CN109101976A - 一种灭弧栅片表面缺陷的检测方法 - Google Patents

一种灭弧栅片表面缺陷的检测方法 Download PDF

Info

Publication number
CN109101976A
CN109101976A CN201810749341.7A CN201810749341A CN109101976A CN 109101976 A CN109101976 A CN 109101976A CN 201810749341 A CN201810749341 A CN 201810749341A CN 109101976 A CN109101976 A CN 109101976A
Authority
CN
China
Prior art keywords
image
arc extinguishing
feature vector
extinguishing grid
grid pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810749341.7A
Other languages
English (en)
Other versions
CN109101976B (zh
Inventor
舒亮
郭良
吴桂初
梁步猛
陈威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201810749341.7A priority Critical patent/CN109101976B/zh
Publication of CN109101976A publication Critical patent/CN109101976A/zh
Application granted granted Critical
Publication of CN109101976B publication Critical patent/CN109101976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/446Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering using Haar-like filters, e.g. using integral image techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/30Noise filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)

Abstract

本发明提供一种灭弧栅片表面缺陷的检测方法,包括获取灭弧栅片的原始图像,并对原始图像进行预处理,得到预处理后的目标图像;将目标图像处理成具有x,y方向的梯度直方图,并确定出梯度直方图的特征向量,且将梯度直方图的特征向量与预设的Gabor滤波器进行卷积处理后,得到具有Gabor特征的图像及其对应的特征向量,进一步采用主成分分析法对具有Gabor特征的图像的特征向量进行提取;将从Gabor特征图像中提取出的特征向量,导入预设的卷积神经网络模型中,计算出灭弧栅片表面各缺陷的概率。实施本发明,通过改进的图像特征提取方法将灭弧栅片从背景中提取出来,提升了识别速度及准确率。

Description

一种灭弧栅片表面缺陷的检测方法
技术领域
本发明涉及断路器检测技术领域,尤其涉及一种灭弧栅片表面缺陷的检测方法。
背景技术
随着社会经济的不断发展,小型断路器(miniature circuit breaker,MCB)已成为生产生活中必不可少的电气产品。灭弧室是MCB重要组成机构之一,相比于真空灭弧、磁吹灭弧和纵缝灭弧,栅片灭弧法得到了广泛应用。在栅片灭弧室中通过对电弧进行冷却并分成多段弧的方法,使触头分断过程中产生的电弧能量及时释放,因此灭弧栅片的质量决定了能否有效灭弧。
目前灭弧栅片表面缺陷检测仍由人工完成,难以满足零件尺寸小、批量大的生产要求。在工业自动化生产线中,一方面机器视觉在线检测技术已经成功应用并逐渐代替人工检测,另一方面对金属表面缺陷检测需求越来越多。良好的缺陷检测系统不仅能满足实时性、准确性和鲁棒性,还应该对缺陷类别进行判断。例如,杨水山、何永辉、赵万生等提出的Boosting优化决策树的带钢表面缺陷识别技术(红外与激光工程,2010,39(5):954-958),通过组合分类器实现对带钢表面缺陷识别,采用Boosting算法调整分类器权重使识别率达到90.47%。又如,马凤春提出的基于KPCA的板坯表面缺陷识别方法(物理测试,2014,32(2):25-27),该方法是一种新的组合核函数方法,研究了主成分分析对图像特征提取后进行训练的识别率,结果显示分类器的识别率达到了91.55%。
但是,上述研究未考虑目标区域的定位,直接将目标区域与背景作为特征进行训练,不仅使训练速度变慢,而且会降低准确率。此外,现有的图像特征提取方法应用到灭弧栅片表面缺陷识别时还需进一步改进。
发明内容
本发明实施例所要解决的技术问题在于,提供一种灭弧栅片表面缺陷的检测方法,通过改进的图像特征提取方法将灭弧栅片从背景中提取出来,提升了识别速度及准确率。
为了解决上述技术问题,本发明实施例提供了一种灭弧栅片表面缺陷的检测方法,包括以下步骤:
步骤S1、获取灭弧栅片的原始图像,并对所述原始图像进行预处理,得到预处理后的目标图像;
步骤S2、将所述目标图像处理成具有x,y方向的梯度直方图,并确定出所述梯度直方图的特征向量,且将所述梯度直方图的特征向量与预设的Gabor滤波器进行卷积处理后,得到具有Gabor特征的图像及其对应的特征向量,进一步采用主成分分析法对所述具有Gabor特征的图像的特征向量进行提取;
步骤S3、将从所述具有Gabor特征图像中提取出的特征向量,导入预设的卷积神经网络模型中,计算出所述灭弧栅片表面各缺陷的概率。
其中,所述步骤S1具体包括:
将所述原始图像转换成灰度图像,并采用非局部均值算法对所述灰度图像进行滤波去噪处理,且进一步对所述滤波去噪处理后的灰度图像进行阈值化处理;
采用边缘追踪的方式找出所述阈值化处理后的灰度图像所对应的多个轮廊;
求解每一个轮廊的面积并确定每一个轮廊面积的极大值,且进一步根据所求解的每一个轮廊面积的极大值,创建轮廊的可倾斜矩形框;
对所创建的轮廊的可倾斜矩形框进行裁剪,得到目标图像。
其中,所述步骤S2具体包括:
通过核[-1,0,1]、[-1,0,1]-1与所述目标图像进行卷积处理,得到在x、y方向上分别对应的梯度向量gx(x,y)和gy(x,y),并根据所得到的梯度向量gx(x,y)和gy(x,y),计算出梯度向量长度M和角度ρ;
将所述目标图像栅格化,利用8×8像素组成一个单元划分图像,并以单元内像素梯度向量长度为y轴、方向为x轴绘制单元直方图;
利用2×2单元组成一个块划分图像,并将单元直方图连接起来组成块直方图作为所述梯度直方图,并进一步确定出所述梯度直方图的特征向量;
创建多个Gabor滤波器,并将所述梯度直方图的特征向量与所创建的多个Gabor滤波器进行卷积处理后,获得具有Gabor特征的图像及其对应的特征向量;
采用主成分分析法对所述具有Gabor特征的图像的特征向量进行降维并提取。
其中,所述多个Gabor滤波器G(x,y)均由高斯核函数乘以正弦波组成,可根据频率及方向角度进行设定;其中,f为正弦波频率,θ为正弦波的旋转角度,γ与η分别为高斯核函数的长轴与短轴带宽,j为复数单位。通过改变正弦波频率和旋转角度可以得到不同尺度和角度的滤波器。
其中,所述灭弧栅片表面缺陷包括油污、凹坑及划痕。
实施本发明实施例,具有如下有益效果:
相对于传统的灭弧栅片表面缺陷的检测方法,本发明基于方向梯度直方图(HOG)与Gabor算法结合的图像特征向量提取方法,将灭弧栅片从背景中提取出来并导入卷积神经网络模型中,检测出灭弧栅片表面缺陷的概率,提升了识别速度及准确率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1为本发明实施例提供的灭弧栅片表面缺陷的检测方法的流程图;
图2为本发明实施例提供的灭弧栅片表面缺陷的检测方法中通过卷积神经网络模型求解灭弧栅片表面缺陷概率的应用场景图;
图3为本发明实施例提供的灭弧栅片表面缺陷的检测方法中卷积神经网络模型损失变化的曲线图;
图4a-4b为本发明实施例提供的灭弧栅片表面缺陷的检测方法中采用不同模型得到的训练结果图;4a为采用支持向量机得到的训练结果图;4b为采用卷积神经网络模型得到的训练结果图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
如图1所示,为本发明实施例中,提出的一种灭弧栅片表面缺陷的检测方法,包括以下步骤:
步骤S1、获取灭弧栅片的原始图像,并对所述原始图像进行预处理,得到预处理后的目标图像;
具体过程为,灭弧栅片的零件尺寸为19×14mm,算上零件尺寸变动误差,视野大小确定为30×25mm,为此采用Basler生产的acA1600-60gm型面阵相机,其靶面尺寸为7.20×5.35mm,分辨率为1602×1202像素。成像精度计算后结果为0.018mm,满足灭弧栅片检测精度要求。工作距离要求在150mm以内,因此选择Computar生产的M2514-MP2型工业镜头,焦距为fl=25mm。
在自动化检测过程中,CCD相机采集到的目标图像带有背景,将灭弧栅片从背景中分离出来能够提高缺陷识别系统的实时性及准确性。
由于原始图像在采集的过程中由于环境中的干扰,不可避免的会引入噪声,因此将CCD相机采集到的原始图像格式转换为灰度图像后进行滤波处理。考虑到滤波后要保留图像的细节、纹理和结构特征,采用非局部均值(Non Local means,NL-means)算法对灰度图像进行滤波去噪处理;
为了分离背景,采用下式表达的阈值化图像分割方法,对滤波去噪处理后的灰度图像进行阈值化处理。滤波去噪处理后的灰度图像中坐标(x,y)处的灰度值为
其中:g(x,y)为处理后的灰度值,L(x,y)为原始图像灰度值,T为设定的阈值,V为可选的灰度值,通常为255;
随后,通过边缘追踪的方式找出阈值化处理后的灰度图像所对应的多个轮廊;
此时,返回的轮廓数量较多,因此需要比较轮廓的面积找出灭弧栅片的轮廓,因此求解每一个轮廊的面积并确定每一个轮廊面积的极大值,且进一步根据所求解的每一个轮廊面积的极大值,创建轮廊的可倾斜矩形框;
考虑到灭弧栅片的形状与矩形相似,为此对所创建的轮廊的可倾斜矩形框进行裁剪(即采用矩形框选灭弧栅片进行裁剪),最终得到了分离的目标图像。
步骤S2、将所述目标图像处理成具有x,y方向的梯度直方图,并确定出所述梯度直方图的特征向量,且将所述梯度直方图的特征向量与预设的Gabor滤波器进行卷积处理后,得到具有Gabor特征的图像及其对应的特征向量,进一步采用主成分分析法对所述具有Gabor特征的图像的特征向量进行提取;
具体过程为,首先将目标图像处理成具有x,y方向的梯度直方图,并获取该梯度直方图的特征向量,具体如下:
通过核[-1,0,1]、[-1,0,1]-1与目标图像进行卷积处理,得到在x、y方向上分别对应的梯度向量gx(x,y)和gy(x,y),并根据所得到的梯度向量gx(x,y)和gy(x,y),计算出梯度向量长度M和角度ρ;其中,ρ(x,y)=arctan(gy(x,y)/gx(x,y));
将目标图像栅格化,利用8×8像素组成一个单元划分图像,并以单元内像素梯度向量长度为y轴、方向为x轴绘制单元直方图;
利用2×2单元组成一个块划分图像,并将单元直方图连接起来组成块直方图作为所述梯度直方图,并进一步确定出梯度直方图的特征向量;其中,特征向量经过式(2)归一化处理,
其中τ为归一化后的特征向量,κ为图像的块直方图向量,e=0.001。
在一个实施例中,对于80×80像素的目标图像划分81个块,每个块拥有36维向量,最终得到的梯度直方图的特征向量大小为2916。
其次,将梯度直方图的特征向量基于Gabor算法进行特征向量的提取,具体如下:
创建多个Gabor滤波器,并将梯度直方图的特征向量与所创建的多个Gabor滤波器进行卷积处理后,获得具有Gabor特征的图像及其对应的特征向量;其中,Gabor滤波器G(x,y)均由高斯核函数乘以正弦波组成,可根据频率及方向角度进行设定(即通过改变正弦波频率和旋转角度,可以得到不同尺度和角度的Gabor滤波器);其中,
f为正弦波频率,θ为正弦波的旋转角度,γ与η分别为高斯核函数的长轴与短轴带宽,j为复数单位。通过改变正弦波频率和旋转角度可以得到不同尺度和角度的滤波器;
采用主成分分析法对具有Gabor特征的图像的特征向量进行降维并提取。
在一个实施例中,Gabor滤波器的特征参数上选用了5个不同频率和8个不同方向角度,则会产生40个Gabor滤波器。将滤波器与梯度直方图的特征向量卷积处理后提取特征量,得到数据量大小为40×2916,采用主成分分析方法降维后的数据量为2916,最后将数据输入到支持向量机中进行训练与分类。
步骤S3、将从所述具有Gabor特征图像中提取出的特征向量,导入预设的卷积神经网络模型中,计算出所述灭弧栅片表面各缺陷的概率。
具体过程为,将从具有Gabor特征图像中提取出的特征向量,导入预设的卷积神经网络模型中,计算出所述灭弧栅片表面各缺陷的概率;其中,灭弧栅片表面缺陷包括油污、凹坑及划痕。
在一个实施例中,如图2所示,确定卷积神经网络模型,首先输入分割后的目标图像80×80像素,随后将目标图像输入到卷积层,卷积层在模型中负责提取卷积特征即核与目标图像的卷积操作。通过16个大小为5×5像素核与图像的卷积得到80×80×16图像矩阵,下一步输入到池化层。常用的池化方法为最大池化即利用大小为2×2像素的窗口,步长为2遍历目标图像,从窗口中选择最大值作为新值,池化的目的在于减小图像尺寸,结果为40×40×16图像矩阵。然后再进行一次卷积和池化处理,得到20×20×36图像矩阵后输入到扁平层。扁平层中将二维图像矩阵转化为一维向量,大小为14400。下一步将一维向量输入到全连接层,全连接层对数据进行压缩,使数据线性可分。通过两层全连接层将14400大小的数据转化为4,最后采用Softmax归一化处理式(3),判断属于每种类别的概率P:
式中Δε为全连接层输出的数据,y代表标签类别,ε=1,2,...,k,本文的k=4。
为了进一步对本发明实施例中的一种灭弧栅片表面缺陷的检测方法的有效性进行验证,首先对图像进行分割得到80×80像素的目标图像,随后在Matlab R2017b平台下提取了图像特征,并采用LIBSVM方法作为训练和测试工具。由于传统的LIBSVM方法只能解决二分类问题,为此本发明实施例采用被称为一对多(One-vs-All)分类方法对LIBSVM进行了改进。卷积神经网络模型在python环境下进行程序设计,整个训练过程在Intel i5-4590,3.30GHz CPU及8G RAM计算机上。面阵CCD相机采集得到灭弧栅片表面可能存在的三种典型缺陷:油污、凹坑及划痕缺陷共700张图像样本。
训练及测试的样本容量如表1所示:
表1
SVM通过引入核函数对非线性数据进行处理,本发明选用径向基核函数(RadialBasis Function,RBF)作为SVM核函数,利用交叉验证得到最优的惩罚因子与核参数。采用HOG、Gabor及本发明方法提取图像特征进行训练,训练后模型的分类结果如表2所示:
表2
从测试集的结果可以看出,本发明的方法要优于传统的HOG与Gabor特征提取方法。
卷积神经网络数据输入过程中为了计算简便,通常将训练的数据集分批次迭代处理,对训练集全部数据训练一次的过程称为一步。400步内模型损失函数变化如图3所示,可以看出本发明搭建的模型具有良好的学习率。卷积神经网络模型的正确率达到93%,整个模型的训练时间为1.2min。
为了比较采用HOGA方法的支持向量机与卷积神经网络模型的分类性能,本发明将一对多的分类方法思想应用到模型训练中绘制受试者工作特性曲线即将合格分为一类,油污、凹坑与划痕为一类,称为方案1。将划痕作为一类,合格、油污与凹坑为一类,称为方案2。将油污作为一类,合格、凹坑与划痕为一类,称为方案3。将凹坑作为一类,合格、油污与划痕为一类,称为方案4。支持向量机训练结果如图4(a),卷积神经网络训练结果如图4(b)所示。二分类情况下卷积神经网络模型训练后的曲线下面积大于支持向量机,这表明其分类性能比支持向量机高。
实施本发明实施例,具有如下有益效果:
相对于传统的灭弧栅片表面缺陷的检测方法,本发明基于方向梯度直方图(HOG)与Gabor算法结合的图像特征向量提取方法,将灭弧栅片从背景中提取出来并导入卷积神经网络模型中,检测出灭弧栅片表面缺陷的概率,提升了识别速度及准确率。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (5)

1.一种灭弧栅片表面缺陷的检测方法,其特征在于,包括以下步骤:
步骤S1、获取灭弧栅片的原始图像,并对所述原始图像进行预处理,得到预处理后的目标图像;
步骤S2、将所述目标图像处理成具有x,y方向的梯度直方图,并确定出所述梯度直方图的特征向量,且将所述梯度直方图的特征向量与预设的Gabor滤波器进行卷积处理后,得到具有Gabor特征的图像及其对应的特征向量,进一步采用主成分分析法对所述具有Gabor特征的图像的特征向量进行提取;
步骤S3、将从所述具有Gabor特征图像中提取出的特征向量,导入预设的卷积神经网络模型中,计算出所述灭弧栅片表面各缺陷的概率。
2.如权利要求1所述的灭弧栅片表面缺陷的检测方法,其特征在于,所述步骤S1具体包括:
将所述原始图像转换成灰度图像,并采用非局部均值算法对所述灰度图像进行滤波去噪处理,且进一步对所述滤波去噪处理后的灰度图像进行阈值化处理;
采用边缘追踪的方式找出所述阈值化处理后的灰度图像所对应的多个轮廊;
求解每一个轮廊的面积并确定每一个轮廊面积的极大值,且进一步根据所求解的每一个轮廊面积的极大值,创建轮廊的可倾斜矩形框;
对所创建的轮廊的可倾斜矩形框进行裁剪,得到目标图像。
3.如权利要求1所述的灭弧栅片表面缺陷的检测方法,其特征在于,所述步骤S2具体包括:
通过核[-1,0,1]、[-1,0,1]-1与所述目标图像进行卷积处理,得到在x、y方向上分别对应的梯度向量gx(x,y)和gy(x,y),并根据所得到的梯度向量gx(x,y)和gy(x,y),计算出梯度向量长度M和角度ρ;
将所述目标图像栅格化,利用8×8像素组成一个单元划分图像,并以单元内像素梯度向量长度为y轴、方向为x轴绘制单元直方图;
利用2×2单元组成一个块划分图像,并将单元直方图连接起来组成块直方图作为所述梯度直方图,并进一步确定出所述梯度直方图的特征向量;
创建多个Gabor滤波器,并将所述梯度直方图的特征向量与所创建的多个Gabor滤波器进行卷积处理后,获得具有Gabor特征的图像及其对应的特征向量;
采用主成分分析法对所述具有Gabor特征的图像的特征向量进行降维并提取。
4.如权利要求3所述的灭弧栅片表面缺陷的检测方法,其特征在于,所述多个Gabor滤波器G(x,y)均由高斯核函数乘以正弦波组成,可根据频率及方向角度进行设定;其中,f为正弦波频率,θ为正弦波的旋转角度,γ与η分别为高斯核函数的长轴与短轴带宽,j为复数单位。通过改变正弦波频率和旋转角度可以得到不同尺度和角度的滤波器。
5.如权利要求1所述的灭弧栅片表面缺陷的检测方法,其特征在于,所述灭弧栅片表面缺陷包括油污、凹坑及划痕。
CN201810749341.7A 2018-07-10 2018-07-10 一种灭弧栅片表面缺陷的检测方法 Active CN109101976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810749341.7A CN109101976B (zh) 2018-07-10 2018-07-10 一种灭弧栅片表面缺陷的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810749341.7A CN109101976B (zh) 2018-07-10 2018-07-10 一种灭弧栅片表面缺陷的检测方法

Publications (2)

Publication Number Publication Date
CN109101976A true CN109101976A (zh) 2018-12-28
CN109101976B CN109101976B (zh) 2021-11-30

Family

ID=64845987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810749341.7A Active CN109101976B (zh) 2018-07-10 2018-07-10 一种灭弧栅片表面缺陷的检测方法

Country Status (1)

Country Link
CN (1) CN109101976B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189351A (zh) * 2019-04-16 2019-08-30 浙江大学城市学院 一种基于生成式对抗网络的划痕图像数据扩增方法
CN110766689A (zh) * 2019-11-06 2020-02-07 深圳微品致远信息科技有限公司 基于卷积神经网络进行物品图像缺陷检测的方法及装置
CN110838107A (zh) * 2019-10-31 2020-02-25 广东华中科技大学工业技术研究院 变角度光学视频智能检测3c透明构件缺陷的方法及装置
CN111102920A (zh) * 2019-12-18 2020-05-05 佛山科学技术学院 一种基于增强现实的机械组件质检方法及系统
CN113252695A (zh) * 2021-06-16 2021-08-13 上海启迪睿视智能科技有限公司 一种基于图像处理的塑封薄膜缺陷检测方法及检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424059B1 (en) * 1999-12-27 2002-07-23 Mitsubishi Denki Kabushiki Kaisha Gas insulated switching device
US20040109269A1 (en) * 2002-12-09 2004-06-10 Kawate Keith W. Arc detection apparatus and method
CN103868859A (zh) * 2014-03-04 2014-06-18 中国空间技术研究院 一种基于ccd成像的电弧金属蒸汽浓度测量系统
CN103926542A (zh) * 2014-03-06 2014-07-16 温州大学 一种栅片灭弧室灭弧效率的检测方法及其测量装置
CN103954919A (zh) * 2014-04-28 2014-07-30 温州大学 小型断路器灭弧室瞬态磁场的测量装置
CN104698332A (zh) * 2015-03-11 2015-06-10 西安交通大学 基于激光成像的电弧与触头运动过程的同步测量装置及方法
CN106503739A (zh) * 2016-10-31 2017-03-15 中国地质大学(武汉) 联合光谱和纹理特征的高光谱遥感影像svm分类方法及系统
CN106876224A (zh) * 2017-01-20 2017-06-20 西安交通大学 塑壳断路器灭弧室壳体所受冲击气压的预测系统及方法
CN107220988A (zh) * 2017-04-30 2017-09-29 南京理工大学 基于改进canny算子的零部件图像边缘提取方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424059B1 (en) * 1999-12-27 2002-07-23 Mitsubishi Denki Kabushiki Kaisha Gas insulated switching device
US20040109269A1 (en) * 2002-12-09 2004-06-10 Kawate Keith W. Arc detection apparatus and method
CN103868859A (zh) * 2014-03-04 2014-06-18 中国空间技术研究院 一种基于ccd成像的电弧金属蒸汽浓度测量系统
CN103926542A (zh) * 2014-03-06 2014-07-16 温州大学 一种栅片灭弧室灭弧效率的检测方法及其测量装置
CN103954919A (zh) * 2014-04-28 2014-07-30 温州大学 小型断路器灭弧室瞬态磁场的测量装置
CN104698332A (zh) * 2015-03-11 2015-06-10 西安交通大学 基于激光成像的电弧与触头运动过程的同步测量装置及方法
CN106503739A (zh) * 2016-10-31 2017-03-15 中国地质大学(武汉) 联合光谱和纹理特征的高光谱遥感影像svm分类方法及系统
CN106876224A (zh) * 2017-01-20 2017-06-20 西安交通大学 塑壳断路器灭弧室壳体所受冲击气压的预测系统及方法
CN107220988A (zh) * 2017-04-30 2017-09-29 南京理工大学 基于改进canny算子的零部件图像边缘提取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAN LIU: "Research on Temperature Measurement of High Voltage Circuit Breaker Arc Extinguish Chamber", 《 2010 INTERNATIONAL CONFERENCE ON E-PRODUCT E-SERVICE AND E-ENTERTAINMENT》 *
邵敏艳等: "中压环网柜栅片灭弧式负荷开关开断性能实验研究", 《高压电器》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189351A (zh) * 2019-04-16 2019-08-30 浙江大学城市学院 一种基于生成式对抗网络的划痕图像数据扩增方法
CN110838107A (zh) * 2019-10-31 2020-02-25 广东华中科技大学工业技术研究院 变角度光学视频智能检测3c透明构件缺陷的方法及装置
CN110838107B (zh) * 2019-10-31 2023-02-17 广东华中科技大学工业技术研究院 变角度光学视频智能检测3c透明构件缺陷的方法及装置
CN110766689A (zh) * 2019-11-06 2020-02-07 深圳微品致远信息科技有限公司 基于卷积神经网络进行物品图像缺陷检测的方法及装置
CN111102920A (zh) * 2019-12-18 2020-05-05 佛山科学技术学院 一种基于增强现实的机械组件质检方法及系统
CN113252695A (zh) * 2021-06-16 2021-08-13 上海启迪睿视智能科技有限公司 一种基于图像处理的塑封薄膜缺陷检测方法及检测装置
CN113252695B (zh) * 2021-06-16 2021-09-28 上海启迪睿视智能科技有限公司 一种基于图像处理的塑封薄膜缺陷检测方法及检测装置

Also Published As

Publication number Publication date
CN109101976B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN109101976A (zh) 一种灭弧栅片表面缺陷的检测方法
CN111383209B (zh) 一种基于全卷积自编码器网络的无监督瑕疵检测方法
CN111292305B (zh) 一种改进型yolo-v3的金属加工表面缺陷检测方法
CN116205919B (zh) 基于人工智能的五金零件生产质量检测方法及系统
CN106600600A (zh) 基于特征匹配的晶圆缺陷检测方法
CN109632808B (zh) 棱边缺陷检测方法、装置、电子设备及存储介质
CN111046880A (zh) 一种红外目标图像分割方法、系统、电子设备及存储介质
CN107220649A (zh) 一种素色布匹缺陷检测和分类方法
CN103175844A (zh) 一种金属零部件表面划痕缺陷检测方法
CN112233067A (zh) 一种热轧钢卷端面质量检测方法及系统
CN106846313A (zh) 工件表面缺陷检测方法和装置
CN109685766A (zh) 一种基于区域融合特征的布匹瑕疵检测方法
CN105741281B (zh) 基于邻域离散度的图像边缘检测方法
CN113706566B (zh) 一种基于边缘检测的加香喷雾性能检测方法
CN113393426A (zh) 一种轧钢板表面缺陷检测方法
CN116862910B (zh) 基于自动化裁切生产的视觉检测方法
CN114549446A (zh) 一种基于深度学习的气缸套缺陷标检测方法
CN110660065A (zh) 一种红外故障检测识别算法
CN114820471A (zh) 一种面向智能制造精微结构表面缺陷的视觉检测方法
CN111223078B (zh) 瑕疵等级判定的方法及存储介质
CN116883439A (zh) 一种表面带水渍的板坯轮廓检测方法及装置
CN117455917B (zh) 一种蚀刻引线框架误报库建立及误报在线判定筛选方法
Jia et al. A modified centernet for crack detection of sanitary ceramics
CN117197700B (zh) 智能化无人巡检接触网缺陷识别系统
CN115511775A (zh) 一种基于语义分割的轻量型瓷砖表面缺陷检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant