CN109108270B - 一种三氯化锑还原制备金纳米片的方法 - Google Patents

一种三氯化锑还原制备金纳米片的方法 Download PDF

Info

Publication number
CN109108270B
CN109108270B CN201811096691.4A CN201811096691A CN109108270B CN 109108270 B CN109108270 B CN 109108270B CN 201811096691 A CN201811096691 A CN 201811096691A CN 109108270 B CN109108270 B CN 109108270B
Authority
CN
China
Prior art keywords
antimony trichloride
gold
organic solvent
sheet
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811096691.4A
Other languages
English (en)
Other versions
CN109108270A (zh
Inventor
袁亚仙
侯斐
姚建林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201811096691.4A priority Critical patent/CN109108270B/zh
Publication of CN109108270A publication Critical patent/CN109108270A/zh
Application granted granted Critical
Publication of CN109108270B publication Critical patent/CN109108270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种三氯化锑还原制备金纳米片的方法。在有机溶剂中,加入四氯金酸溶液,用无机物三氯化锑作为还原剂,制得原子级平整的单晶Au纳米片。本发明采用三氯化锑直接还原氯金酸的一锅法,制备方法简单快捷,无需添加其它表面活性剂,反应时间短,反应条件温和。采用本发明提供的方法制得的金片,由于表面洁净,不含任何有机类表面活性剂,即Au片表面的活性位点未被其他试剂占位,因此,可在表面等离基元催化、电化学以及电子器件等研究领域中,将发挥重要的作用。

Description

一种三氯化锑还原制备金纳米片的方法
技术领域
本发明涉及一种金纳米片的制备方法,特别涉及一种三氯化锑还原制备金纳米片的方法。
背景技术
贵金属纳米结构因其具有与尺寸、形貌和晶态等因素密切相关的理化特性,在生物医学、传感器、光信息存储等诸多技术领域显示出巨大应用价值。作为最常见的贵金属材料之一,金纳米粒子的制备和应用一直受到人们广泛的关注。特别是金纳米片具有的优异的表面等离子共振(surface plasmon resonance, SPR)性质,使其在电子器件、催化、纳米医学、生物传感以及电化学研究等领域具有潜在的应用。金纳米片通常可以通过光催化(参见文献:Y. D. Zhai, J. S. Chene, Y. C. Wang, et. al. Nature Materials, 2016,15, 889-895.)和化学还原等方法进行制备,其中水杨酸、邻苯二胺(参见文献:X. Sun, S.Dong, E. Wang, et. al. Angew. Chem. 2004, 116, 6520-6523)、对羟基偶氮苯磺酸以及微生物等均可作为反应的还原剂。在众多化学方法中,有的还通过种子诱导生长法制备获得金纳米片,如Liz-Marzán等通过该法制得了较高产率的金纳米三角片;有的则通过加入表面活性剂进行调控,将表面活性剂吸附在晶体的特定晶面上,从而限制该晶面的生长速率,最后生长成各向异性的纳米结构,如Weiping Cai等采用PVP为表面活性剂,制得了较大范围的二维纳米片(参见文献:C. Li, W. Cai, B. Cao, et. al. Adv. Funct. Mater.2006, 16, 83-90)。
由此可见,现有技术制备Au纳米片的方法不仅步骤繁琐,而主要是以有机分子为还原剂,有些反应还使用了表面活性剂,如PVP、CTAB等,这些有机分子或表面活性剂在Au纳米颗粒表面附着,使得Au表面的洁净度大大减小,也由此极大减少了Au与其它试剂连接的活性位点,这在很大程度上限制了Au纳米片在表面等离基元催化、电化学以及电子器件等研究领域中的应用。
发明内容
本发明针对现有制备Au纳米片技术存在的不足,提供一种无有机分子或表面活性剂附着的具有单晶表面的金纳米片的制备方法。
为达到上述发明目的,本发明采用的技术方案是提供一种三氯化锑还原制备金纳米片的方法,包括如下步骤:
(1)在搅拌条件下,将四氯金酸溶解于有机溶剂中,四氯金酸的浓度为20~50mmol·L-1
(2)加入还原剂,在温度为30~70℃的条件下,反应0.5~2h,所述的还原剂为浓度20~100 mmol·L-1的三氯化锑有机溶剂溶液;
(3)经离心分离、超声清洗后,得到一种具有原子级平整表面的金纳米片。
本发明所述的有机溶剂为乙腈或乙二醇。
本发明制得的金纳米片的厚度为 40~200 nm,尺寸为300~800 nm。
本发明基于无机物三氯化锑的还原性原理,直接将四氯金酸进行还原,形成具有原子级平整表面的金纳米片。
与现有技术相比,本发明提供的合成方法具有过程简单、方便快捷、反应时间短、反应条件温和等特点,特别是由于反应中没有添加其它的有机还原剂及表面活性剂,使得合成的Au纳米片的表面非常洁净,可与其它基团连接的位点多,该纳米片在电化学(可作电化学电极)、分析检测、表面等离激元催化等研究领域,具有很好的应用价值。
附图说明
图1 为本发明实施例1中不同反应时间得到Au片的AFM图;
图2 为本发明实施例1中不同反应时间得到Au片的SEM图;
图3 为本发明实施例1中Au片的EDS谱;
图4 为本发明实施例2上层清液提取物的 XPS 图。
具体实施方式
下面结合附图和实施例,对本发明技术方案作进一步的阐述。
实施例1
将0.1647g四氯金酸固体加入至10ml乙二醇中充分振荡使其溶解,得到淡黄色透明溶液。另外,将0.0912g三氯化锑加入10ml乙二醇液体中,振荡溶解得到浓度为40mmol·L-1无色透明溶液。
取4ml以上配制的三氯化锑溶液加入10ml圆底烧瓶中,在转速为400r·min-1的磁力搅拌的同时取4ml四氯金酸溶液加入其中,在70℃油浴加热下反应,反应时间为0.5h,之后将所得样品进行离心分离 (5000r·min-1),10min后取底部沉淀,用无水乙醇超声清洗10min,重复3次后,得到Au纳米片。
按上述方法,分别将反应时间调控为1h、1.5h和2h,得到不同厚度的Au纳米片。
参见附图1,为本实施例中不同反应时间得到Au片的AFM图;其中,图a图b、图c及图d分别对应的反应时间为0.5h、 1h、1.5h和2h;由图1可见,Au片的厚度由40nm分别增加至100、140及200nm。
参见附图2,为本实施例中不同反应时间得到Au片的SEM图;图a、图b、和图c对应的反应时间分别为1、1.5及2h所制备金片的扫描电子显微镜图,随着反应时间的增加,最终可以得到如图所示的具有原子级平滑表面的单晶金片。
参见附图3 ,为本实施例制备的Au片的EDS谱;从金纳米片的EDS能谱可以看出,所制备的金片不含有其他杂质,其中Si的出峰是因为所选用Si片作为基底所致,由此可知所得到的金片纯度极高。
实施例2
将0.2059g四氯金酸固体加入至10ml乙腈中充分振荡使其溶解,得到淡黄色透明溶液。另外,将0.1140g三氯化锑加入10ml乙腈液体中,振荡溶解得到浓度为50mmol·L-1无色透明溶液。
取4ml以上配制的三氯化锑溶液加入10ml圆底烧瓶中,在转速为400r·min-1的磁力搅拌的同时取4ml四氯金酸溶液加入其中,在70℃油浴加热下反应,反应40min后,产物中的金纳米颗粒逐渐减少,金纳米片逐渐增多,并且可以看出金片表面逐渐趋向光滑。
将上述乙腈体系反应后的产物离心分离,取上层清液加入超纯水,再在50℃水浴条件下旋蒸得黄色粉末,将该黄色粉末放入50℃烘箱中干燥,所得的样品进行X射线光电子能谱表征,XPS 图谱结果参见附图4,由图4可以看出,出峰位置与Sb2O5出峰位置相吻合,由此可以推断,样品粉末为Sb2O5,从而进一步证明了三价锑离子在本反应中所起的还原作用。

Claims (3)

1.一种三氯化锑还原制备金纳米片的方法,其特征在于包括如下步骤:
(1)在搅拌条件下,将四氯金酸溶解于有机溶剂中,四氯金酸的浓度为20~50 mmol·L-1
(2)加入还原剂,在温度为30~70℃的条件下,反应0.5~2h,所述的还原剂为浓度20~100 mmol·L-1的三氯化锑有机溶剂溶液;
(3)经离心分离、超声清洗后,得到一种具有原子级平整表面的金纳米片。
2.根据权利要求1所述的一种三氯化锑还原制备金纳米片的方法,其特征在于:所述的有机溶剂为乙腈或乙二醇。
3.根据权利要求1所述的一种三氯化锑还原制备金纳米片的方法,其特征在于:制得的金纳米片的厚度为 40~200 nm,尺寸为300~800 nm。
CN201811096691.4A 2018-09-19 2018-09-19 一种三氯化锑还原制备金纳米片的方法 Active CN109108270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811096691.4A CN109108270B (zh) 2018-09-19 2018-09-19 一种三氯化锑还原制备金纳米片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811096691.4A CN109108270B (zh) 2018-09-19 2018-09-19 一种三氯化锑还原制备金纳米片的方法

Publications (2)

Publication Number Publication Date
CN109108270A CN109108270A (zh) 2019-01-01
CN109108270B true CN109108270B (zh) 2020-06-02

Family

ID=64859823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811096691.4A Active CN109108270B (zh) 2018-09-19 2018-09-19 一种三氯化锑还原制备金纳米片的方法

Country Status (1)

Country Link
CN (1) CN109108270B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978096A (zh) * 2005-12-10 2007-06-13 中国科学院合肥物质科学研究院 对近红外光具有吸收性能的金纳米片及其制备方法
CN101015862A (zh) * 2007-03-02 2007-08-15 江南大学 一种水相软模板法制备金纳米粒子的方法
CN105014094A (zh) * 2015-07-17 2015-11-04 西安交通大学 一种基于外延生长的核-壳结构的银-金纳米片及其制备方法和应用
CN106825608A (zh) * 2017-03-02 2017-06-13 济南大学 一种在乙二醇中制备单分散金十面体纳米粒子的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978096A (zh) * 2005-12-10 2007-06-13 中国科学院合肥物质科学研究院 对近红外光具有吸收性能的金纳米片及其制备方法
CN101015862A (zh) * 2007-03-02 2007-08-15 江南大学 一种水相软模板法制备金纳米粒子的方法
CN105014094A (zh) * 2015-07-17 2015-11-04 西安交通大学 一种基于外延生长的核-壳结构的银-金纳米片及其制备方法和应用
CN106825608A (zh) * 2017-03-02 2017-06-13 济南大学 一种在乙二醇中制备单分散金十面体纳米粒子的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
金纳米片的制备;郝慧等;《化工技术与开发》;20180331;第47卷(第3期);13-15 *
金纳米颗粒、纳米片的制备及电镜观察;储昭琴等;《电子显微学报》;20050831;第24卷(第04期);253 *

Also Published As

Publication number Publication date
CN109108270A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
Han et al. Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures
Jacobson et al. Shining light on aluminum nanoparticle synthesis
Wen et al. Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications
Yarema et al. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices
Tian et al. Biomimetic arrays of oriented helical ZnO nanorods and columns
Bley et al. A low-temperature solution phase route for the synthesis of silicon nanoclusters
Seo et al. In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals
Kundu et al. A new route to obtain high-yield multiple-shaped gold nanoparticles in aqueous solution using microwave irradiation
Wang et al. Sonochemical fabrication and characterization of stibnite nanorods
Yang et al. Polymorphism and formation mechanism of nanobipods in manganese sulfide nanocrystals induced by temperature or pressure
Akhbari et al. Silver nanoparticles from the thermal decomposition of a two-dimensional nano-coordination polymer
Mandal et al. New mixed ligand single-source precursors for PbS nanoparticles and their solvothermal decomposition to anisotropic nano-and microstructures
Chacham et al. Controlling the morphology of nanoflakes obtained by liquid-phase exfoliation: implications for the mass production of 2D materials
CN108393501B (zh) 一种直径可控Cu纳米线的制备方法
Tang et al. Preparation of zinc oxide nanoparticle via uniform precipitation method and its surface modification by methacryloxypropyltrimethoxysilane
Ashrafi et al. Influence of external factors on the production and morphology of biogenic silver nanocrystallites
WO2013191337A1 (ko) 은 나노와이어의 제조방법
Liu et al. Synthesis of luminescent silicon nanopowders redispersible to various solvents
Hartlieb et al. Controlled scalable synthesis of ZnO nanoparticles
KR102387805B1 (ko) 복합구조 메조결정 나노입자 및 그의 제조방법
Ádám et al. Ultrasound-assisted hydrazine reduction method for the preparation of nickel nanoparticles, physicochemical characterization and catalytic application in Suzuki-Miyaura cross-coupling reaction
Yi et al. From ultrathin two-dimensional djurleite nanosheets to one-dimensional nanorods comprised of djurleite nanoplates: synthesis, characterization, and formation mechanism
Chen et al. Triangular gold nanoplates/two-dimensional nano mica platelets with a 3D lightning-rod effect as flexible nanohybrid substrates for SERS bacterial detection
CN102858684A (zh) 批量生产具有均匀尺寸的银纳米粒子的方法
Chen et al. Biomolecule-Assisted Synthesis of In (OH) 3 Hollow Spherical Nanostructures Constructed with Well-Aligned Nanocubes and Their Conversion into C− In2O3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant