CN109087820A - 超声化学法原位制备石墨烯复合电极材料 - Google Patents

超声化学法原位制备石墨烯复合电极材料 Download PDF

Info

Publication number
CN109087820A
CN109087820A CN201811031891.1A CN201811031891A CN109087820A CN 109087820 A CN109087820 A CN 109087820A CN 201811031891 A CN201811031891 A CN 201811031891A CN 109087820 A CN109087820 A CN 109087820A
Authority
CN
China
Prior art keywords
electrode material
graphene
combination electrode
situ
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811031891.1A
Other languages
English (en)
Other versions
CN109087820B (zh
Inventor
杨应奎
何承恩
李冉
章庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Xigu Carbon Source New Material Co ltd
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN201811031891.1A priority Critical patent/CN109087820B/zh
Publication of CN109087820A publication Critical patent/CN109087820A/zh
Application granted granted Critical
Publication of CN109087820B publication Critical patent/CN109087820B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种超声化学法原位制备石墨烯复合电极材料,通过简单的超声化学反应工序就能有效将石墨剥离成为石墨烯,同时在石墨烯表面原位生成金属氧化物和导电聚合物,从而得到比电容高、充放电速率快、循环稳定性好的石墨烯复合电极材料。本方法具体包括以下步骤:将石墨、金属盐或导电聚合物单体、助剂加入到溶剂中,进行超声化学反应,超声频率为20kHz~10MHz,超声功率为150~1000W,反应时间为1h以上;然后洗涤干燥得到石墨烯复合电极材料,其中,制得的石墨烯复合电极材料为石墨烯/金属氧化物复合电极材料,或石墨烯/导电聚合物复合材料,或石墨烯/金属氧化物/导电聚合物复合材料。

Description

超声化学法原位制备石墨烯复合电极材料
技术领域
本发明属于电极材料制备领域,具体涉及超声化学法原位制备石墨烯复合电极材料。
技术背景
随着现代科学技术的不断发展,能源危机问题显得日益突出。发展新能源储能技术已势在必行,其中电化学储能器件的开发显得尤为重要,超级电容器和锂离子电池由于其优异的电化学性能和环境友好性,逐渐脱颖而出。而电化学储能材料是实现储能器件最大存储,高效转化和合理应用的关键,是发展新能源技术的基础和核心。
电化学储能材料主要分为双电层电容材料和赝电容材料。其中双电层电容材料主要为碳材料,赝电容材料包括过渡金属氧化物和导电聚合物。石墨烯作为一种二维碳材料,具有比表面积大、导电性高、稳定性好、来源丰富等突出特点,是理想的双电层电容材料,然而其缺点是比电容相对较低;金属氧化物和导电聚合物具有较高的理论容量和低廉的成本,但是导电性较低、倍率及循环性能较差,致使其应用得到一定的限制。将石墨烯和金属氧化物或导电聚合物复合,能够充分结合金属氧化物和导电聚合物的高比电容、石墨烯高导电性和电化学稳定性,从而发挥协同作用,提高复合电极材料的电化学性能。
目前合成石墨烯复合电极材料的方法通常是先制备石墨烯,然后采用离位物理共混、原位化学氧化聚合、电化学聚合等方法合成复合电极材料。离位物理共混的方法简单,但是碳基材料通常会不可逆的团聚在一起形成大的团块,导致碳基材料在溶剂中的分散性降低,影响性能的发挥。原位化学氧化聚合和电化学聚合工序复杂、或需要特殊导电基底,产率较低。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种超声化学法原位制备石墨烯复合电极材料,通过简单的超声化学反应工序就能有效将石墨剥离成为石墨烯,同时在石墨烯表面原位生成金属氧化物和导电聚合物,从而得到比电容高、充放电速率快、循环稳定性好的石墨烯复合电极材料。
本发明为了实现上述目的,采用了以下方案:
本发明提供一种超声化学法原位制备石墨烯复合电极材料,其特征在于,包括以下步骤:将石墨、金属盐、或导电聚合物单体、或金属盐和导电聚合物单体混合物、助剂加入到溶剂中,进行超声化学反应,超声频率为20kHz~10MHz,超声功率为150~1000W,反应时间为1h以上;然后洗涤干燥得到石墨烯复合电极材料,其中,制得的所述石墨烯复合电极材料为石墨烯/金属氧化物复合电极材料、石墨烯/导电聚合物复合电极材料或石墨烯/导电聚合物/金属氧化物复合电极材料。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:超声功率为300~600W。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:反应温度不超过75℃,最佳反应温度为30~50℃。
优选地,本发明提供的超声化学法还可以具有以下特征:反应时间不超过6h,最佳反应时间为4h。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:石墨为氧化石墨、膨胀石墨、人造石墨、鳞片石墨中的任意一种。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:金属盐为钴盐、锰盐、镍盐、铁盐、锌盐、锡盐中的至少一种。例如金属盐可以为Co(CH3COO)2、MnSO4、Ni(NO3)2、FeCl2、ZnSO4、SnCl2等;相应地,经过超声化学反应可在石墨烯表面原位生成Co3O4、MnO2、NiO、Fe3O4、ZnO、SnO2等。另外,若同时添加至少两种上述金属盐,则可反应得到多元金属氧化物,如NiCoO4、CoMoO4、MnCo2O4等。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:导电聚合物单体为苯胺、吡咯、噻吩、3,4-乙烯二氧噻吩(EDOT)中的任意一种。相应地,经过超声化学反应可在石墨烯表面原位生成聚苯胺(PANI)、聚噻吩(PTh)、聚吡咯(PPy)、聚3,4-乙烯二氧噻吩(PEDOT)。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:助剂为KOH、NaOH、NH4OH、KClO4、KMnO4、K2Cr2O7、(NH4)2S2O8、K2S2O8中的至少一种。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:溶剂为水、乙醇、甲醇中的至少一种。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:在所述石墨烯复合电极材料中,石墨烯含量为5~40wt%。
优选地,本发明提供的超声化学法制备石墨烯复合电极材料,还可以具有以下特征:采用水、乙醇和丙酮中的至少一种对超声化学反应后产物进行洗涤,再进行过滤、干燥得到石墨烯复合电极材料。可通过冲洗、离心、透析等方式进行洗涤。并且可采用常压烘箱干燥、真空烘箱干燥或冷冻干燥等常用烘干设备进行干燥。
另外,对于石墨烯金属氧化物复合电极材料,为调控石墨烯表面金属氧化物的晶型结构,从而进一步提升复合电极材料的性能,还可以将干燥后产物转移至高温炉中,在温度200~600℃下热处理1~6h。
发明的作用与效果
本发明在超声法剥离石墨制备石墨烯的反应体系中引入金属离子或导电聚合物单体,一方面利用金属离子或导电聚合物单体分子的插层作用,促进石墨剥离,提高制备石墨烯的效率;同时,金属离子或导电聚合物单体分子发生超声化学反应,在石墨烯表面原位生成金属氧化物或导电聚合物,可有效阻止石墨烯片层再聚集,提高了复合电极材料的有效比表面积,从而提升其比容量。另一方面,石墨烯在复合电极材料内部构筑了良好的导电通路,提高了电荷传输速率,从而提升其倍率性能;同时石墨烯还有效抑制了金属氧化物在电化学反应过程中的体积变化,维持了电极结构的完整性,从而改善复合电极材料电极的循环稳定性。
综上,本发明以石墨金属盐或导电聚合物单体为原料,仅通过超声化学反应即可制得性能优良的石墨烯复合电极材料,整个方法过程简单,并且合成效率高、生产成本低、易于工业化和节能环保,为发展低成本、高性能超级电容器和锂离子电池电极材料提供了理论依据和实践基础,也为能源危机和环境问题的解决开辟了新的方向。
附图说明
图1为本发明采用超声化学法制备石墨烯金属氧化物的反应机理示意图;
图2为实施例一中制备的石墨烯/Co3O4复合电极材料的透射电子显微镜(TEM)图像;
图3为实施例一中制备的石墨烯/Co3O4复合电极材料的循环伏安(CV)曲线图;
图4为实施例一中制备的石墨烯/Co3O4复合电极材料的恒电流充放电(GCD)曲线图;
图5为实施例一中制备的石墨烯/Co3O4复合电极材料的循环稳定性曲线图;
图6为实施例二中制备的石墨烯/SnO2复合电极材料的TEM图像;
图7为实施例二中制备的石墨烯/SnO2复合电极材料的GCD曲线图;
图8为实施例二中制备的石墨烯/SnO2复合电极材料的倍率性能曲线图;
图9为实施例三中制备的石墨烯/MnO2复合电极材料的CV曲线图;
图10为实施例九中制备的石墨烯/PANI复合电极材料的扫描电子显微镜(SEM)图像;
图11为实施例九中制备的石墨烯/PANI复合电极材料的CV曲线图;
图12为实施例九中制备的石墨烯/PANI复合电极材料的GCD曲线图;
图13为实施例九中制备的石墨烯/PANI复合电极材料的循环稳定性曲线图。
具体实施方式
以下结合附图对本发明涉及的超声化学法原位制备石墨烯复合电极材料的具体实施方案进行详细地说明。
<实施例一>
本实施例一中是通过超声化学原位制备石墨烯/Co3O4复合电极材料。
制备方法:
①称取人造石墨50mg,加入到100mL水中,水浴超声处理30min,配成0.5mg/mL石墨分散液。
②将2.4mmol Co(CH3COO)2·4H2O加入到上述石墨分散液中,利用探头式超声机,设定温度50℃,功率600W,超声时间1h,其中超声开1s,间断2s进行超声。
③边超声边缓慢滴加400mg(NH4)2S2O8水溶液,继续超声2h。
④将得到的产物用水、乙醇反复抽滤、洗涤至滤液呈中性,最后在60℃真空干燥箱中干燥12h,得到产物石墨烯/Co3O4复合电极材料。
⑤将产物置于管式炉中,在空气氛围中以2℃/min的升温速率,升至300℃保温4h,得到最终产品。
上述过程中,首先Co金属盐与石墨加入到溶剂中,在超声波作用下,离子插层石墨,促进石墨剥离制备石墨烯,同时钴离子发生超声化学反应,在石墨烯表面生成四氧化三钴,再经过热处理调整四氧化三钴晶形结构,最终生成稳定的石墨烯/Co3O4复合电极材料。
性能表征:
将所得的石墨烯/Co3O4复合电极材料采用透射电镜拍摄,其形貌如图2所示,从图中可以看出直径约10nm的Co3O4纳米颗粒均匀覆盖在石墨烯片层表面。
进一步将所得的石墨烯/Co3O4复合电极材料制成电容器进行测试,如图3~4所示,从CV图像和GCD图像中可以看出,该复合电极材料在5mv/s扫描速率下达到525F/g,在0.5A/g电流密度下达到268F/g,当电流密度增大20倍时容量保持率高达78.5%的比电容量,表明该复合电极材料具有较高的比电容量和较好的倍率性能;如图5所示,以5A/g电流密度对该复合电极材料进行1000次充放电循环,比电容保持率几乎达到100%,表明其具有较好的循环性能。
<实施例二>
本实施例二中是通过超声化学原位制备石墨烯/SnO2复合电极材料。
制备方法:
①称取氧化石墨100mg,加入到100mL水/乙醇混合溶剂中(VH2O:VEtOH=1:3),超声处理30min,使溶液分散均匀,配成100mL 1mg/mL的石墨分散液。
②将1.34mmol无水SnCl2加入到上述石墨分散液中,利用超声清洗机,设定温度50℃,功率300W,超声时间2h,进行超声化学反应。
③将得到的产物用水、乙醇反复离心、洗涤至溶液呈中性,最后在60℃真空干燥箱中干燥12h,得到产物石墨烯/SnO2复合电极材料。
④将产物置于管式炉中,在氩气氛围中以5℃/min的升温速率,升至220℃保温6h,得到最终产品。
性能表征:
将所得的石墨烯/SnO2复合电极材料采用透射电镜拍摄,其形貌如图6所示,从图中可以看出直径约10nm的SnO2纳米颗粒均匀覆盖在石墨烯片层表面。
进一步将所得的石墨烯/SnO2复合电极材料制成纽扣锂电池进行测试,如图7~8所示,从充放电图像和倍率性能图像可以看出,该复合电极材料具有较高的首次放电容量1615mAh/g(200mA/g),电流密度从50mA/g增大到500mA/g时的容量保持率达33.9%,体现出了良好的倍率性能。此外,在200mA/g电流密度下充放电100次之后的容量为233mAh/g,体现出了较好的循环性能。
<实施例三>
本实施例三中是通过超声化学原位制备石墨烯/MnO2复合电极材料。
制备方法:
称取天然石墨配成100mL 1mg/mL的石墨分散液,超声处理30min,使溶液分散均匀。
①将4.8mmol MnSO4加入到上述石墨分散液中,利用探头式超声机,设定温度50℃,功率600W,超声时间30min,其中超声开1s,间断2s进行超声。
②加入10mL含3.2mmol的KMnO4水溶液,继续超声反应2h。
③将得到的产物用水、乙醇反复离心、透析洗涤至溶液呈中性,最后在60℃真空干燥箱中干燥12h,得到产物石墨烯/MnO2复合电极材料。
④将产物置于管式炉中,在空气氛围中以10℃/min的升温速率,升至500℃保温4h,得到最终产品。
性能表征:
将所得的石墨烯/MnO2复合电极材料制成纽扣锂电池进行测试,如图9所示,从石墨烯/MnO2复合电极材料的CV曲线可以看出该复合电极材料表现出了良好的电容特性,在10mV/s时的比电容达到297.5F/g,100mV/s时仍保留207.3F/g,保留率为69.7%,体现出优异的倍率性能。
<实施例四>
本实施例四中,通过超声化学原位制备石墨烯/PEDOT/Fe2O3三元复合电极材料,具体包括如下步骤:
①称取膨胀石墨50mg,加入到100mL乙醇和蒸馏水按体积比1:1配好的溶液中,超声处理30min,使其分散均匀,配成0.5mg/mL的石墨分散液。
②称取0.355g的EDOT,溶于12.5mL乙醇和蒸馏水按体积比1:1配好的溶液中,搅拌均匀,然后加入上述石墨分散液中,混合搅拌10min。利用探头式超声机,设定温度50℃,功率600W,超声时间30min,其中超声开1s,间断2s进行超声。
③将0.5mmol FeCl3加入到上述石墨分散液中,随后加入10mL NaOH水溶液(1mol/L),继续超声3h。
④将得到的产物用水、乙醇反复离心、洗涤至溶液呈中性,最后在60℃真空干燥箱中干燥12h,得到产物石墨烯/Fe2O3复合电极材料。
⑤将产物置于管式炉中,在空气氛围中以5℃/min的升温速率,升至450℃保温2h,得到最终产品。
<实施例五>
本实施例五中,通过超声化学原位制备石墨烯/SnO2复合电极材料,具体包括如下步骤:
①称取鳞片石墨配成100mL 0.5mg/mL的石墨分散液。
②将1mmol SnCl2·6H2O加入到上述石墨分散液中,利用超声清洗机,设定温度50℃,功率400W,超声时间6h进行超声。
③将得到的产物用水、乙醇反复离心、透析洗涤至溶液呈中性,最后在60℃真空干燥箱中干燥12h,得到产物石墨烯/SnO2复合电极材料。
④将产物溶于30mL 85%的N2H4·H2O中,在98℃油浴中反应1h,用水和乙醇反复抽滤洗涤至中性,60℃真空干燥箱中干燥12h得到最终产品。
<实施例六>
本实施例六中,通过超声化学原位制备石墨烯/NiO复合电极材料,具体包括如下步骤:
①称取膨胀石墨50mg,加入到100mL水中,超声处理30min,使其分散均匀,制成0.5mg/mL的分散液。
②将0.5mmol Ni(CH3COO)2·H2O加入到上述石墨分散液中,利用探头式超声机,设定温度50℃,功率600W,超声时间30min,其中超声开1s,间断2s进行超声。
③加入30mL 85%的浓氨水溶液,继续超声反应3h。
④将得到的产物用水、乙醇反复洗涤、抽滤至溶液呈中性,最后在60℃真空干燥箱中干燥12h,得到产物石墨烯/NiO复合电极材料。
⑤将产物转移至管式炉中,在空气氛围中以5℃/min的升温速率,升至300℃保温3h,得到最终产品。
<实施例七>
本实施例七中,通过超声化学原位制备石墨烯/TiO2复合电极材料,具体包括如下步骤:
①称取膨胀石墨配成100mL 0.5mg/mL的石墨分散液。
②将1.0mmol TiCl4加入到上述石墨分散液中,利用探头式超声机,设定温度50℃,功率600W,超声时间2h,其中超声开1s,间断2s进行超声。
③将得到的产物用水、乙醇反复离心、透析洗涤至溶液呈中性。
④将产物溶于30mL 85%的N2H4·H2O中,在98℃油浴中反应1h,用水和乙醇反复抽滤、洗涤至中性,60℃真空干燥箱中干燥12h得到最终产品石墨烯/TiO2复合电极材料。
<实施例八>
本实施例八中,通过超声化学原位制备石墨烯/NiCoO4复合电极材料,具体包括如下步骤:
①称取鳞片石墨配成100mL 1mg/mL石墨分散液。
②将0.01mol Ni(NO3)2和0.01mol Co(NO3)2溶于50mL水中,并加入到上述石墨分散液中,利用探头式超声机,设定温度50℃,功率600W,超声时间30min,其中超声开1s,间断2s进行超声。
③加入10mL KOH溶液(5mol/L),继续超声1h。
④将得到的产物用水、乙醇反复离心、透析洗涤至溶液呈中性,最后在60℃真空干燥箱中干燥12h,得到产物石墨烯/NiCoO4复合电极材料。
⑤将产物置于管式炉中,在空气氛围中以5℃/min的升温速率,升至300℃保温6h,得到最终产品。
分析测试结果表明,实施例4~8所制备的石墨烯/金属氧化物复合材料均具有比较理想的形貌结构,金属氧化物纳米颗粒均匀地负载到少层石墨烯片层表面,提高了活性材料的利用率,从而具有较高的比电容;同时,由于石墨烯良好的导电性能,在复合材料电极内部形成导电网络通路,有利于电化学反应过程中的电荷传输,因此复合材料电极表现出了很好的倍率性能;此外,二维石墨烯片层能够防止金属氧化物在电化学过程中的体积膨胀和降解,因而复合材料电极的循环寿命也得到明显提升。
<实施例九>
本实施例九中,通过超声化学原位制备石墨烯/PANI复合电极材料,具体包括如下步骤:
①称取200mg氧化石墨加入到40mL乙醇中,超声处理30min,制备石墨分散液。
②将2mL苯胺加入到上述石墨分散液中,利用探头式超声机,设定温度30℃,功率150W,超声时间30min,其中超声开1s,间断2s进行超声。加入20mL溶有260mg(NH4)2S2O8的1MHCl溶液,继续超声2h。
③将产物用水、乙醇反复离心、透析洗涤至溶液呈中性,最后在60℃真空干燥箱中干燥12h。
④将上述产物溶于20mL 5wt%的HI中,在90℃水浴中反应2h,用水和乙醇反复抽滤洗涤至中性,60℃真空干燥箱中干燥12h得到最终产品石墨烯/PANI复合电极材料。
性能表征:
将所得的石墨烯/PANI复合电极材料采用扫描电镜拍摄,其形貌如图10所示,从图中可以看出聚合形成的PANI均匀覆盖在石墨烯片层表面。
将最终产品作为工作电极,以饱和KCl甘汞电极(SCE)为参比电极,1cm×1cm的Pt片作为对电极,1M H2SO4水溶液为电解质进行测试。如图11~12所示,从石墨烯/PANI复合电极材料的CV图像、GCD图像和循环稳定性图像可以看出,该复合电极材料在5mv/s扫描速率下达到301F/g,在0.5A/g电流密度下达到180F/g,当扫描速率增大20倍时容量保持率高达86.3%的比电容量,表明其具有较高的比电容量和较好的倍率性能;如图13所示,以5A/g电流密度该复合电极材料进行1000次充放电循环,比电容保持率达到71.5%,表明其具有较好的循环性能(以5A/g电流密度循环充放电1000圈,比电容保持率达到71.5%)。
另外,以上实施例中,采用的超声清洗机型号为:KQ3200DE型数控超声波清洗器,昆山市超声仪器有限公司生产;采用的探头式超声机型号为:28B020,宁波新芝生物科技股份有限公司生产;其它未特别说明的超声过程均采用的是超声清洗机。
以上实施例仅仅是对本发明技术方案所做的举例说明。本发明所涉及的超声化学法原位制备石墨烯复合电极材料并不仅仅限定于在以上实施例中所描述的内容,而是以权利要求所限定的范围为准。本发明所属领域技术人员在该实施例的基础上所做的任何修改或补充或等效替换,都在本发明的权利要求所要求保护的范围内。

Claims (10)

1.超声化学法原位制备石墨烯复合电极材料,其特征在于,包括以下步骤:
将石墨、金属盐、或导电聚合物单体、或金属盐和导电聚合物单体的混合物、助剂加入到溶剂中,进行超声化学反应,超声功率为150~1000W,反应时间为1h以上;然后洗涤干燥得到石墨烯复合电极材料,
其中,制得的所述石墨烯复合电极材料为石墨烯/金属氧化物复合电极材料、或石墨烯/导电聚合物复合电极材料、或石墨烯/导电聚合物/金属氧化物复合电极材料。
2.根据权利要求1所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,所述超声功率为300~600W。
3.根据权利要求1所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,所述超声化学反应的反应温度不超过75℃。
4.根据权利要求3所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,所述反应温度为30~50℃,反应时间为4~6h。
5.根据权利要求1所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,所述石墨为氧化石墨、膨胀石墨、人造石墨、鳞片石墨中的任意一种。
6.根据权利要求1所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,所述金属盐为钴盐、锰盐、镍盐、铁盐、锌盐、锡盐中的至少一种。
7.根据权利要求1所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,所述导电聚合物单体为苯胺、吡咯、噻吩、3,4-乙烯二氧噻吩中的任意一种。
8.根据权利要求1所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,所述助剂为KOH、NaOH、NH4OH、KClO4、KMnO4、K2Cr2O7、(NH4)2S2O8、K2S2O8中的至少一种。
9.根据权利要求1所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,所述溶剂为水、乙醇、甲醇中的至少一种。
10.根据权利要求1所述的超声化学法原位制备石墨烯复合电极材料,其特征在于:
其中,在所述石墨烯复合电极材料中,石墨烯含量为5~40wt%。
CN201811031891.1A 2018-09-05 2018-09-05 超声化学法原位制备石墨烯复合电极材料 Active CN109087820B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811031891.1A CN109087820B (zh) 2018-09-05 2018-09-05 超声化学法原位制备石墨烯复合电极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811031891.1A CN109087820B (zh) 2018-09-05 2018-09-05 超声化学法原位制备石墨烯复合电极材料

Publications (2)

Publication Number Publication Date
CN109087820A true CN109087820A (zh) 2018-12-25
CN109087820B CN109087820B (zh) 2021-01-01

Family

ID=64840621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811031891.1A Active CN109087820B (zh) 2018-09-05 2018-09-05 超声化学法原位制备石墨烯复合电极材料

Country Status (1)

Country Link
CN (1) CN109087820B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040729A (zh) * 2019-05-22 2019-07-23 大同墨西科技有限责任公司 一种物理剥离制备石墨烯金属纳米粒子复合体的方法
CN113077993A (zh) * 2021-04-12 2021-07-06 中南大学 一种FeOOH/GO复合电极材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103025655A (zh) * 2010-06-25 2013-04-03 新加坡国立大学 通过石墨剥离形成石墨烯的方法
CN103117175A (zh) * 2013-02-25 2013-05-22 中国科学院过程工程研究所 一种多元复合纳米材料、其制备方法及其用途
CN107010620A (zh) * 2016-01-27 2017-08-04 合肥工业大学 一种适用于批量化制备石墨烯量子点的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103025655A (zh) * 2010-06-25 2013-04-03 新加坡国立大学 通过石墨剥离形成石墨烯的方法
CN103117175A (zh) * 2013-02-25 2013-05-22 中国科学院过程工程研究所 一种多元复合纳米材料、其制备方法及其用途
CN107010620A (zh) * 2016-01-27 2017-08-04 合肥工业大学 一种适用于批量化制备石墨烯量子点的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIPANWITA MAJUMDAR, ET AL.: ""Sonochemically synthesized hydroxy-functionalized graphene-MnO2 nanocomposite for supercapacitor applications"", 《J APPL ELECTROCHEM》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040729A (zh) * 2019-05-22 2019-07-23 大同墨西科技有限责任公司 一种物理剥离制备石墨烯金属纳米粒子复合体的方法
CN110040729B (zh) * 2019-05-22 2022-06-17 大同墨西科技有限责任公司 一种物理剥离制备石墨烯金属纳米粒子复合体的方法
CN113077993A (zh) * 2021-04-12 2021-07-06 中南大学 一种FeOOH/GO复合电极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109087820B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
Gao et al. Preparation of NiMoO4-PANI core-shell nanocomposite for the high-performance all-solid-state asymmetric supercapacitor
Zhong et al. Nickel cobalt manganese ternary carbonate hydroxide nanoflakes branched on cobalt carbonate hydroxide nanowire arrays as novel electrode material for supercapacitors with outstanding performance
Venkatachalam et al. Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications
Zhou et al. Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance
Ma et al. Nickel cobalt hydroxide@ reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability
Lin et al. Hierarchical three-dimensional FeCo2O4@ MnO2 core-shell nanosheet arrays on nickel foam for high-performance supercapacitor
Huang et al. High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@ polyaniline
Long et al. Amorphous Ni–Co binary oxide with hierarchical porous structure for electrochemical capacitors
Kong et al. The specific capacitance of sol–gel synthesised spinel MnCo2O4 in an alkaline electrolyte
Lan et al. Metal-organic framework-derived porous MnNi2O4 microflower as an advanced electrode material for high-performance supercapacitors
Huang et al. Sewable and cuttable flexible zinc-ion hybrid supercapacitor using a polydopamine/carbon cloth-based cathode
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN105336940B (zh) 一种钛酸钠纳米线/石墨烯复合负极材料及其制备方法
Fan et al. PANI-Co3O4 with excellent specific capacitance as an electrode for supercapacitors
Etman et al. Mo1. 33CTz–Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors
CN105845904B (zh) 一种钠离子电池金属氧化物/聚吡咯空心纳米管负极复合材料及其制备方法
CN107230784B (zh) 一种球形石墨烯/四氧化三锰复合材料及其制备方法及应用
CN102290253B (zh) 一种碳包覆纳米过渡金属氧化物及其制备方法
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
Wang et al. Rational design of 2D/1D ZnCo-LDH hierarchical structure with high rate performance as advanced symmetric supercapacitors
Li et al. Controlled preparation of hollow and porous Co9S8 microplate arrays for high-performance hybrid supercapacitors
CN110563051A (zh) 一种NiCoAl-LDH/N-GO复合材料的制备方法及其应用
CN104176783A (zh) 一种氮碳材料包覆二氧化锰纳米线的制备及应用方法
CN104091922B (zh) Mo0.5W0.5S2纳米瓦/石墨烯电化学贮钠复合电极及制备方法
Niu et al. Hydrothermal ion exchange synthesis of CoM (M= Fe or Mn)/MXene 2D/2D hierarchal architectures for enhanced energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200703

Address after: 430074 No. 182 National Road, Hongshan District, Hubei, Wuhan

Applicant after: SOUTH CENTRAL University FOR NATIONALITIES

Applicant after: GUANGDONG XIGU CARBON SOURCE NEW MATERIAL Co.,Ltd.

Address before: 430074 No. 182 National Road, Hongshan District, Hubei, Wuhan

Applicant before: SOUTH CENTRAL University FOR NATIONALITIES

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant