煤气与转炉和/或高炉煤气经过步骤S0净化后,焦炉煤气的流量为78000-80000Nm3/h,压力为3.5-4Mpa,温度为38-42℃;有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为55-60%,一氧化碳的体积分率为8-12%,氧的体积分率0.0005-0.0007%,二氧化碳的体积分率为2-4%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3;转炉和/或高炉煤气的流量为28000-30000Nm3/h,压力为0.8-0.85Mpa,温度为38-42℃;有效成分中,一氧化碳的体积分率为45-60%,二氧化碳的体积分率为20-26%,氮气的体积分率为20-28%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为100-250mg/kg,总硫含量不高于0.1mg/Nm3
S1)、使用变压吸附粗脱碳装置采用变压吸附的方式对转炉和/或高炉煤气的粗脱碳,使经过变压吸附的转炉和/或高炉煤气的二氧化碳的体积分率为5.8-6.2%,磷化氢的含量为1-5PPM。
所述变压吸附粗脱碳装置包括气液分离器11,吸附塔组,净化气缓冲罐13,2个并联的均压罐14,水环式真空泵15,煤气供给路,抽真空路,净化气缓冲路,均压路以及相应的阀组;所述吸附塔组包括8个并联的吸附塔12;煤气供给路和抽真空路的一端均与每个吸附塔12的底部连通,净化气缓冲路和均压路的一端均与每个吸附塔12的顶部连通;气液分离器11的气体出口与煤气供给路的另一端连通,液体出口与液体回收装置连通;水环式真空泵15与抽真空路的另一端连通;净化气缓冲罐13的入口与净化气缓冲路的另一端连通,出口与MDEA溶液吸附精脱碳装置连通;每个均压罐14与均压路的另一端连通。优选的,所述吸附塔12采用常规吸附剂与二氧化碳吸附剂混装的复合床吸附塔,在吸附塔下部装有脱除重烃类,磷化氢和大分子类杂质的专有吸附剂,在吸附塔上部装有二氧化碳吸附剂。进一步优选的,所述二氧化碳吸附剂为沸石型分子筛。通过复合床层的设置,保证了吸附塔上部的二氧化碳吸附剂的长期稳定运行。
所述转炉和/或高炉煤气粗脱碳和去磷化氢具体包括如下步骤:
S11)、所述转炉和/或高炉煤气经过气液分离器11完成气液分离,分离后的液体经液体回收装置回收,分离后的转炉和/或高炉煤气进入吸附塔组。
S12)、所述吸附塔组包括并联的8个吸附塔,采用两塔吸附的方式吸附,吸附时,经过步骤S11的转炉和/或高炉煤气从吸附塔12下部的入口进入吸附塔12,转炉和/或高炉煤气自下而上通过吸附床,杂质组份被吸附剂选择性吸附,在吸附期,转炉和/或高炉煤气中H2、N2、CO、CH4等弱吸附质组分首先自下而上通过吸附床,从吸附塔上部流出,脱碳后的净化气送至MDEA溶液吸附精脱碳装置,原料气中CO2,磷化氢及其它吸附性强于CO的杂质组份被吸附,当吸附塔内CO2浓度达到预定值,优选98%时,吸附塔之间自动切换,先前工作的吸附塔降压进入降压再生状态,再生好的吸附塔进入吸附状态。
所述吸附塔的再生采用五次均压的抽空工艺,具体包括如下步骤:
S121)、第一级压力均衡降(1D、简称一均降):吸附结束后,吸附塔停止进入转炉和/或高炉煤气,吸附塔与已完成二均升步骤的吸附塔以出口端相连进行第一次压力均衡。
S122)、第2级压力均衡降(2D、简称二均降):一均降完成后,吸附塔的出口端与均压罐14相连进行第二次压力均降。
S123)、第3级压力均衡降(3D、简称三均降):二均降完成后,吸附塔出口端与已完成均升步骤的吸附塔的进口端相连进行第三次压力均降。
S124)、第4级压力均衡降(4D、简称四均降):三均降完成后,吸附塔出口端与已完成均升步骤的吸附塔的进口端相连进行第四次压力均降。
S125)、第5级压力均衡降(5D、简称五均降):四均降完成后,吸附塔出口端与已完成均升步骤的吸附床的进口端相连进行第五次压力均降。
S126)、逆向放压(D、简称逆放):四均降结束后,吸附塔内吸附剂已被杂质饱和,通过逆向降压步骤将床内剩余气体从入口端顺向排出,吸附塔压力下降到接近大气压力,优选的,吸附塔压力下降到0.02MPa。
S127)、抽空(V):采用水环式真空泵15抽真空的解吸方式,继续对吸附塔的床层进行降压,使吸附剂吸附的杂质组份进一步解吸,吸附剂达到完全解吸再生的目的。
S128)、第五~一级压力均衡升(5~1R、简称五~一均升):与已完成充压的吸附塔以出口端相连进行第五~一次压力均衡,充压的同时,第一~五次回收吸附塔内床层死空间内有效气体CO组份,直至压力平衡。
S129)、最终升压(FR、简称终升):最终利用其它吸附塔吸附步骤产出的部分吸附废气将吸附塔充压到工作压力值,优选0.82MPa。
所述8个并联吸附塔的2塔吸附,5次均压,1次逆放,2次抽真空的流程如下表所示:
Figure BDA0001742703860000131
粗脱碳后,所述转炉和/或高炉煤气的流量为28000-30000Nm3/h,压力为0.75-0.85Mpa,温度为38-42℃;有效成分中,一氧化碳的体积分率为55-65%,二氧化碳的体积分率为5.8-6.2%,氮气的体积分率为28-32%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为1-5PPM,总硫含量不高于0.1mg/Nm3
S2)、所述使用焦炉煤气与转炉和/或高炉煤气的脱碳装置对所述焦炉煤气与转炉和/或高炉煤气脱碳,使脱碳后的焦炉煤气的流量为78000-80000Nm3/h,压力为3.5-4Mpa,温度为38-42℃;有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为57-62%,一氧化碳的体积分率为8-12%,氧的体积分率0.0005-0.0007%,二氧化碳的体积分率为0.0015-0.0019%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3;脱碳后的转炉和/或高炉煤气的流量为27000-28500Nm3/h,压力为0.7-0.8Mpa,温度为38-42℃;有效成分中,一氧化碳的体积分率为60-70%,二氧化碳的体积分率为0.0015-0.0019%,氮气的体积分率为31-33%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为1-5PPM,总硫含量不高于0.1mg/Nm3
所述焦炉煤气与转炉和/或高炉煤气的脱碳装置包括焦炉煤气过滤器101,焦炉煤气塔顶过滤器102,富液过滤器104,焦炉煤气吸收塔111,再生塔112,焦炉煤气冷却器121,贫富液换热器122,再生塔顶冷却器123,再沸器124,贫液冷却器125,焦炉煤气分离器131,闪蒸罐132,贫液缓冲罐133,再生塔顶气液分离器134,焦炉煤气贫液泵141,回收泵142,转炉和/或高炉煤气过滤器151,转炉和/或高炉煤气塔顶过滤器152,转炉和/或高炉煤气吸收塔161,转炉和/或高炉煤气冷却器171,转炉和/或高炉煤气分离器181和转炉和/或高炉煤气贫液泵191;所述贫液缓冲罐133设置有第一MDEA贫液出口和第二MDEA贫液出口;所述第一MDEA贫液出口依次与焦炉煤气贫液泵141和焦炉煤气吸收塔111的顶部入口连通;所述焦炉煤气过滤器101的出口与所述焦炉煤气吸收塔111的底部入口连通;所述焦炉煤气吸收塔111顶部的气体出口依次与焦炉煤气冷却器121和焦炉煤气分离器131的气体入口连通,所述焦炉煤气吸收塔111底部的液体出口与闪蒸罐132入口连通,所述焦炉煤气分离器131的气体出口与所述焦炉煤气塔顶过滤器102的入口连通,所述焦炉煤气塔顶过滤器102的气体出口与外界连通,所述焦炉煤气塔顶过滤器102杂质排出口与所述焦炉煤气分离器131的液体入口连通,所述焦炉煤气分离器131的液体出口与闪蒸罐132的入口连通;所述第二MDEA贫液出口依次与转炉和/或高炉煤气贫液泵191和转炉和/或高炉煤气吸收塔161的顶部入口连通;所述转炉和/或高炉煤气过滤器151的出口与所述转炉和/或高炉煤气吸收塔161的底部入口连通;所述转炉和/或高炉煤气吸收塔161顶部的气体出口依次与转炉和/或高炉煤气冷却器171和转炉和/或高炉煤气分离器181的气体入口连通,所述转炉和/或高炉煤气吸收塔161底部的液体出口与闪蒸罐132入口连通,所述转炉和/或高炉煤气分离器181的气体出口与所述转炉和/或高炉煤气塔顶过滤器152的入口连通,所述转炉和/或高炉煤气塔顶过滤器152的气体出口与外界连通,所述转炉和/或高炉煤气塔顶过滤器152杂质排出口与所述转炉和/或高炉煤气分离器181的液体入口连通,所述转炉和/或高炉煤气分离器181的液体出口与闪蒸罐132的入口连通;所述闪蒸罐132的顶部气体出口与外界连通,所述闪蒸罐132底部的液体出口依次与富液过滤器104,贫富液换热器122和再生塔112顶部的液体入口连通;所述再沸器124的蒸汽入口与外界蒸汽气源连通,所述再沸器124的蒸汽出口与所述再生塔112底部的蒸汽入口连通,所述再生塔112顶部的气体出口依次与再生塔顶冷却器123和再生塔顶气液分离器134入口连通,所述再生塔顶气液分离器134的气体出口与外界连通,所述再生塔顶气液分离器134的液体出口依次与回收泵142和闪蒸罐132的入口连通;所述再生塔112底部的液体出口与所述再沸器124的液体入口连通,所述再沸器124的溶液出口依次与贫富液换热器122,贫液冷却器125和贫液缓冲罐133的第一MDEA贫液入口连通。
优选的,连通焦炉煤气贫液泵141和焦炉煤气吸收塔111的顶部入口的焦炉煤气贫液供给路上并联设置有焦炉煤气贫液过滤供给路,所述焦炉煤气贫液过滤供给路上设置有焦炉煤气溶液过滤器103。
优选的,连通转炉和/或高炉煤气贫液泵191和转炉和/或高炉煤气吸收塔161的顶部入口的转炉和/或高炉煤气贫液供给路上并联设置有转炉和/或高炉煤气贫液过滤供给路,所述转炉和/或高炉煤气贫液过滤供给路上设置有转炉和/或高炉煤气溶液过滤器153。
优选的,所述焦炉煤气冷却器121,焦炉煤气分离器131和焦炉煤气塔顶过滤器102设置在所述焦炉煤气吸收塔111顶部;所述转炉和/或高炉煤气冷却器171,转炉和/或高炉煤气分离器181和转炉和/或高炉煤气塔顶过滤器152设置在所述转炉和/或高炉煤气吸收塔161顶部。
优选的,所述再生塔顶冷却器123和再生塔顶气液分离器134设置在所述再生塔112顶部。
优选的,由贫液缓冲罐133的第一MDEA贫液出口而出的MDEA贫液经过焦炉煤气贫液泵141升压后分成两路,一路经过焦炉煤气溶液过滤器103过滤杂质后与另一路汇合进入焦炉煤气吸收塔111;由贫液缓冲罐133的第二MDEA贫液出口而出的MDEA贫液经过转炉和/或高炉煤气贫液泵191升压后分成两路,一路经过转炉和/或高炉煤气溶液过滤器153过滤杂质后与另一路汇合进入转炉和/或高炉煤气吸收塔。通过设置MDEA贫液过滤路,提高了MDEA贫液的品质,同时实现了在线脱除MDEA贫液杂质,提高了效率。
优选的,为保证系统的水平衡及方便配制、回收溶液,所述装置设置了地下储槽和溶液储槽。在开车初期通过地下储槽与溶液储槽之间的循环完成溶液的配制,并将部分溶液存储在地下储槽和溶液储槽中备用;地下储槽在开车时回收脱碳系统的排尽液体并通过液下泵向系统补充溶液以保证系统的水平衡。为避免溶液氧化,引氮气进入地下储槽及溶液储槽形成氮封。进一步优选的,为防止溶液发泡及发泡后快速消泡,设置了消泡剂储罐,储存在其中的消泡剂通过静压差自流或通过压力驱动的方式可快速进入贫液或富液中,驱动压力由减压后的氮气提供。进一步优选的,再沸器所需的低压蒸汽由界外提供,从再沸器出来的蒸汽凝液进入低压蒸汽分离器后返回界外。
所述焦炉煤气与转炉和/或高炉煤气的脱碳方法包括如下步骤:
脱碳方法包括如下步骤:
S21)、焦炉煤气与转炉和/或高炉煤气过滤、除杂,MDEA贫液加压
初净化的焦炉煤气与转炉和/或高炉煤气分别经过焦炉煤气过滤器101和转炉和/或高炉煤气过滤器151脱除机械杂质及游离液体,由贫液缓冲罐133的第一MDEA贫液出口和第二MDEA贫液出口而出的MDEA贫液分别经过焦炉煤气贫液泵141和转炉和/或高炉煤气贫液泵191升压至4-5Mpa,优选4.5Mpa,所述MDEA贫液的温度为50℃。
S22)、CO2分离
经过步骤S21的焦炉煤气从焦炉煤气吸收塔111底部入口进入,加压后的MDEA贫液由焦炉煤气吸收塔111的顶部入口进入,焦炉煤气自下而上通过焦炉煤气吸收塔111与自上而下的加压后的MDEA贫液在焦炉煤气吸收塔111内填料表面逆向流动、传质换热,焦炉煤气中的CO2被加压后的MDEA贫液吸收进入液相,未被吸收的组分随焦炉煤气从焦炉煤气吸收塔111顶部的气体出口流出,吸收CO2的MDEA富液由焦炉煤气吸收塔111底部的液体出口流出。其中,未吸收CO2的活化MDEA溶液成为MDEA贫液,活化MDEA溶液吸收酸性气体后称为MDEA富液。
经过步骤S21的转炉和/或高炉煤气从转炉和/或高炉煤气吸收塔161底部入口进入,加压后的MDEA贫液由转炉和/或高炉煤气吸收塔161的顶部入口进入,转炉和/或高炉煤气自下而上通过转炉和/或高炉煤气吸收塔161与自上而下的加压后的MDEA贫液在转炉和/或高炉煤气吸收塔161内填料表面逆向流动、传质换热,转炉和/或高炉煤气中的CO2被加压后的MDEA贫液吸收进入液相,未被吸收的组分随转炉和/或高炉煤气从转炉和/或高炉煤气吸收塔161顶部的气体出口流出,吸收CO2的MDEA富液由转炉和/或高炉煤气吸收塔161底部的液体出口流出。
S23)、焦炉煤气与转炉和/或高炉煤气净化
S231)、经过步骤S22的煤气与转炉和/或高炉煤气分别经过焦炉煤气冷却器121和转炉和/或高炉煤气冷却器161冷却降温至40℃。
S232)、经过步骤S231的焦炉煤气与转炉和/或高炉煤气分别经过焦炉煤气分离器131和转炉和/或高炉煤气分离器181完成气液分离。
S233)、经过步骤S232的焦炉煤气与转炉和/或高炉煤气分别由焦炉煤气分离器131和转炉和/或高炉煤气分离器181顶部的气体出口流出并分别进入焦炉煤气吸收塔111顶部的焦炉煤气塔顶过滤器102和转炉和/或高炉煤气吸收塔顶部的转炉和/或高炉煤气塔顶过滤器152分离掉机械杂质及游离液体,完成焦炉煤气与转炉和/或高炉煤气的脱碳。脱碳后的焦炉煤气的流量为78000-80000Nm3/h,压力为3.5-4Mpa,温度为38-42℃;有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为57-62%,一氧化碳的体积分率为8-12%,氧的体积分率0.0005-0.0007%,二氧化碳的体积分率为0.0015-0.0019%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3。脱碳后的转炉和/或高炉煤气的流量为27000-28500Nm3/h,压力为0.7-0.8Mpa,温度为38-42℃;有效成分中,一氧化碳的体积分率为60-70%,二氧化碳的体积分率为0.0015-0.0019%,氮气的体积分率为31-33%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为1-5PPM,总硫含量不高于0.1mg/Nm3
S24)、MDEA贫液循环再生
S241)、步骤S232分离的液体以及步骤S233中分离出的机械杂质及游离液体混合,同时,步骤S22中的MDEA富液经过调压阀降压至0.5Mpa。
S242)、步骤S241中的液体和机械杂质及游离液体的液体混合物以及降压的MDEA富液均进入闪蒸罐132闪蒸。
S243)、在闪蒸罐132中因降压闪蒸出的气体从闪蒸罐132的顶部气体出口流出,经调节阀控制压力后去放散系统放散;优选的,为保证闪蒸罐132压力稳定及避免溶液氧化,引氮气进入闪蒸罐132以形成氮封。由闪蒸罐132底部的液体出口流出的液体经过富液过滤器104过滤脱除机械杂质后形成MDEA富液经过贫富液换热器122与MDEA贫液换升温至98℃后进入再生塔122顶部。
S244)、再生塔122采用正压气提的方式完成对活化MDEA溶液的再生,具体过程为MDEA富液自再生塔122顶部的液体入口进入,气提蒸汽自再生塔122底部的蒸汽入口进入,MDEA富液自上而下通过再生塔112,在再生塔112内填料表面与自下而上的气提蒸汽逆向流动、进行充分的传质传热,MDEA富液中的酸性气体被大量解析至气相并伴随气提蒸汽从再生塔112顶部的气体出口流出,解析后的MDEA溶液由再生塔112底部的液体出口流出,完成MDEA富液的酸性气体的一次解析。
S245)、经过步骤S244的MDEA溶液通过再沸器液体入口进入再沸器124加热,再沸器内的蒸汽解析出MDEA富液中的酸性气体,完成MDEA富液的酸性气体的二次解析,形成MDEA贫液;蒸汽从再沸器124顶部的蒸汽出口进入再生塔112作为气提蒸汽,从再生塔112顶部的气体出口流出的气体经过再生塔112顶部的再生塔顶冷却器123降温至40℃后进入再生塔112顶部的再生塔顶气液分离器134进行气液分离,分离的气体由再生塔顶气液分离器134顶部的气体出口流出就地放空,分离的液体由再生塔顶气液分离器134底部的液体出口流出经回收泵142升压至0.55Mpa后进入闪蒸罐132闪蒸。优选的,为保证再生塔112压力稳定及避免溶液氧化,引氮气进入再生塔顶气液分离器134形成氮封。
S246)、步骤S245形成的MDEA贫液先经过贫富液换热器122与富液换热降温后再经过贫液冷却器125降温至室温后进入贫液缓冲罐133。
S3)、合成乙二醇联产LNG
S31)、将经过步骤S2的焦炉煤气进行深冷分离出LNG后收集,同时分离出纯度为95-97%,压力为3.3-3.5MPA的H2和分离出的纯度为60-70%,压力为0.3-0.4MPa的富CO;所述深冷分离技术为现有技术。
S32)、将步骤S31分离出的H2提纯出纯度为99%的H2
S33)、将经过步骤S2的转炉和/或高炉煤气与步骤S31分离出的富CO混合后提纯出纯度为98%的CO;优选的,所述经过步骤S2的转炉和/或高炉煤气与步骤S31分离出的富CO混合前,对经过步骤S2的转炉和/或高炉煤气进行除磷化氢处理,避免经过步骤S2的转炉和/或高炉煤气中未除净的磷化氢影响乙二醇的合成反应,通过对经过步骤S2的转炉和/或高炉煤气进行除磷化氢处理,使气体内的磷化氢的含量不高于0.1PPM。
S34)、将外界的氧气引入与步骤S33提纯出的CO合成DMO。
S35)、将步骤S32提纯出的H2与步骤S34合成的DMO合成乙二醇。
优选的,步骤S34中的CO的含量与步骤S35中H2的含量比为1:2。
其中,合成DMO工艺可以为现有技术,但优选下述工艺:
草酸二甲酯(DMO)由一氧化碳(CO),甲醇(MeOH)和氧气(O2)合成,合成草酸二甲酯(DMO)的反应式如下:
2CO+1/2O2+2MeOH->DMO+H2O
Pd/Al2O3作催化剂,在固定床反应器中利用CO与亚硝酸甲酯(MN)催化反应合成草酸二甲酯(DMO),同时生成NO,MN再生反应中NO再转化成MN。在DMO合成体系中,新鲜CO和经压缩机加压的含MN的循环气混合,经预热器预热后进入到装有Pd/Al2O3球形催化剂的列管式反应器(DMO反应器)中。反应产物送入DMO脱除系统,对DMO、DMC及其它有机物采用甲醇进行冷却、洗涤。粗DMO送入DMO精馏系统,循环气进入MN再生系统,小部分循环气增压后进入硝酸还原塔系统。循环气与O2混合从MN再生塔底部进入,MeOH从再生塔的顶部进入,大部分循环气进入CO循环气压缩机进行压缩,少量气体作为驰放气回收MN后送入尾气处理系统。再生塔底部含硝酸的溶液进入硝酸还原塔系统。
HNO3与循环气中NO以及来自MN再生系统的MeOH反应生成MN。
HNO3+2NO+3MeOH→3MN+2H2O
开车时,MN再生系统和硝酸还原塔系统所需NO由亚硝酸钠和硝酸反应生成。硝酸还原塔釜液经冷却闪蒸后进入常压甲醇脱水塔,塔顶甲醇溶液送至MF分离塔进一步分离轻组分后送入回收甲醇储罐,塔釜经氢氧化钠溶液中和后送至高压甲醇脱水塔,高压甲醇脱水塔塔釜废水送入废水处理系统,塔顶甲醇和MF分离塔塔釜液一并送入回收甲醇储罐。来自DMO脱除系统的粗DMO(含甲醇、NO和MN等)经闪蒸后进入DMO精馏系统,闪蒸气送入尾气处理系统回收MN。粗DMO中的轻组分在脱轻塔中分离出来,和常压甲醇脱水塔塔顶甲醇溶液进入MF分离塔。塔底DMO进入DMC分离塔,塔顶粗DMC送至DMC回收工段,侧采DMO送至DMO储罐。
乙二醇合成工艺可以为现有技术,但优选下述工艺:
从H2/CO分离装置来的新鲜氢气与H2循环气压缩机出口的循环气混合后进入进出物料换热器的壳程,与出乙二醇合成塔的出口气体换热后进入到蒸汽加热器用中压饱和蒸汽加热后进入到DMO蒸发塔下部。草酸二甲酯装置来的DMO先进入DMO缓冲罐,后通过DMO进料泵加压后进入DMO蒸发塔上部,在DMO蒸发塔中氢气把DMO气化,温度下降20~35℃后进入蒸汽加热器(I)加热到210℃后进入合成塔,加热器采用饱和蒸汽加热。所有DMO管线都采用蒸汽伴热。乙二醇合成塔是一个“管壳式反应器”,壳层介质是水,加氢催化剂在换热管内。合成塔壳程里充满的水把加氢产生的热量快速的移走。通过调节水/汽混合物的压力,控制加氢反应器壳程的温度,以达到控制催化剂床层温度的目的。在乙二醇合成塔内高活性铜系催化剂的作用下,在210℃下草酸二甲酯加氢反应生成乙二醇。壳程汽水混合物进入汽包后,蒸汽从汽水混合物中分离,稳压后送至蒸汽管网。锅炉给水通过管网加入到汽包中,进而把汽包中的水压入乙二醇合成塔壳层,使水完成循环,使得加氢反应中放出的热量得到回收。加氢后的气体,经过进出物料换热器与原料氢气换热后进入到高压分离器I中进行气液分离,气相进入到合成水冷器冷却到40℃,随后进入到高压分离器II再次进行气液分离,绝大部分气体进入H2循环气压缩机提升压力,少量的气体作为驰放气送到燃料气管网。高压分离器I的液相经过减压阀减压后进入到低压闪蒸槽I中,随后通过自身的压力送往乙二醇精馏工段的甲醇回收塔。高压分离器II的液相经过减压阀减压后进入到低压闪蒸槽II中,随后通过自身的压力送往乙二醇精馏工段的甲醇回收塔。当粗产品需要送往乙二醇中间罐区时,低压闪蒸槽I的液相首先要经过粗乙二醇水冷器冷却至40℃后再送往乙二醇中间罐区。低压闪蒸槽的闪蒸气送入燃料气管网或火炬。
其中,脱碳装置的焦炉煤气脱碳气体出口依次与CO提纯装置,DMO合成装置以及乙二醇合成装置连接,脱碳装置的转炉和/或高炉煤气脱碳气体出口与深冷分离装置连接,深冷分离装置的CO出口与脱碳装置的焦炉煤气脱碳气体出口连通,深冷分离装置的H2出口依次与H2提纯装置和乙二醇合成装置连接。
优选的,所述焦炉煤气与转炉和/或高炉煤气的脱碳装置脱碳装置的转炉和/或高炉煤气脱碳气体出口和CO提纯装置之间设置有磷化氢吸收装置,对经过步骤脱碳的转炉和/或高炉煤气进行除磷化氢处理,避免经过脱碳的转炉和/或高炉煤气中未除净的磷化氢影响乙二醇的合成反应。
实施例1
一种焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法,
包括如下步骤:
S0)、焦炉煤气与转炉和/或高炉煤气的初净化
初净化前的焦炉煤气的流量为83052Nm3/h,压力为0.005Mpa,温度为20℃;有效成分中,甲烷的体积分率为20.8%,氢气的体积分率为60.31%,一氧化碳的体积分率为8.9%,氧的体积分率0.82%,二氧化碳的体积分率为2.58%,焦油和灰尘的含量为0.015g/Nm3,硫化氢的含量为50mg/Nm3,其他硫化物的含量为155.2mg/Nm3;初净化前的转炉和/或高炉煤气的流量为29000Nm3/h,压力为0.005Mpa,温度为20℃;有效成分中,一氧化碳的体积分率为48%,二氧化碳的体积分率为24.5%,氮气的体积分率为24.37%,氢气的体积分率为2%,氧气的体积分率为1%;磷化氢的含量为200mg/kg,焦油和灰尘的含量为0.015g/Nm3,硫化物的含量为17.7mg/Nm3
焦炉煤气出净化包括如下步骤:
S01)、除尘脱焦油:使用电捕焦油器对所述焦炉煤气除尘和脱焦油,使所述焦炉煤气中的灰尘和焦油总量不高于3mg/Nm3
S02)、压缩:使用螺杆压缩机压缩经过步骤S01的焦炉煤气至0.6Mpa。
S03)、粗脱硫:使用以氧化铁为脱硫剂的脱硫装置对经过步骤S02的焦炉煤气粗脱硫,使焦炉煤气中的H2S含量不高于1mg/Nm3
S04)、除杂:使用TSA吸附装置对经过步骤S03的焦炉煤气除杂,使焦炉煤气中的杂质含量不高于0.1mg/Nm3;所述杂质为砷,焦油,灰尘,萘,苯,氢氰酸和氨中的一种或多种组合。
S05)、二次压缩:使用离心压缩机压缩经过步骤S04的焦炉煤气至4Mpa。
S06)、除氧精脱硫
S061)、换热升温:使用第一换热器610将压缩的焦炉煤气换热升温至250℃;
S062)、预加氢转化和一级加氢转化:将换热升温后的焦炉煤气依次通过预加氢反应装置100和一级加氢反应器200进行预加氢转化和一级加氢转化,将换热升温后的焦炉煤气中的有机硫转化为硫化氢,将换热升温后的焦炉煤气中的氧加氢脱除,将换热升温后的焦炉煤气中的不饱和烃加氢饱和,去除换热升温后的焦炉煤气中的杂质;所述有机硫为COS、CS2、CH3SSCH3、甲硫醇中的一种或多种组合;所述杂质为砷、焦油、粉尘、笨、萘、氨、氢氰酸中的一种或多种组合。
S063)、一级脱硫:将经过步骤S062的焦炉煤气通过一级脱硫反应装置300进行一级脱硫,脱除无机硫和氯化氢。优选的,所述一级脱硫反应装置300为中温脱硫槽,脱除一级加氢后的焦炉煤气中的无机硫和氯化氢;所述无机硫为硫化氢。
S064)、二次换热升温:将经过S063的焦炉煤气通过第二换热器620换热升温至320℃。
S065)、二级加氢转化:将经过S064的焦炉煤气通过二级加氢反应器400进行二次加氢反应,将经过S064的焦炉煤气中残余的有机硫转、不饱和烃和氧深度加氢转化,即将二次换热升温后的焦炉煤气中的有机硫转化为硫化氢,将二次换热升温后的焦炉煤气中的氧加氢脱除,将二次换热升温后的焦炉煤气中的不饱和烃加氢饱和。
S066)、二级精脱硫:将二级加氢转化后的焦炉煤气通过二级精脱硫反应装置500进行二级精脱硫,控制气体中的总硫脱除至不高于0.1PPM,并经过第三换热器630升温至后续工序所需温度。
经过步骤S066后的焦炉煤气的流量为79161Nm3/h,压力为3.8Mpa,温度为40℃;有效成分中,甲烷的体积分率为21.31%,氢气的体积分率为58.46%,一氧化碳的体积分率为9.12%,氧的体积分率0.0006%,二氧化碳的体积分率为2.64%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3
转炉和/或高炉煤气初净化包括如下步骤:
S01)、除尘脱焦油:使用电捕焦油器对所述转炉和/或高炉煤气除尘和脱焦油,使所述转炉和/或高炉煤气中的灰尘和焦油总量不高于3mg/Nm3
S02)、压缩:使用往复压缩机压缩经过步骤S01的转炉和/或高炉煤气至1Mpa。
S03)、除杂:使用变温碳吸附装置,对步骤S02的转炉和/或高炉煤气除杂,使所述转炉和/或高炉煤气中的杂质含量不高于0.1mg/Nm3
S04)、除氧精脱硫:使用除氧精脱硫装置对经过步骤S03的转炉和/或高炉煤气除氧精脱硫,使所述焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧气的体积分率为0.003%。
所述除氧精脱硫包括如下步骤:
S041)、脱硫:所述转炉和/或高炉煤气经过转炉煤气换热器301与脱氧后氧气的体积分率不大于0.7%的脱氧煤气换热升温至60℃后进入水解脱硫塔脱除有机硫和无机硫。
S042)、混合:将经过步骤S041脱硫后的转炉和/或高炉煤气与氧气的体积分率为0.003%的脱氧循环煤气混合,控制混合后的混合煤气中,氧气的体积分率不大于0.7%。
S043)、脱氧:将经过步骤S042混合后的混合煤气脱氧,使脱氧后的脱氧煤气的氧气的体积分率为0.003%。
S044)、掺混和精脱硫
经过步骤S043脱氧后的脱氧煤气分流分为两步分,一部分脱氧后的脱氧煤气经过循环气水冷器303冷却降温至40℃后经过循环气分液罐370进行气液分离,气液分离后的气体经过转炉和/或高炉煤气循环压缩机增压至0.95Mpa后作为步骤S042中的脱氧循环煤气与经过步骤S041脱硫后的转炉和/或高炉煤气掺混,保证混合后的混合煤气中,氧气的体积分率不大于0.7%,气液分离后的液体回收;另一部分脱氧后的脱氧煤气作为步骤S041中的氧气的体积分率为0.003%的脱氧煤气经过转炉煤气换热器301与转炉和/或高炉煤气换热降温至140℃后经过净化气水冷器304冷却至40℃后进入精脱硫塔脱硫,脱除气体中残余的硫醇及二甲基二硫化物,形成净化气,所述净化气的总硫含量不高于0.1mg/Nm3
初净化后的转炉和/或高炉煤气的流量为29000Nm3/h,压力为0.82Mpa,温度为40℃;有效成分中,一氧化碳的体积分率为48.48%,二氧化碳的体积分率为24.75%,氮气的体积分率为24.62%,氢气的体积分率为2.02%,氧气的体积分率为0.003%;磷化氢的含量为200mg/kg,总硫含量不高于0.1mg/Nm3
S1)、转炉和/或高炉煤气的粗脱碳
使用变压吸附粗脱碳装置对所述转炉和/或高炉煤气粗脱碳和去磷化氢,使经过变压吸附的转炉和/或高炉煤气的二氧化碳的体积分率为6%,磷化氢的含量为3PPM。
所述转炉和/或高炉煤气粗脱碳具体包括如下步骤:
S11)、所述转炉和/或高炉煤气经过气液分离器11完成气液分离,分离后的液体经液体回收装置回收,分离后的转炉和/或高炉煤气进入吸附塔组。
S12)、所述吸附塔组包括并联的8个吸附塔,采用两塔吸附的方式吸附,吸附时,经过步骤S11的转炉和/或高炉煤气在0.82Mpa的压力下从吸附塔12下部的入口进入吸附塔12,转炉和/或高炉煤气自下而上通过吸附床,杂质组份被吸附剂选择性吸附,在吸附期,转炉和/或高炉煤气中H2、N2、CO、CH4等弱吸附质组分首先自下而上通过吸附床,从吸附塔上部流出,脱碳后的净化气送至MDEA溶液吸附精脱碳装置,原料气中CO2,磷化氢及其它吸附性强于CO的杂质组份在0.82Mpa的压力下被吸附,当吸附塔内CO2浓度达到98%时,吸附塔之间自动切换,先前工作的吸附塔降压进入降压再生状态,再生好的吸附塔进入吸附状态。
经过步骤S1后,所述转炉和/或高炉煤气的流量为18147Nm3/h,压力为0.8Mpa,温度为40℃;有效成分中,一氧化碳的体积分率为60.39%,二氧化碳的体积分率为6%,氮气的体积分率为30.97%,氢气的体积分率为2.55%,氧气的体积分率为0.0038%;磷化氢的含量为3PPM,总硫含量不高于0.1mg/Nm3
S2)、焦炉煤气与转炉和/或高炉煤气的脱碳
使用MDEA溶液吸附脱碳装置对经过初净化的焦炉煤气脱碳,同时对经过粗脱碳的转炉和/或高炉煤气脱碳,使焦炉煤气的二氧化碳的体积分率为0.0018%,转炉和/或高炉煤气的二氧化碳的体积分率为0.0017%。
所述焦炉煤气与转炉和/或高炉煤气的脱碳,具体包括如下步骤:
S21)、对转炉和/或高炉煤气过滤、除杂,MDEA贫液加压
经过初净化的焦炉煤气以及经过粗脱碳的转炉和/或高炉煤气分别经过焦炉煤气过滤器101和转炉和/或高炉煤气过滤器151脱除机械杂质及游离液体,由贫液缓冲罐133的第一MDEA贫液出口和第二MDEA贫液出口而出的MDEA贫液分别经过焦炉煤气贫液泵141和转炉和/或高炉煤气贫液泵191升压至4.5Mpa,所述MDEA贫液的温度为50℃。
S22)、CO2分离
经过步骤S1的焦炉煤气从焦炉煤气吸收塔111底部入口进入,加压后的MDEA贫液由焦炉煤气吸收塔111的顶部入口进入,焦炉煤气自下而上通过焦炉煤气吸收塔111与自上而下的加压后的MDEA贫液在焦炉煤气吸收塔111内填料表面逆向流动、传质换热,焦炉煤气中的CO2被加压后的MDEA贫液吸收进入液相,未被吸收的组分随焦炉煤气从焦炉煤气吸收塔111顶部的气体出口流出,吸收CO2的MDEA富液由焦炉煤气吸收塔111底部的液体出口流出。其中,未吸收CO2的活化MDEA溶液成为MDEA贫液,活化MDEA溶液吸收酸性气体后称为MDEA富液。
经过步骤S1的转炉和/或高炉煤气从转炉和/或高炉煤气吸收塔161底部入口进入,加压后的MDEA贫液由转炉和/或高炉煤气吸收塔161的顶部入口进入,转炉和/或高炉煤气自下而上通过转炉和/或高炉煤气吸收塔161与自上而下的加压后的MDEA贫液在转炉和/或高炉煤气吸收塔161内填料表面逆向流动、传质换热,转炉和/或高炉煤气中的CO2被加压后的MDEA贫液吸收进入液相,未被吸收的组分随转炉和/或高炉煤气从转炉和/或高炉煤气吸收塔161顶部的气体出口流出,吸收CO2的MDEA富液由转炉和/或高炉煤气吸收塔161底部的液体出口流出。
S23)、煤气净化
S231)、经过步骤S22的煤气与转炉和/或高炉煤气分别经过焦炉煤气冷却器121和转炉和/或高炉煤气冷却器161冷却降温至40℃。
S232)、经过步骤S231的焦炉煤气与转炉和/或高炉煤气分别经过焦炉煤气分离器131和转炉和/或高炉煤气分离器181完成气液分离。
S233)、经过步骤S232的焦炉煤气与转炉和/或高炉煤气分别由焦炉煤气分离器131和转炉和/或高炉煤气分离器181顶部的气体出口流出并分别进入焦炉煤气吸收塔111顶部的焦炉煤气塔顶过滤器102和转炉和/或高炉煤气吸收塔顶部的转炉和/或高炉煤气塔顶过滤器152分离掉机械杂质及游离液体,完成焦炉煤气与转炉和/或高炉煤气的脱碳。脱碳后的焦炉煤气的流量为79113Nm3/h,压力为3.75Mpa,温度为40℃;有效成分中,甲烷的体积分率为22.27%,氢气的体积分率为61.1%,一氧化碳的体积分率为9.53%,氧的体积分率0.0006%,二氧化碳的体积分率为0.0018%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3。脱碳后的转炉和/或高炉煤气的流量为28147Nm3/h,压力为0.75Mpa,温度为40℃;有效成分中,一氧化碳的体积分率为64.24%,二氧化碳的体积分率为0.0017%,氮气的体积分率为32.95%,氢气的体积分率为2.72%,氧气的体积分率为0.004%;磷化氢的含量不超过磷化氢的含量为3PPM,总硫含量不高于0.1mg/Nm3
S24)、MDEA贫液循环再生
S241)、步骤S232分离的液体以及步骤S233中分离出的机械杂质及游离液体混合,同时,步骤S22中的MDEA富液经过调压阀降压至0.5Mpa。
S242)、步骤S241中的液体和机械杂质及游离液体的液体混合物以及降压的MDEA富液均进入闪蒸罐132闪蒸。
S243)、在闪蒸罐132中因降压闪蒸出的气体从闪蒸罐132的顶部气体出口流出,经调节阀控制压力后去放散系统放散;优选的,为保证闪蒸罐132压力稳定及避免溶液氧化,引氮气进入闪蒸罐132以形成氮封。由闪蒸罐132底部的液体出口流出的液体经过富液过滤器104过滤脱除机械杂质后形成MDEA富液经过贫富液换热器122与MDEA贫液换升温至98℃后进入再生塔122顶部。
S244)、再生塔122采用正压气提的方式完成对活化MDEA溶液的再生,具体过程为MDEA富液自再生塔122顶部的液体入口进入,气提蒸汽自再生塔122底部的蒸汽入口进入,MDEA富液自上而下通过再生塔112,在再生塔112内填料表面与自下而上的气提蒸汽逆向流动、进行充分的传质传热,MDEA富液中的酸性气体被大量解析至气相并伴随气提蒸汽从再生塔112顶部的气体出口流出,解析后的MDEA溶液由再生塔112底部的液体出口流出,完成MDEA富液的酸性气体的一次解析。
S245)、经过步骤S244的MDEA溶液通过再沸器液体入口进入再沸器124加热,再沸器内的蒸汽解析出MDEA富液中的酸性气体,完成MDEA富液的酸性气体的二次解析,形成MDEA贫液;蒸汽从再沸器124顶部的蒸汽出口进入再生塔112作为气提蒸汽,从再生塔112顶部的气体出口流出的气体经过再生塔112顶部的再生塔顶冷却器123降温至40℃后进入再生塔112顶部的再生塔顶气液分离器134进行气液分离,分离的气体由再生塔顶气液分离器134顶部的气体出口流出就地放空,分离的液体由再生塔顶气液分离器134底部的液体出口流出经回收泵142升压至0.55Mpa后进入闪蒸罐132闪蒸。优选的,为保证再生塔112压力稳定及避免溶液氧化,引氮气进入再生塔顶气液分离器134形成氮封。
S246)、步骤S245形成的MDEA贫液先经过贫富液换热器122与富液换热降温后再经过贫液冷却器125降温至室温后进入贫液缓冲罐133。
S3)、合成乙二醇联产LNG
S31)、将经过步骤S2的焦炉煤气进行深冷分离出LNG后收集,所述LNG的流量为288Nm3/h,压力为0.015Mpa,温度为-162℃;同时分离出纯度为97%,压力为3.45MPA的H2和分离出的纯度为66.06%,压力为0.35MPa的富CO;所述深冷分离技术为现有技术。
S32)、将步骤S31分离出的H2提纯出纯度为99%的H2
S33)、将经过步骤S2的转炉和/或高炉煤气与步骤S31分离出的富CO混合后提纯出纯度为98%的CO;优选的,所述经过步骤S2的转炉和/或高炉煤气与步骤S31分离出的富CO混合前,对经过步骤S2的转炉和/或高炉煤气进行除磷化氢处理,避免经过步骤S2的转炉和/或高炉煤气中未除净的磷化氢影响乙二醇的合成反应,通过对经过步骤S2的转炉和/或高炉煤气进行除磷化氢处理,使气体内的磷化氢的含量不高于0.1PPM。
S34)、将外界的氧气引入与步骤S33提纯出的CO合成DMO。
S35)、将步骤S32提纯出的H2与步骤S34合成的DMO合成乙二醇。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

1.一种焦炉煤气与转炉和/或高炉煤气合成乙二醇联产LNG的方法,其特征在于,包括如下步骤:
S0)、焦炉煤气与转炉和/或高炉煤气初净化
焦炉煤气初净化包括如下步骤:
S01)、除尘脱焦油
对焦炉煤气除尘和脱焦油,使焦炉煤气中的灰尘和焦油总量不高于3mg/Nm3
S02)、压缩
压缩经过步骤S01的焦炉煤气至0.58-0.62Mpa;
S03)、粗脱硫
对经过步骤S02的焦炉煤气粗脱硫,使焦炉煤气中的H2S含量不高于1mg/Nm3
S04)、除杂
对经过步骤S03的焦炉煤气除杂,使焦炉煤气中的杂质含量不高于0.1mg/Nm3
S05)、二次压缩
压缩经过步骤S04的焦炉煤气至4-4.2Mpa;
S06)、除氧精脱硫
对经过步骤S05的焦炉煤气除氧精脱硫,使焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧含量不高于1mg/Nm3
转炉和/或高炉煤气初净化包括如下步骤:
S01)、除尘脱焦油
对转炉和/或高炉煤气除尘和脱焦油,使转炉和/或高炉煤气中的灰尘和焦油总量不高于3mg/Nm3
S02)、压缩
压缩经过步骤S01的转炉和/或高炉煤气至0.95-1Mpa;
S03)、除杂
将步骤S02的转炉和/或高炉煤气除杂,使转炉和/或高炉煤气中的杂质含量不高于1mg/Nm3
S04)、除氧精脱硫
对经过步骤S03的转炉和/或高炉煤气除氧精脱硫,使转炉和/或高炉煤气中的总硫含量不高于0.1mg/Nm3,氧含量低于30mg/Nm3
S1)、转炉和/或高炉煤气的粗脱碳,转炉和/或高炉煤气的粗脱碳包括如下步骤:
采用变压吸附的方式对转炉和/或高炉煤气粗脱碳和去磷化氢;使经过变压吸附的转炉和/或高炉煤气的二氧化碳的体积分率为5.8-6.2%,磷化氢的含量为1-5PPM;
S2)、焦炉煤气与转炉和/或高炉煤气的脱碳,焦炉煤气与转炉和/或高炉煤气的脱碳包括如下步骤:
S21)、焦炉煤气与转炉和/或高炉煤气过滤、除杂,MDEA贫液加压
分别将焦炉煤气与转炉和/或高炉煤气过滤,除杂;同时,将MDEA溶液加压;
S22)、CO2分离
将经过步骤S21的焦炉煤气与转炉和/或高炉煤气分别与加压后的MDEA贫液逆向流动、传质换热,MDEA贫液吸收焦炉煤气与转炉和/或高炉煤气中的CO2形成MDEA富液;
S23)、焦炉煤气与转炉和/或高炉煤气净化
S231)、分别将步骤S22中分离CO2后的焦炉煤气与转炉和/或高炉煤气冷却;
S232)、分别将步骤S231中冷却的焦炉煤气与转炉和/或高炉煤气进行气液分离;
S233)、分别将步骤S232中气液分离后的焦炉煤气与转炉和/或高炉煤气过滤,分离掉机械杂质及游离液体,完成焦炉煤气与转炉和/或高炉煤气的脱碳;
S24)、MDEA贫液循环再生
S241)、分别将步骤S232中气液分离后的液体和步骤S233中分离出的机械杂质及游离液体混合,将步骤S22中的MDEA富液降压;
S242)、将步骤S241中的液体与机械杂质及游离液体混合物和降压后的MDEA富液闪蒸;
S243)、将闪蒸后的气体输送至放散系统放散,将闪蒸后的液体过滤脱除机械杂质后形成MDEA富液与后续工序形成的MDEA贫液换热升温;
S244)、将步骤S243中换热后的MDEA富液与气提蒸汽逆向流动、传质换热,通过气提蒸汽解析出MDEA富液中的酸性气体,完成MDEA富液的酸性气体的一次解析;
S245)、加热步骤S244完成酸性气体一次解析的MDEA富液,通过蒸汽解析出MDEA富液中的酸性气体,完成MDEA富液的酸性气体的二次解析,形成MDEA贫液;将完成气提的气提蒸汽冷却后进行气液分离,将气液分离后的气体排入大气,将气液分离后的液体升压后与步骤S241中的液体与机械杂质及游离液体混合物和降压后的MDEA富液一起闪蒸;
S246)、将步骤S245形成的MDEA贫液与步骤S243中的MDEA富液换热降温后冷却,形成步骤S21中的MDEA贫液;
S3)、合成乙二醇联产LNG
S31)、将经过步骤S2的焦炉煤气进行深冷分离出LNG,同时分离出纯度为95-97%,压力为3.3-3.5MPA的H2和分离出的纯度为60-70%,压力为0.3-0.4MPa的富CO;
S32)、将步骤S31分离出的H2提纯出纯度为99%的H2
S33)、将经过步骤S2的转炉和/或高炉煤气与步骤S31分离出的富CO混合后提纯出纯度为98%的CO;
S34)、将外界的氧气引入与步骤S33提纯出的CO合成DMO;
S35)、将步骤S32提纯出的H2与步骤S34合成的DMO合成乙二醇。
2.根据权利要求1所述的方法,其特征在于:
步骤S34中的CO的含量与步骤S35中H2的含量比为1:2。
3.根据权利要求1所述的方法,其特征在于:
步骤S1中,采用变压吸附的方式对转炉和/或高炉煤气粗脱碳和去磷化氢;使经过变压吸附的转炉和/或高炉煤气的二氧化碳的体积分率为5.8-6.2%,磷化氢的含量为1-5PPM,具体包括如下步骤:转炉和/或高炉煤气经过气液分离脱除液体后进入吸附塔组,吸附塔组包括并联的8个吸附塔,吸附塔组吸附时,采用两塔吸附,五次均压的抽空工艺,各吸附塔依次经历吸附、一均降、二均降、三均降、四均降、五均降、逆放、抽空、五均升、四均升、三均升、二均升、一均升、终升步骤,从塔顶得到净化气,从塔底得到脱碳解析气。
4.根据权利要求1所述的方法,其特征在于:分别在闪蒸过程和气提蒸汽冷却后的气液分离过程中引入氮气进行氮封。
5.根据权利要求1所述的方法,其特征在于:对经过步骤S05的焦炉煤气除氧精脱硫,使焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧含量不高于1mg/Nm3,具体包括如下步骤:
S061)、换热升温
将压缩的焦炉煤气换热升温至180-300℃;
S062)、预加氢转化和一级加氢转化
将经过步骤S061的焦炉煤气依次进行预加氢转化和一级加氢转化,使经过步骤S061的焦炉煤气中的有机硫转化为硫化氢,氧加氢脱除,不饱和烃加氢饱和,同时去除杂质;
S063)、一级脱硫
将经过步骤S062的焦炉煤气进行一级脱硫,脱除无机硫和氯化氢;
S064)、二次换热升温
将经过S063的焦炉煤气换热升温至280-340℃;
S065)、二级加氢转化
将经过S064的焦炉煤气进行二次加氢反应,将经过S064的焦炉煤气中残余的有机硫转、不饱和烃和氧深度加氢转化;
S066)、二级精脱硫
将二级加氢转化后的焦炉煤气进行二级精脱硫。
6.根据权利要求1所述的方法,其特征在于:对经过步骤S03的转炉和/或高炉煤气除氧精脱硫,使焦炉煤气中的总硫含量不高于0.1mg/Nm3,氧含量低于30mg/Nm3,具体包括如下步骤:
S041)、脱硫
将转炉和/或高炉煤气脱硫,脱除有机硫和无机硫;
S042)、混合
将经过步骤S041脱硫后的转炉和/或高炉煤气与氧气的体积分率为0.001-0.005%的脱氧煤气混合,控制混合后的混合煤气中,氧气的体积分率不大于0.7%;
S043)、脱氧
将经过步骤S2混合后的混合煤气脱氧,使脱氧后的脱氧煤气中,氧气的体积分率为0.001-0.005%;
S044)、掺混和精脱硫
将经过步骤S043脱氧后的脱氧煤气分流,一部分脱氧后的脱氧煤气与步骤S042中的经过步骤S041脱硫后的转炉和/或高炉煤气掺混,控制混合后的混合煤气中,氧气的体积分率不大于0.7%;剩余脱氧后的脱氧煤气进行精脱硫,形成净化气。
7.根据权利要求1所述的方法,其特征在于:
步骤S0前,焦炉煤气流量为80000-85000Nm3/h,压力为0.004-0.006Mpa,温度为18-22℃;有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为60-65%,一氧化碳的体积分率为8-12%,氧的体积分率0.5-0.9%,二氧化碳的体积分率为2-4%,焦油和灰尘的含量为0.14-0.16g/Nm3,硫化氢的含量为50-150mg/Nm3,其他硫化物的含量为150-160mg/Nm3;转炉和/或高炉煤气的流量为28000-30000Nm3/h,压力为0.003-0.005Mpa,温度为18-22℃;有效成分中,一氧化碳的体积分率为40-60%,二氧化碳的体积分率为20-26%,氮气的体积分率为20-28%,氢气的体积分率为1-4%,氧气的体积分率为0.6-1%;磷化氢的含量为100-250mg/kg,焦油和灰尘的含量为0.01-0.02g/Nm3,硫化物的含量为16-18mg/Nm3
8.根据权利要求1所述的方法,其特征在于:
步骤S1前,焦炉煤气的有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为55-60%,一氧化碳的体积分率为8-12%,氧的体积分率0.0005-0.0007%,二氧化碳的体积分率为2-4%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3;转炉和/或高炉煤气的流量为28000-30000Nm3/h,压力为0.8-0.85Mpa,温度为38-42℃;有效成分中,一氧化碳的体积分率为45-60%,二氧化碳的体积分率为20-26%,氮气的体积分率为20-28%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为100-250mg/kg,总硫含量不高于0.1mg/Nm3
9.根据权利要求1所述的方法,其特征在于:
转炉和/或高炉煤气粗脱碳后,转炉和/或高炉煤气的有效成分中,一氧化碳的体积分率为55-65%,二氧化碳的体积分率为5.8-6.2%,氮气的体积分率为28-32%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为1-5PPM,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3
10.根据权利要求1所述的方法,其特征在于:
步骤S233后,焦炉煤气的有效成分中,甲烷的体积分率为20-25%,氢气的体积分率为57-62%,一氧化碳的体积分率为8-12%,氧的体积分率0.0005-0.0007%,二氧化碳的体积分率为0.0015-0.0019%,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3;转炉和/或高炉煤气的有效成分中,一氧化碳的体积分率为60-70%,二氧化碳的体积分率为0.0015-0.0019%,氮气的体积分率为31-33%,氢气的体积分率为1-4%,氧气的体积分率为0.001-0.005%;磷化氢的含量为1-5PPM,焦油和灰尘的含量不高于0.1mg/Nm3,总硫含量不高于0.1mg/Nm3
CN201810826909.0A 2018-07-25 2018-07-25 焦炉煤气与转炉和/或高炉煤气合成乙二醇联产lng的方法 Active CN109111341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810826909.0A CN109111341B (zh) 2018-07-25 2018-07-25 焦炉煤气与转炉和/或高炉煤气合成乙二醇联产lng的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810826909.0A CN109111341B (zh) 2018-07-25 2018-07-25 焦炉煤气与转炉和/或高炉煤气合成乙二醇联产lng的方法

Publications (2)

Publication Number Publication Date
CN109111341A CN109111341A (zh) 2019-01-01
CN109111341B true CN109111341B (zh) 2021-10-08

Family

ID=64862546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810826909.0A Active CN109111341B (zh) 2018-07-25 2018-07-25 焦炉煤气与转炉和/或高炉煤气合成乙二醇联产lng的方法

Country Status (1)

Country Link
CN (1) CN109111341B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609202A (zh) * 2019-01-17 2019-04-12 武汉禾谷环保有限公司 一种高炉煤气脱硫净化方法
CN110590501B (zh) * 2019-08-07 2023-03-28 内蒙古大唐国际克什克腾煤制天然气有限责任公司 一种煤制天然气联产甲醇和乙二醇的加工工艺
CN111320528A (zh) * 2020-03-24 2020-06-23 北京石油化工工程有限公司 一种钢厂尾气综合利用制乙醇的方法及系统
CN112920859A (zh) * 2021-02-08 2021-06-08 赛鼎工程有限公司 焦炉煤气深度净化制甲醇的系统及方法
CN113148953B (zh) * 2021-04-20 2021-11-30 杭州中泰深冷技术股份有限公司 一种合成气制乙二醇系统及方法
CN113735354A (zh) * 2021-09-08 2021-12-03 东华工程科技股份有限公司 一种煤制乙二醇技术中含醇废水处理方法及装置
CN114130048A (zh) * 2021-10-22 2022-03-04 中盐安徽红四方股份有限公司 用于cteg装置甲醇脱水高压塔精馏的防酸性腐蚀装置和方法
CN114736719A (zh) * 2022-01-29 2022-07-12 山西沃能化工科技有限公司 一种生产乙二醇联产lng及碳酸二甲酯的装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102250658A (zh) * 2010-05-19 2011-11-23 上海标氢气体技术有限公司 焦炉煤气和高炉煤气原料转化制液化天然气的方法
CN102659078A (zh) * 2012-05-30 2012-09-12 平顶山市三源制氢有限公司 焦炉煤气变压吸附脱硫工艺
CN204619690U (zh) * 2015-05-20 2015-09-09 唐山唐钢气体有限公司 一种焦炉煤气制液化天然气过程中二氧化碳脱除装置
CN105985221A (zh) * 2015-02-02 2016-10-05 中国庆华能源集团有限公司 利用焦炉煤气补充焦炭制气所得原料气制备乙二醇的方法
CN106350122A (zh) * 2016-08-31 2017-01-25 武汉科林精细化工有限公司 一种焦炉气精脱硫工艺
CN106566574A (zh) * 2015-10-13 2017-04-19 亚申科技研发中心(上海)有限公司 一种利用焦炉气和转炉气生产费托化学品的方法
CN206666474U (zh) * 2017-03-03 2017-11-24 陕西黑猫焦化股份有限公司 焦炉煤气脱硫加氢转化系统
CN207362104U (zh) * 2017-10-26 2018-05-15 宁波中科远东催化工程技术有限公司 一种利用焦炉煤气生产乙二醇的装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102250658A (zh) * 2010-05-19 2011-11-23 上海标氢气体技术有限公司 焦炉煤气和高炉煤气原料转化制液化天然气的方法
CN102659078A (zh) * 2012-05-30 2012-09-12 平顶山市三源制氢有限公司 焦炉煤气变压吸附脱硫工艺
CN105985221A (zh) * 2015-02-02 2016-10-05 中国庆华能源集团有限公司 利用焦炉煤气补充焦炭制气所得原料气制备乙二醇的方法
CN204619690U (zh) * 2015-05-20 2015-09-09 唐山唐钢气体有限公司 一种焦炉煤气制液化天然气过程中二氧化碳脱除装置
CN106566574A (zh) * 2015-10-13 2017-04-19 亚申科技研发中心(上海)有限公司 一种利用焦炉气和转炉气生产费托化学品的方法
CN106350122A (zh) * 2016-08-31 2017-01-25 武汉科林精细化工有限公司 一种焦炉气精脱硫工艺
CN206666474U (zh) * 2017-03-03 2017-11-24 陕西黑猫焦化股份有限公司 焦炉煤气脱硫加氢转化系统
CN207362104U (zh) * 2017-10-26 2018-05-15 宁波中科远东催化工程技术有限公司 一种利用焦炉煤气生产乙二醇的装置

Also Published As

Publication number Publication date
CN109111341A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN109111341B (zh) 焦炉煤气与转炉和/或高炉煤气合成乙二醇联产lng的方法
CN108977234B (zh) 一种焦炉煤气与转炉和/或高炉煤气的脱碳方法
CN108970332B (zh) 一种转炉和/或高炉煤气的脱碳方法
CN104560201B (zh) 高纯度氢气的生产工艺和系统以及合成氨工艺和系统
CN100400142C (zh) 干气回收c2及c2以上烃类组分的方法
CN101343580A (zh) 一种以焦炉气和高炉气制取甲醇合成气的方法
CN110127613B (zh) 一种高效先进的焦炉煤气制氢工艺
CN208748031U (zh) 一种焦炉煤气与转炉和/或高炉煤气的脱碳装置
CN102431967A (zh) 一种用含h2、n2多组分气制备特定组成氢氮气的方法
CN109641746A (zh) 从生物质热分解气体中回收氢气的方法
CN102827620A (zh) 一种联产富甲烷气的内热式煤干馏多联产工艺
CN111100714A (zh) 焦炉煤气联合高炉煤气或/和转炉煤气生产h2/co原料气的方法及装置
CN102626580A (zh) 含氢气、硫化氢的多组分气体的两步法变压吸附分离方法
CN108977233B (zh) 一种焦炉煤气除氧精脱硫的方法
CN112678773B (zh) 一种荒煤气制氢联产lng工艺
CN209537405U (zh) 焦炉煤气联合高炉煤气或/和转炉煤气生产h2/co原料气的装置
CN202355997U (zh) Co2吸收塔及包括其的低温甲醇洗设备
CN102489120A (zh) 低温甲醇洗方法及设备
CN102173379A (zh) 一种煤气制硫、制氢、制低硫解吸气组合方法
CN208562273U (zh) 焦炉煤气与转炉和/或高炉煤气合成乙二醇联产lng的装置
CN209952482U (zh) 一种净化黄磷尾气的装置
CN104098069B (zh) 一种煤气提氢的装置
CN215250677U (zh) 一种气化焦尾气变换、脱碳制lng的系统
CN111100716B (zh) 一种制天然气的方法及装置
CN109277075A (zh) 焦炉煤气净化用吸附剂及其净化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240222

Address after: 041000 6th Floor 603, Shanxi Liheng Iron and Steel Group Co., Ltd., Quwo County, Linfen City, Shanxi Province

Patentee after: Shanxi wex Chemical Technology Co.,Ltd.

Country or region after: China

Address before: 455003 No. 404, unit 2, building 3, Yuehua District, yard 9, Dabai Road, Long'an District, Anyang City, Henan Province

Patentee before: Dai Leting

Country or region before: China

Patentee before: Yang Yong

Patentee before: Wang Wuping

Patentee before: Hou Junping