CN109086497A - 基于粒子群算法的金属与合金势能力场开发方法 - Google Patents

基于粒子群算法的金属与合金势能力场开发方法 Download PDF

Info

Publication number
CN109086497A
CN109086497A CN201810781688.XA CN201810781688A CN109086497A CN 109086497 A CN109086497 A CN 109086497A CN 201810781688 A CN201810781688 A CN 201810781688A CN 109086497 A CN109086497 A CN 109086497A
Authority
CN
China
Prior art keywords
potential energy
function
value
particle swarm
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810781688.XA
Other languages
English (en)
Other versions
CN109086497B (zh
Inventor
都时禹
刘臻
韩琪
张鸣
张一鸣
黄庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
University of Chinese Academy of Sciences
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS, University of Chinese Academy of Sciences filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201810781688.XA priority Critical patent/CN109086497B/zh
Publication of CN109086497A publication Critical patent/CN109086497A/zh
Application granted granted Critical
Publication of CN109086497B publication Critical patent/CN109086497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种基于粒子群算法的金属与合金势能力场开发方法,所述方法包括:基于三阶样条插值公式建立金属与合金EAM势能力场模型;使用生成的势能力场用于材料性质的分子动力学计算,建立评价函数对势能力场的准确性进行评判;基于粒子群算法对EAM势能力场公式中的参数寻优,获取误差最小的势能力场公式。采用本发明技术方案可以开发适用于各类纯金属与多元合金的势能力场,其结果可靠,易于实现,收敛速度快,可移植性强。

Description

基于粒子群算法的金属与合金势能力场开发方法
技术领域
本发明涉及一种金属与合金势能力场开发方法,特别涉及一种基于粒子群算法的金属与合 金势能力场开发方法,属于材料的性能预测和计算领域。
背景技术
在材料的理论计算领域,分子动力学作为微观尺度的模拟手段,能够预测材料的热力学性 能以及单个缺陷在材料内部的演化行为,特别是在研究核能材料的辐照损伤方面有着广泛的应 用。而势能力场是分子动力学计算的前提条件,一个准确的势能力场才能保证计算结果的准确 性。对于金属材料而言,嵌入原子式(EAM)势能力场是最广泛使用的势能力场。传统的 EAM势能力场开发方法主要使用基于梯度的爬山法,其计算过程较为复杂,收敛速度慢,且开 发出的各种金属势能力场往往格式与数量级不统一,难以完成多元合金势能力场的开发。
发明内容
本发明的主要目的在于旨在提出一种基于粒子群算法的金属与合金势能力场开发方法,用 于快速便捷的开发各类金属与合金的分子动力学势能力场,以克服现有技术的不足。
为实现前述发明目的,本发明提供的基于粒子群算法的金属与合金势能力场开发方法,包 括以下步骤:
S10.基于三阶样条插值公式建立金属与合金的EAM势能力场模型;
S20.使用所述EAM势能力场模型计算金属和/或合金的性能参数,建立评价函数对势能力 场的准确性进行评判;
S30.基于粒子群算法对所述EAM势能力场模型中的参数进行优化,获取误差最小的EAM 势能力场。
优选地,在步骤S10中,所述EAM势能力场的原子对势函数以及电子密度函数为:
其中与Ψ分别代表原子对势函数与电子密度函数,r为两原子间距离,θ为单位阶跃函 数,n为插值函数的总分段数,rk为第k项的截断距离,ak为第k项的三阶参数。
优选地,步骤S10中,所述EAM势能力场的嵌入电子式函数为:
其中,ρ为原子周围的电子总密度,b1,b2为修正因子,数量级分别为10-4与10-8
优选地,在步骤S20中,所述评价函数为:
fitness=∑wp(1-Pcalc/Ptar)2
其中,wp为各个性能参数的权重因子,Pcalc为通过EAM势能力场得到的计算值,Ptar为目 标值;所述目标值为对所述性能参数进行第一性原理计算或实验测量得到的参数值,所述性能 参数包括聚合能、晶格常数、弹性常数、相转换能、点缺陷形成能;当评价函数值越小时,势 能力场的误差越小,力场越准确。
优选地,采用函数公式值替代样条插值中的三阶参数,通过下式计算函数值与三阶参数的 转换关系:
其中,Vk为样条插值函数在rk点的计算值。
优选地,基于粒子群算法对EAM势能力场模型进行优化的参数包括:原子对势函数与电 子密度函数的截断距离rk,样条插值函数在rk点的计算值Vk,嵌入电子式函数中的修正因子 b。
进一步地,步骤S30中所述基于粒子群算法对EAM势能力场模型中的参数进行优化,包 括以下步骤:
S30.1.初始化粒子的速度与位置,或载入粒子群运动状态文件;
S30.2.根据粒子的位置生成势能力场文件,通过分子动力学计算得到性能参数;
S30.3.通过评价函数判断力场的准确性,选取每个粒子在计算历史中的最小评价函数值为 该粒子的历史最优值;
S30.4.从所有粒子的历史最优值中选取全局最优值,根据所述历史最优值与全局最优值对 粒子的速度与位置进行更新;
S30.5.判断迭代次数是否达到单次计算上限,若未达到,则返回步骤S30.2;若达到,储存 粒子群运动状态并输出最优力场的评价函数值;
S30.6.判断评价函数值是否收敛,即判断两次输出的评价函数值之差是否小于收敛阈值, 若小于,表示评价函数值收敛,停止运算,优化结束;否则,将粒子群运动状态文件带入步骤 S30.1继续计算。
优选地,在步骤S30.4中,采用轮盘赌方法选择全局最优值,其公式为:
其中P为选择的概率,fHOP为每个粒子的评价函数历史最优值。
优选地,在步骤S30.4中,所述对粒子的速度与位置进行更新采用以下公式:
vi(t+1)=w*vi(t)+c1rand1(HOPi-pi(t))+c2rand2(GOPi(t)-pi(t))
Pi(t+1)=pi(t)+vi(t+1)
其中,vi(t)是第t次迭代中i粒子的速度,pi(t)是第t次迭代中i粒子的位置,HOP、GOP 分别为粒子的历史最优值与全局最优值,w是速度权重系数,c1和c2是加速因子,rand1和 rand2分别是范围在{0,1}的随机数。
优选地,在步骤S30.4中,采用自适应函数计算粒子的速度权重值,其公式为:
其中,wmin,wmax分别表示权重的最大值和最小值,f表示当前粒子的评价函数值,favg和 fmin分别表示当前所有粒子的适应性函数平均值和最小值。
优选地,在步骤S30.5中,所述储存粒子群运动状态包括对当前粒子的位置与速度,及其 每个粒子的历史最优值与全局最优值进行存储。
与现有技术相比,本发明的优点包括:
(1)利用本发明提供的技术方案,通过三阶样条插值公式,提供了普适于各种金属元素的 EAM势能力场公式模型,同时提供了多元合金的势能力场公式方案;通过粒子群算法对公式中 的插值进行寻优,提高了搜索效率与收敛速度。
(2)通过函数公式值替代样条插值中的三阶参数的方法,使粒子群各参数间相互独立,优 化了搜索效率。
(3)通过轮盘赌方法选择全局最优值,可避免搜索过程陷入局部最优的情况;并且,通过 自适应速度权重参数,提高了粒子群算法的收敛速度。
(4)在粒子群计算过程中,通过对粒子群运动状态进行存储与重载,解决了内存储存数据 过多引起的计算变慢的问题,从而提升运算效率,同时提高了运算的系统稳定性。
附图说明
图1是本发明一典型实施案例中一种基于粒子群算法的金属与合金势能力场开发方法流程 图;
图2是本发明一典型实施案例中一种粒子群算法流程图;
图3a~图3c分别是本发明典型实施案例中Fe、Al、Fe3Al的晶体结构图;
图4是本发明一典型实施案例中优化的Fe、Al、Fe-Al原子对势函数的三阶样条插值曲 线;
图5是本发明一典型实施案例中优化的Fe、Al、Fe-Al、Al-Fe电子密度函数的三阶样条插 值曲线;
图6是本发明一典型实施案例中优化的Fe、Al带修正项的嵌入电子式函数的曲线。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方 案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
请参阅图1,本发明实施例提供了一种基于粒子群算法的金属与合金势能力场开发方法, 其可以包括以下步骤:
步骤101,基于三阶样条插值公式建立金属与合金的EAM势能力场;
步骤102,使用生成的势能力场计算材料的性能参数,通过评价函数评判力场的准确性;
步骤103,利用粒子群算法优化公式中的参数值,找到误差最小的势能力场。
在步骤101中,采用三阶样条插值公式描述EAM力场的原子对势函数以及电子密度函 数,其公式为:
其中与Ψ分别代表原子对势函数与电子密度函数,r为两原子间距离,是单位阶跃函 数,n为插值函数的总分段数,rk是第k项的截断距离,ak是第k项的三阶参数。
为保证公式中各参数的相互独立性,用函数公式值替代样条插值中的三阶参数,通过下式 计算函数值与三阶参数的转换关系:
其中,Vk为样条插值函数在rk点的计算值。
采用带修正的公式描述EAM力场的嵌入电子式函数,其公式为:
其中ρ为原子周围的电子总密度,b1,b2为修正因子,数量级分别为10-4与10-8
在步骤102中,采用下式对势能力场的准确性进行评判:
fitness=∑wp(1-Pcalc/Ptar)2
其中wp为各个性能参数的权重因子,Pcalc是通过势能力场计算得到的值,Ptar为目标值, 包括通过第一性原理计算与实验测量得到聚合能、晶格常数、弹性常数、相转换能、点缺陷形 成能等信息。
请参阅图2,一些较为具体的实施方案中,通过粒子群算法对公式中的参数进行寻优,找 到误差最小的势能力场,可包含以下步骤:
步骤201,初始化粒子的速度与位置,或载入粒子群运动状态文件;
步骤202,根据粒子的位置生成势能力场文件,通过分子动力学计算得到性能参数;
步骤203,选取每个粒子的历史最优值;
计算每个粒子的评价函数值,选取每个粒子在计算历史中的最小评价函数值为该粒子的历 史最优值;
步骤204,选取粒子的全局最优值,更新粒子的位置和速度;
从历史最优值中选取全局最优值,根据历史最优值与全局最优值对粒子的速度与位置进行 更新。
步骤205,判断迭代次数是否达到单次计算上限,若未达到,则返回步骤202;若达到,储 存粒子群运动状态并输出最优力场的评价函数值;
储存粒子群运动状态具体可包括对当前粒子的位置与速度,及其每个粒子的历史最优值与 全局最优值等信息进行文件存储。
步骤206,判断评价函数值是否收敛,若收敛,停止运算,优化结束;否则将粒子群运动 状态文件载入步骤201继续计算。
判断评价函数值是否收敛,即判断两次输出的评价函数值之差是否小于收敛阈值,若小于 表示评价函数值收敛。
使用所述粒子群算法进行优化的参数包括原子对势函数与电子密度函数的截断距离rk,函 数计算值Vk,嵌入电子式函数中的修正因子b。
作为一种较佳的实施方式,可采用轮盘赌方法选择全局最优值,其公式为:
其中P为选择的概率,fHOP为每个粒子的评价函数历史最优值。
进一步地,对粒子的速度与位置进行更新可采用以下公式:
vi(t+1)=w*vi(t)+c1rand1(HOPi-pi(t))+c2rand2(GOPi(t)-pi(t))
Pi(t+1)=pi(t)+vi(t+1)
其中,vi(t)是第t次迭代中i粒子的速度,pi(t)是第t次迭代中i粒子的位置,HOP、GOP 分别为粒子的历史最优值与全局最优值,w是速度权重系数,c1和c2是加速因子,rand1和 rand2分别是范围在{0,1}的随机数。
进一步地,在速度的更新过程中,还可采用自适应函数计算粒子的速度权重值,其公式 为:
其中,wmin,wmax分别表示速度权重的最大值和最小值,f表示当前粒子的评价函数值, favg和fmin分别表示当前所有粒子的评价函数的平均值和最小值。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本 发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于 限定本发明。
实施例1
本实施例中,对铁(Fe)元素的势能力场进行开发。在常温下,铁主要以铁素体形式存 在,其晶体结构为bcc,如图3a所示。分别使用5段的三阶样条插值公式描述原子对势公式,4 段的三阶样条插值公式描述电子密度函数,嵌入电子式函数带两个修正项,所以计算时粒子的 参数数量为20个。
在评价函数计算时,选择的比对参数包括:第一性原理计算所得的晶格常数、聚合能;bcc 与fcc相的相互转化能;实验测得的单晶弹性常数C11、C12、C44;第一性原理计算的点缺陷 形成能,包括空位、100哑铃对、110哑铃对、111哑铃对;聚合能随晶格常数的变化关系;第 一性原理分子动力学计算所得的原子力匹配。
在粒子群寻优过程中,使用4个CPU进行并行计算,每个CPU计算20个粒子,共计80个粒子。通过储存重载的方式,将计算分为3个阶段进行,每个阶段迭代40步,共迭代120步。整个粒子群寻优过程耗时20个小时左右,优化后的势能力场函数曲线(原子对势函数、电 子密度函数、嵌入电子式函数)如图4~6所示。势能力场计算结果与目标值的比对如表1所 示:
表1铁(Fe)势能力场计算结果与目标值
由以上比对结果可知,各参数误差值很小,可满足使用要求。使用本实施例开发的力场计 算的材料的热容与热膨胀系数等热力学性能,其结果与实验结论十分接近,充分说明了本实施 例开发出的力场的可靠性。
实施例2
本实施例中,进行铝(Al)元素的势能力场开发。在常温下,铝的晶体结构为fcc,如图 3b所示,其原子半径大于铁元素。分别使用5段的三阶样条插值公式描述原子对势公式,3段 的三阶样条插值公式描述电子密度函数,嵌入电子式函数带两个修正项,所以计算时粒子的参 数数量为18个。
在评价函数计算时,选择的比对参数包括:第一性原理计算所得的fcc相的晶格常数与聚 合能;bcc与fcc相的相互转化能;实验测得的单晶弹性常数C11、C12、C44;第一性原理计算 的点缺陷形成能,包括空位、100哑铃对、110哑铃对、111哑铃对;聚合能随晶格常数的变化 关系;第一性原理分子动力学计算所得的原子力匹配。
在粒子群寻优过程中,使用4个CPU进行并行计算,每个CPU计算20个粒子,共计80个粒子。通过储存重载的方式,将计算分为3个阶段进行,每个阶段迭代40步,共迭代120步。整个粒子群寻优过程耗时28个小时左右,优化后的势能力场函数曲线(原子对势函数、电 子密度函数、嵌入电子式函数)如图4~6所示,势能力场计算结果与目标值的比对如表2所 示,
表2铝(Al)势能力场计算结果与目标值
由以上比对结果可知,各参数误差值很小,可满足使用要求。使用本实施例开发的力场计 算的材料的热容与热膨胀系数等热力学性能,其结果与实验结论十分接近,充分说明了本实施 例开发出的力场的可靠性。
实施例3
本实施例中,对铁-铝(Fe-Al)两元体系的势能力场进行开发,由于该力场主要应用于掺 杂少量Al元素的Fe基合金计算,所以在开发时更加侧重于Al原子在bcc相Fe中的缺陷行 为。势能力场的中Fe、Al单元力场使用的是实施例1、2中得到的力场,仍需要计算的是Fe原 子与Al原子间的原子对势函数,以及Fe对于Al、Al对于Fe的电子密度函数。分别使用5段 的三阶样条插值公式描述原子对势公式,3段的三阶样条插值公式描述电子密度函数,两元体 系没有引入新的嵌入电子式函数,所以计算时粒子的参数数量为22个。
在评价函数计算时,选择的比对参数包括:第一性原理分子动力学计算所得的原子力匹 配;单个Al原子在铁素体Fe中的缺陷形成能,包括Al原子替代、与Fe原子形成的100、 110、111哑铃对;亚稳相Fe3Al的晶格常数、聚合能、弹性常数以及聚合能随晶格常数变化曲 线,Fe3Al的晶格结构如图3c所示,其中白色填充的球形图示表示Fe原子,黑色填充的球形图 示表示Al原子。
在粒子群寻优过程中,使用4个CPU进行并行计算,每个CPU计算20个粒子,共计80个粒子。通过储存重载的方式,将计算分为3个阶段进行,每个阶段迭代40步,共迭代120步。整个粒子群寻优过程耗时6个小时左右,优化后的势能力场函数曲线(原子对势函数、电子密度函数)如图4~6所示,势能力场计算结果与目标值的比对如表3所示,
表3铁-铝(Fe-Al)势能力场计算结果与目标值
由以上比对结果可知,各参数误差值很小,可满足使用要求,本实施例开发出的力场具有 可靠性。
采用本发明提供的技术方案,通过三阶样条插值公式,提供了普适于各种金属元素的EAM 势能力场公式模型,同时提供了多元合金的势能力场公式方案;通过粒子群算法对公式中的插 值进行寻优,提高了寻优过程的搜索效率与收敛速度。
另外,通过函数公式值替代样条插值中的三阶参数的方法,使粒子群各参数间相互独立, 优化了搜索效率;通过轮盘赌方法选择全局最优值,可避免搜索过程陷入局部最优的情况;并 且,通过自适应速度权重参数,提高了粒子群算法的收敛速度;在粒子群计算过程中,通过对 粒子群运动状态进行存储与重载,解决了内存储存数据过多引起的计算变慢的问题,从而提升 运算效率,同时提高了运算的系统稳定性。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的 人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精 神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种基于粒子群算法的金属与合金势能力场开发方法,其特征在于包括以下步骤:
S10.基于三阶样条插值公式建立金属与合金的EAM势能力场模型;
S20.使用所述EAM势能力场模型计算金属和/或合金的性能参数,建立评价函数对势能力场的准确性进行评判;
S30.基于粒子群算法对所述EAM势能力场模型中的参数进行优化,获取误差最小的EAM势能力场。
2.根据权利要求1所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于:
在步骤S10中,所述EAM势能力场的原子对势函数以及电子密度函数为:
其中与Ψ分别代表原子对势函数与电子密度函数,r为两原子间距离,θ为单位阶跃函数,n为插值函数的总分段数,rk为第k项的截断距离,ak为第k项的三阶参数;
和/或,步骤S10中,所述EAM势能力场的嵌入电子式函数为:
其中,ρ为原子周围的电子总密度,b1,b2为修正因子,其数量级分别为10-4与10-8
和/或,在步骤S20中,所述评价函数为:
fitness=∑wp(1-Pcalc/Ptar)2
其中,wp为各个性能参数的权重因子,Pcalc为通过EAM势能力场得到的计算值,Ptar为目标值;所述目标值为对所述性能参数进行第一性原理计算或实验测量得到的参数值,所述性能参数包括聚合能、晶格常数、弹性常数、相转换能、点缺陷形成能;当评价函数值越小时,势能力场的误差越小,力场越准确;
和/或,步骤S30中所述基于粒子群算法对EAM势能力场模型中的参数进行优化,包括以下步骤:
S30.1.初始化粒子的速度与位置,或载入粒子群运动状态文件;
S30.2.根据粒子的位置生成势能力场文件,通过分子动力学计算得到性能参数;
S30.3.通过评价函数判断力场的准确性,选取每个粒子在计算历史中的最小评价函数值为该粒子的历史最优值;
S30.4.从所有粒子的历史最优值中选取全局最优值,根据所述历史最优值与全局最优值对粒子的速度与位置进行更新;
S30.5.判断迭代次数是否达到单次计算上限,若未达到,则返回步骤S30.2;若达到,储存粒子群运动状态并输出最优力场的评价函数值;
S30.6.判断评价函数值是否收敛,若收敛,停止运算,优化结束;否则将粒子群运动状态文件载入步骤S30.1继续计算;
其中,当步骤S30.5中两次输出的评价函数值之差小于收敛阈值时,表示评价函数值收敛。
3.根据权利要求2所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于,使用函数公式值替代所述三阶参数,函数值与三阶参数的转换关系为:
其中,Vk为样条插值函数在rk点的计算值。
4.根据权利要求2所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于,基于粒子群算法对EAM势能力场模型进行优化的参数包括:原子对势函数与电子密度函数的截断距离rk
5.根据权利要求2所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于,基于粒子群算法对EAM势能力场模型进行优化的参数包括:嵌入电子式函数中的修正因子b。
6.根据权利要求3所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于,基于粒子群算法对EAM势能力场模型进行优化的参数包括:样条插值函数在rk点的计算值Vk
7.根据权利要求2所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于:
在步骤S30.4中,采用轮盘赌方法选择全局最优值,其公式为:
其中P为选择的概率,fHOP为每个粒子的评价函数历史最优值。
8.根据权利要求2所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于:
在步骤S30.4中,所述对粒子的速度与位置进行更新采用以下公式:
vi(t+1)=w*vi(t)+c1rand1(HOPi-pi(t))+c2rand2(GOPi(t)-pi(t))
pi(t+1)=pi(t)+vi(t+1)
其中,vi(t)是第t次迭代中i粒子的速度,pi(t)是第t次迭代中i粒子的位置,HOP、GOP分别为粒子的历史最优值与全局最优值,w是速度权重系数,c1和c2是加速因子,rand1和rand2分别是范围在{0,1}的随机数。
9.根据权利要求8所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于:
采用自适应函数计算粒子的速度权重值,其公式为:
其中,wmin,wmax分别表示速度权重的最大值和最小值,f表示当前粒子的评价函数值,favg和fmin分别表示当前所有粒子的评价函数的平均值和最小值。
10.根据权利要求2所述的基于粒子群算法的金属与合金势能力场开发方法,其特征在于:在步骤S30.5中,所述储存粒子群运动状态包括对当前粒子的位置、速度,每个粒子的历史最优值及全局最优值进行存储。
CN201810781688.XA 2018-07-16 2018-07-16 基于粒子群算法的金属与合金势能力场开发方法 Active CN109086497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810781688.XA CN109086497B (zh) 2018-07-16 2018-07-16 基于粒子群算法的金属与合金势能力场开发方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810781688.XA CN109086497B (zh) 2018-07-16 2018-07-16 基于粒子群算法的金属与合金势能力场开发方法

Publications (2)

Publication Number Publication Date
CN109086497A true CN109086497A (zh) 2018-12-25
CN109086497B CN109086497B (zh) 2023-06-02

Family

ID=64838045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810781688.XA Active CN109086497B (zh) 2018-07-16 2018-07-16 基于粒子群算法的金属与合金势能力场开发方法

Country Status (1)

Country Link
CN (1) CN109086497B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048158A (zh) * 2019-12-26 2020-04-21 哈尔滨理工大学 基于spparks软件的kmc方法uo2势能力场
CN111899797A (zh) * 2020-07-07 2020-11-06 西北工业大学 镍基单晶中点缺陷对拉伸性能影响的分子模拟方法
CN114239374A (zh) * 2021-12-31 2022-03-25 华侨大学 基于晶格常数的单晶材料势函数修正方法
CN114925845A (zh) * 2021-02-02 2022-08-19 四川大学 一种嵌入原子势函数的机器学习构建方法
CN110008620B (zh) * 2019-04-15 2023-06-16 中国科学院宁波材料技术与工程研究所 一种分析动态载荷条件下α-Fe应变率敏感系数的方法
CN116432411A (zh) * 2023-03-14 2023-07-14 湖南大学 一种纯金属高压原子间相互作用势函数的构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942599A (zh) * 2014-04-23 2014-07-23 天津大学 一种基于优胜劣汰、步步选择的粒子群优化方法
CN106251005A (zh) * 2016-07-21 2016-12-21 南京工程学院 一种基于改进粒子群算法的混合储能容量优化配置方法
WO2018072351A1 (zh) * 2016-10-20 2018-04-26 北京工业大学 一种基于粒子群优化算法对支持向量机的优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942599A (zh) * 2014-04-23 2014-07-23 天津大学 一种基于优胜劣汰、步步选择的粒子群优化方法
CN106251005A (zh) * 2016-07-21 2016-12-21 南京工程学院 一种基于改进粒子群算法的混合储能容量优化配置方法
WO2018072351A1 (zh) * 2016-10-20 2018-04-26 北京工业大学 一种基于粒子群优化算法对支持向量机的优化方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110008620B (zh) * 2019-04-15 2023-06-16 中国科学院宁波材料技术与工程研究所 一种分析动态载荷条件下α-Fe应变率敏感系数的方法
CN111048158A (zh) * 2019-12-26 2020-04-21 哈尔滨理工大学 基于spparks软件的kmc方法uo2势能力场
CN111899797A (zh) * 2020-07-07 2020-11-06 西北工业大学 镍基单晶中点缺陷对拉伸性能影响的分子模拟方法
CN114925845A (zh) * 2021-02-02 2022-08-19 四川大学 一种嵌入原子势函数的机器学习构建方法
CN114925845B (zh) * 2021-02-02 2023-08-08 四川大学 一种嵌入原子势函数的机器学习构建方法
CN114239374A (zh) * 2021-12-31 2022-03-25 华侨大学 基于晶格常数的单晶材料势函数修正方法
CN116432411A (zh) * 2023-03-14 2023-07-14 湖南大学 一种纯金属高压原子间相互作用势函数的构建方法
CN116432411B (zh) * 2023-03-14 2023-10-20 湖南大学 一种纯金属高压原子间相互作用势函数的构建方法

Also Published As

Publication number Publication date
CN109086497B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN109086497A (zh) 基于粒子群算法的金属与合金势能力场开发方法
US11475317B2 (en) Microalloyed steel mechanical property prediction method based on globally additive model
Saal et al. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD)
Hattrick-Simpers et al. A simple constrained machine learning model for predicting high-pressure-hydrogen-compressor materials
Onat et al. An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method
McBride et al. Quantum contributions in the ice phases: The path to a new empirical model for water—TIP4PQ/2005
Zhao et al. Accelerating the development of multi-component Cu-Al-based shape memory alloys with high elastocaloric property by machine learning
CN110417013B (zh) 电力系统稳定器参数整定方法及可读存储介质
Sohn et al. Long-time simulations of the Kelvin-Helmholtz instability using an adaptive vortex method
Yamanaka et al. A framework for optimal safety Li-ion batteries design using physics-based models and machine learning approaches
Tian et al. Hybrid modeling of molten steel temperature prediction in LF
Agraval et al. Thermodynamic properties of iron melts with titanium, zirconium, and hafnium
Nguyen et al. A regression-based model evaluation of the Curie temperature of transition-metal rare-earth compounds
Lee et al. Machine learning-based discovery of molecules, crystals, and composites: A perspective review
Ramdan et al. Free energy problem for the simulations of the growth of Fe2B phase using phase-field method
Stanke et al. Lowest ten 1P Rydberg states of beryllium calculated with all-electron explicitly correlated Gaussian functions
Owolabi et al. Support vector regression ensemble for effective modeling of magnetic ordering temperature of doped manganite in magnetic refrigeration
Wu et al. Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature
CN116431957B (zh) 一种固溶合金物态方程的快速计算方法
CN112633455A (zh) 随机惯性权重粒子群优化方法
US9135564B2 (en) Using cyclic Markov decision process to determine optimum policy
Minami et al. Artificial neural network assisted by first-principles calculations for predicting transformation temperatures in shape memory alloys
Samaj The statistical mechanics of the classical two-dimensional Coulomb gas is exactly solved
Thiagarajan et al. Efficient Reformulation of Linear and Nonlinear Solid-Phase Diffusion in Lithium-ion Battery Models using Symmetric Polynomials: Mass Conservation and Computational Efficiency
Swernath et al. A Real Time Adaptive Charging Approach for Cycle Life Extension of Li Ion Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant