CN109081637B - 一种用于电波暗室的吸波锥形体 - Google Patents

一种用于电波暗室的吸波锥形体 Download PDF

Info

Publication number
CN109081637B
CN109081637B CN201811000909.1A CN201811000909A CN109081637B CN 109081637 B CN109081637 B CN 109081637B CN 201811000909 A CN201811000909 A CN 201811000909A CN 109081637 B CN109081637 B CN 109081637B
Authority
CN
China
Prior art keywords
electromagnetic wave
alkali
composite material
preparation
anechoic chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811000909.1A
Other languages
English (en)
Other versions
CN109081637A (zh
Inventor
赵若红
梅超
徐安
傅继阳
刘爱荣
吴玖荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN201811000909.1A priority Critical patent/CN109081637B/zh
Publication of CN109081637A publication Critical patent/CN109081637A/zh
Application granted granted Critical
Publication of CN109081637B publication Critical patent/CN109081637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1077Cements, e.g. waterglass
    • C04B20/1081Mineral polymers, e.g. geopolymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00258Electromagnetic wave absorbing or shielding materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种用于电波暗室的吸波锥形体,所述吸波锥形体为由一个正方形底板和四个等腰三角形侧板构成的空心四角锥,其底板和侧板均由表及里依次设有电磁波透射层、电磁波损耗层和电磁波透射层。所述电磁波透射层具有很高的电磁波透射率,使电磁波易于入射到每个面板的电磁波损耗层,进而被消耗吸收,穿透电磁波损耗层的残余电磁波会继续入射到同一吸波锥形体的其它面板的电磁波损耗层并被继续消耗吸收。本发明的吸波锥形体不仅具备优异的电磁波吸收损耗功能,且其为空心的四角锥结构,材料用量少,制备成本低,大大降低了电波暗室的造价,还具有优异的力学性能,强度高,整体重量轻,紧固耐用,能满足建筑工程上的要求。

Description

一种用于电波暗室的吸波锥形体
技术领域
本发明涉及一种电磁吸波材料,尤其涉及一种用于电波暗室的吸波锥形体。
背景技术
电波暗室又叫屏蔽暗室,或者称为无反射屏蔽室,它由电磁屏蔽室加射频吸波材料组合而成。六个内表面全部敷设吸波材料的电波暗室称为全暗室,它可以模拟自由空间,四个内侧面及天花板敷设吸波材料,地面为反射面的电波暗室称为半暗室,它可以模拟开阔试验场。电波暗室是电磁兼容试验的较理想的场所,由于室内无反射波存在,当对受试设备进行辐射发射电磁骚扰和辐射敏感度测量时,不会因为壁的反射而引起较大的测量误差。另一方面,由于其外壁进行了电磁屏蔽,也防止了室内电磁能量的泄漏,因此,室内设备、装备等可避免未经许可的探测和卫星侦察。因而,电波暗室也用于其它要求干扰很小,保密性很强的场所。
吸波材料是建造电波暗室的关键材料,它能有效地吸收入射的电磁波,降低目标的回波强度,从而显著地减少影响测量精度的杂散干扰。因此,对电磁波吸收材料的基本要求是:(1)入射波最大限度地进入材料内部而不在其前表面上反射,也就是说材料应具有较好的阻抗匹配特性;(2)进入材料内部的电磁波能量迅速地被材料吸收并损耗掉,也就是说材料应具有较好的衰减特征。实现第一个要求的方法是通过采用特殊的边界条件来实现与空间的匹配,如将吸波材料制成锥体结构等;实现第二个要求的方法是使材料具有很高的电磁损耗。除了这两个基本要求外,在工程上还要求吸波材料具有相应的力学、热力学性能及低的成本,如厚度薄、重量轻、紧固耐用、阻燃、散热性好,易于施加和价格便宜等特点。目前,电波暗室所用的吸波材料一般为实心的三角锥结构。若将电波暗室的内墙壁和天花板都布满这种三角锥结构的吸波材料,用量会非常大,导致电波暗室的造价高。因此,在保证电波暗室吸波性能的前提下,选用新型的电磁波吸收材料和优化吸波材料的外形及结构设计就变得尤为重要。
发明内容
为解决上述现有技术中存在的缺点和不足,本发明的目的在于提供一种用于电波暗室的吸波锥形体。本发明的吸波锥形体为空心四角锥结构,具有优异的电磁波吸收损耗性能和力学性能,强度高,重量轻,紧固耐用,能满足建筑工程上的要求,制备成本低,有效降低了电波暗室的造价。
为解决其技术问题,本发明采用的技术方案为:
一种用于电波暗室的吸波锥形体,所述吸波锥形体为由一个矩形底板和四个三角形侧板构成的空心四角锥,所述底板和侧板均包括由表及里依次设置的电磁波透射层、电磁波损耗层和电磁波透射层,所述电磁波透射层包括电磁波透射复合材料,所述电磁波损耗层包括电磁波损耗复合材料。
所述电磁波透射复合材料的制备方法,包括如下步骤:①将碳酸氢钠加入环氧树脂胶中,混合均匀,得到混合物A;②将硅烷偶联剂加入所述混合物A中,混合均匀,然后加入发泡聚苯乙烯颗粒,混合均匀,待发泡聚苯乙烯颗粒的表面完全被湿润后,加入碱激发矿渣胶凝材料,混合均匀,得到混合物B;③在所述混合物B初凝前,将其振动,以分离颗粒,将颗粒水浴加热,然后静置,得到改性发泡聚苯乙烯颗粒;④将碱激发矿渣胶凝材料与所述改性发泡聚苯乙烯颗粒混合均匀,然后依次加入稳泡剂和发泡剂,混合均匀,然后迅速装入模具中,定型后拆模,得到试块;⑤将所述试块进行蒸压、养护,即得所述电磁波透射复合材料。
发明人在研究中发现,发泡聚苯乙烯颗粒具有憎水性,难以在水中分散均匀,也难以和胶凝材料紧密地连接在一起,且其强度低、容重小,在制备电磁波透射复合材料的搅拌过程中容易上浮。为此,本发明对发泡聚苯乙烯颗粒进行了预处理,利用硅烷偶联剂对发泡聚苯乙烯颗粒进行了改性,使其由原来的憎水性转变为亲水性,同时还用预先加了碳酸氢钠粉末的环氧树脂胶和碱激发矿渣胶凝材料在发泡聚苯乙烯颗粒的表面形成一层外壳,如此,克服了发泡聚苯乙烯颗粒由于容重小而在搅拌中容易上浮的问题,也提高了发泡聚苯乙烯颗粒的强度。在胶凝材料初凝固化前,本发明还对经上述预处理的发泡聚苯乙烯颗粒进行水浴加热,如此,可使颗粒内的碳酸氢钠因受热分解产生二氧化碳气体,从而使颗粒形成多孔结构,更利于电磁波的透射。与发泡聚苯乙烯颗粒相比,本发明制得的改性发泡聚苯乙烯颗粒不仅增加了容重,在搅拌中不会上浮,且表面为亲水性,在水中容易分散均匀,也易于与胶凝材料紧密地连接在一起,颗粒整体为多孔结构,电磁波透射性能好,强度高。本发明将所述改性发泡聚苯乙烯颗粒加入碱激发矿渣胶凝材料中,并加入稳泡剂和发泡剂,制得电磁波透射复合材料。发泡剂产生的一系列相互之间独立的、不连通的且呈密闭状态的气泡可让复合材料形成多孔结构。同时,稳泡剂可让发泡剂产生的气泡更加稳定,从而使制得的复合材料的孔隙率稳定,电磁波透射性能更强。
所述电磁波损耗复合材料的制备方法,包括如下步骤:①将镍包铜粉和碳酸氢钠混合均匀,然后添加到环氧树脂胶中,混合均匀,得到混合胶体;②将所述混合胶体逐滴滴入甘油中,静置固化,得到硬化的胶体颗粒;③将所述胶体颗粒在水浴中加热,然后静置,得到多孔胶体颗粒;④将碱激发矿渣胶凝材料和所述多孔胶体颗粒混合均匀,然后装入模具中,然后振捣、养护、拆模、再养护,即得所述电磁波损耗复合材料。
发明人在研究中发现,虽然镍包铜粉具有优异的导电性能和电磁波损耗性能,但是镍包铜粉的颗粒较小,密度很大,若直接加入材料中,会分散不均匀。为此,本发明对镍包铜粉进行了预处理。首先是将镍包铜粉与碳酸氢钠粉末混合,然后将混合体加入环氧树脂胶中,搅拌均匀,制得混合胶体,再将混合胶体滴入甘油中,由于环氧树脂胶不溶于甘油,因此,滴到甘油中的水滴状的混合胶体会在其中凝固硬化成胶体颗粒,所形成的胶体颗粒由环氧树脂、镍包铜粉和碳酸氢钠共同构成。然后,再对胶体颗粒进行水浴加热,胶体颗粒上的环氧树脂胶在加热时会软化成粘稠状,而碳酸氢钠在加热时会分解产生二氧化碳气体,二者共同作用,使胶体颗粒形成多孔结构,从而制得多孔胶体颗粒。如此,不仅解决了镍包铜粉由于颗粒小、密度大而在材料中分散不均匀的技术问题,而且制得的多孔胶体颗粒的电磁波损耗性能更强。将所述多孔胶体颗粒添加到碱激发矿渣胶凝材料中制成电磁波损耗复合材料,如此,不仅能增强电磁波损耗复合材料的电磁波损耗性能,还能增强电磁波损耗复合材料的力学性能。
作为本发明所述吸波锥形体的优选实施方式,所述碱激发矿渣胶凝材料的制备方法为:将粉煤灰与矿渣混合均匀,得到混合灰体,然后向所述混合灰体中加入碱激发剂,混合均匀,即得所述碱激发矿渣胶凝材料。
本发明采用粉煤灰和矿渣与碱激发剂反应制成碱激发矿渣胶凝材料,以作为电磁波透射复合材料和电磁波损耗复合材料的基底材料。如此,不仅对矿渣、粉煤灰这些工业废弃物进行了有效利用,减少了资源浪费和工业废弃物对环境的危害,大大降低了吸波锥形体的制备成本,而且以碱激发矿渣胶凝材料为基底材料制成的电磁波透射复合材料和电磁波损耗复合材料的力学性能优异,结构致密性好,抗压强度高,抗冻性和抗腐蚀性好,不易坍塌,孔隙率稳定,制备过程环保无污染,能满足建筑结构的要求。此外,矿渣中含有金属等对电磁波具有损耗功能的成分,如此,可使作为基底材料可以消耗吸收部分的电磁波。
作为本发明所述碱激发矿渣胶凝材料的制备方法的优选实施方式,按质量比计,粉煤灰:矿渣=(7:5)~(10:3)。发明人经过系列实验研究发现,以该配比的粉煤灰和矿渣制备得到的胶凝材料的综合性能较优。作为本发明所述碱激发矿渣胶凝材料的制备方法的最优选实施方式,按质量比计,粉煤灰:矿渣=7:3。发明人经过系列实验研究发现,以该配比的粉煤灰和矿渣制备得到的胶凝材料的综合性能最优。
作为本发明所述碱激发矿渣胶凝材料的制备方法的优选实施方式,按质量比计,混合灰体:碱激发剂=1:(0.3~0.5)。
作为本发明所述碱激发矿渣胶凝材料的制备方法的更优选实施方式,按质量比计,混合灰体:碱激发剂=1:(0.4~0.5)。
作为本发明所述碱激发矿渣胶凝材料的制备方法的更优选实施方式,按质量比计,混合灰体:碱激发剂=1:(0.3~0.35)。
作为本发明所述碱激发矿渣胶凝材料的制备方法的优选实施方式,所述碱激发剂的制备方法为:将水、水玻璃和氢氧化钠混合均匀,然后静置24h,即得所述碱激发剂。
作为本发明所述碱激发剂的制备方法的优选实施方式,按质量比计,水:水玻璃:氢氧化钠=(45~55):1:2。发明人经过系列实验研究发现,以该配比的原料制得的碱激发剂的性能较好,对被激发材料的激发效果较优。
作为本发明所述碱激发剂的制备方法的最优选实施方式,按质量比计,水:水玻璃:氢氧化钠=50:1:2。发明人经过系列实验研究发现,以该配比的原料制得的碱激发剂的性能最好,对被激发材料的激发效果最优。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤①中,按质量体积比计,碳酸氢钠:环氧树脂胶=2~3g:20~30mL;发明人经过系列实验研究发现,以该配比的碳酸氢钠和环氧树脂胶制备得到的混合物A的性能较优,于发泡聚苯乙烯颗粒表面的包裹效果较好,从而使制得的改性发泡聚苯乙烯颗粒的性能较优。优选地,所述电磁波透射复合材料的制备方法的步骤①中,按质量体积比计,碳酸氢钠:环氧树脂胶=2.5g:25mL;发明人经过系列实验研究发现,以该配比的碳酸氢钠和环氧树脂胶制备得到的混合物A的性能最优,于发泡聚苯乙烯颗粒表面的包裹效果最好,从而使制得的改性发泡聚苯乙烯颗粒的性能最优。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤②中,硅烷偶联剂、混合物A、发泡聚苯乙烯颗粒和碱激发矿渣胶凝材料的配比为,硅烷偶联剂:混合物A:发泡聚苯乙烯颗粒:碱激发矿渣胶凝材料=1~1.5mL:10~12mL:10~11mL:18~22g。发明人经过系列深入研究得到,以该配比的硅烷偶联剂、混合物A、发泡聚苯乙烯颗粒和碱激发矿渣胶凝材料制备改性发泡聚苯乙烯颗粒时,可使所述改性发泡聚苯乙烯颗粒形成理想的外壳。发泡聚苯乙烯颗粒的用量占比过大,或碱激发矿渣胶凝材料的用量占比过小,都会导致无法在发泡聚苯乙烯颗粒的表面形成理想的外壳。
作为本发明所述吸波锥形体的最优选实施方式,所述电磁波透射复合材料的制备方法的步骤②中,硅烷偶联剂、混合物A、发泡聚苯乙烯颗粒和碱激发矿渣胶凝材料的配比为,硅烷偶联剂:混合物A:发泡聚苯乙烯颗粒:碱激发矿渣胶凝材料=1mL:10mL:10mL:20g。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤②中,发泡聚苯乙烯颗粒在使用前,先用去离子水洗净并烘干。作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤②中,发泡聚苯乙烯颗粒在使用前,先用去离子水洗涤2~3次,然后在烘箱内烘干。优选地,所述烘干的温度为60~70℃,时间为12h。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤③中,将颗粒在65~75℃的水浴中加热10~15min,然后静置24h,得到所述改性发泡聚苯乙烯颗粒。发明人经过系列深入研究得到,以该水浴条件对振动分离的颗粒进行水浴加热时,能得到具有较好多孔结构的改性发泡聚苯乙烯颗粒。
作为本发明所述吸波复合板的优选实施方式,所述电磁波透射复合材料的制备方法的步骤④的具体操作为:将碱激发矿渣胶凝材料与改性发泡聚苯乙烯颗粒混合,并搅拌均匀,然后依次加入稳泡剂和发泡剂,搅拌均匀,然后迅速装入模具中,使混合物料在模具中成型后割去面包头,然后拆模,得到试块。优选地,所述搅拌在净浆搅拌机中进行。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤④中,按质量比计,碱激发矿渣胶凝材料:改性发泡聚苯乙烯颗粒=(4~6):1。发明人经过系列深入研究得到,碱激发矿渣胶凝材料和改性发泡聚苯乙烯颗粒以该配比混合时,所得的复合材料既具有优异的电磁波透射性能,又具有优异的力学性能。若碱激发矿渣胶凝材料的用量占比过大,会影响复合材料的电磁波透射性能;若改性发泡聚苯乙烯颗粒的用量占比过大,会影响复合材料的强度等力学性能。
作为本发明所述吸波锥形体的最优选实施方式,所述电磁波透射复合材料的制备方法的步骤④中,按质量比计,碱激发矿渣胶凝材料:改性发泡聚苯乙烯颗粒=5:1。发明人经过系列深入研究得到,碱激发矿渣胶凝材料和改性发泡聚苯乙烯颗粒以该配比混合时,所得的复合材料的综合性能最优。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤④中,稳泡剂、发泡剂和改性发泡聚苯乙烯颗粒的配比为,稳泡剂:发泡剂:改性发泡聚苯乙烯颗粒=2~4g:5~7mL:40~50g。
作为本发明所述吸波锥形体的最优选实施方式,所述电磁波透射复合材料的制备方法的步骤④中,稳泡剂、发泡剂和改性发泡聚苯乙烯颗粒的配比为,稳泡剂:发泡剂:改性发泡聚苯乙烯颗粒=2g:5mL:44g。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤④中,稳泡剂为阿拉伯树胶粉。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤④中,发泡剂为FP-180动物性发泡剂。本发明所用的FP-180动物性发泡剂购自山东沂科泰建筑新技术应用有限公司,本发明对其不作限定,其实施皆在本发明的保护范围之内。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波透射复合材料的制备方法的步骤⑤中,将试块放入蒸压釜中,175~185℃下蒸压8h,然后放入养护箱中养护3天,即得所述电磁波透射复合材料。优选地,所述养护箱的温度为20℃、湿度为95%。发明人经过系列深入研究得到,以该蒸压条件对试块进行蒸压处理时,得到的复合材料具有较好的多孔结构。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波损耗复合材料的制备方法的步骤①中,按质量体积比计,镍包铜粉:碳酸氢钠:环氧树脂胶=8~12g:2~3g:18~22mL。发明人经过系列深入研究得到,镍包铜粉、碳酸氢钠和环氧树脂胶以该配比混合制备混合胶体时,所得的多孔胶体颗粒的多孔结构较好。
作为本发明所述吸波锥形体的最优选实施方式,所述电磁波损耗复合材料的制备方法的步骤①中,按质量体积比计,镍包铜粉:碳酸氢钠:环氧树脂胶=10g:2.5g:20mL。发明人经过系列深入研究得到,镍包铜粉、碳酸氢钠和环氧树脂胶以该配比混合制备混合胶体时,所得的多孔胶体颗粒的多孔结构最好。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波损耗复合材料的制备方法的步骤③中,将胶体颗粒在65~75℃的水浴中加热10~15min,然后静置24h,得到多孔胶体颗粒。发明人经过系列深入研究得到,以该水浴条件对硬化的胶体颗粒进行水浴加热时,能得到具有较好多孔结构的多孔胶体颗粒。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波损耗复合材料的制备方法的步骤④的具体操作为:将碱激发矿渣胶凝材料和所述多孔胶体颗粒混合均匀,然后装入模具中,振捣15~20s,然后放入养护箱中养护24h,拆模,对拆模后的材料继续养护3天,即得所述电磁波损耗复合材料。优选地,所述养护在温度为20℃、湿度为95%的环境条件下进行。
作为本发明所述吸波锥形体的优选实施方式,所述电磁波损耗复合材料的制备方法的步骤④中,按质量比计,碱激发矿渣胶凝材料:多孔胶体颗粒=8:1~10:1。发明人经过系列深入研究得到,碱激发矿渣胶凝材料和多孔胶体颗粒以该配比混合制备所得的复合材料既具有优异的电磁波吸收损耗功能,又具有优异的力学性能。若多孔胶体颗粒的用量占比过小,会导致所得复合材料的电磁波损耗功能无法最大化,若多孔胶体颗粒的用量占比过大,会导致所得复合材料的电磁波损耗功能下降。
作为本发明所述吸波锥形体的优选实施方式,所述吸波锥形体为由一个正方形底板和四个等腰三角形侧板构成的空心四角锥。
本发明的吸波锥形体为空心的四角锥结构,其底板和侧板均采用了三层的结构设计,底板和侧板均从表及里依次设有电磁波透射层、电磁波损耗层和电磁波透射层。如此,吸波锥形体的任一面板中,电磁波从位于表层的电磁波透射层入射到位于中间层的电磁波损耗层,进而被消耗吸收,部分未被消耗吸收的电磁波会从位于里层的电磁波透射层入射到其它面板的电磁波损耗层并被再次消耗吸收。本发明的吸波锥形体可使各个面板的吸波性能得到最大化,吸波锥形体内部的空心设计可使各个面板的残余电磁波被继续消耗吸收。
与现有技术相比,本发明的有益效果为:
1.本发明的电磁波透射层为多孔结构的电磁波透射复合材料,所述电磁波透射复合材料具有很高的电磁波透射率,还具有优异的力学性能,抗压强度高,抗冻性和抗腐蚀性好,孔隙率稳定,制备成本低,环保无污染,能有效改善电磁波透射层表面的阻抗特性,让更多的电磁波入射到吸波锥形体的面板内部。
2.本发明的电磁波损耗层为电磁波损耗复合材料,所述电磁波损耗复合材料具有优异的电磁波吸收损耗功能和力学性能,抗压强度高,结构致密性好,不易外泄电磁波,大大减小了吸波面板的厚度和重量,使吸波面板整体轻薄。
3.本发明的吸波锥形体为由一个正方形底板和四个等腰三角形侧板构成的空心四角锥,其底板和侧板均由表及里依次设有电磁波透射层、电磁波损耗层和电磁波透射层。所述电磁波透射层具有很高的电磁波透射率,使电磁波易于入射到每个面板的电磁波损耗层,进而被消耗吸收,穿透电磁波损耗层的残余电磁波会继续入射到同一吸波锥形体的其它面板的电磁波损耗层并被继续消耗吸收。本发明的吸波锥形体不仅具备优异的电磁波吸收损耗功能,且其为空心的四角锥结构,材料用量少,制备成本低,大大降低了电波暗室的造价,还具有优异的力学性能,强度高,整体重量轻,紧固耐用,能满足建筑工程上的要求。
附图说明
图1为本发明所述吸波锥形体的结构示意图;
图2为本发明所述吸波锥形体的侧板和底板的剖面结构示意图;
图3为实施例1、对比例1和对比例2的材料随频率的电磁波反射损耗变化图;
图4为实施例5、对比例3和对比例4的材料随频率的电磁波吸收损耗变化图;
图5为实施例10的吸波锥形体和对比例5的吸波平板随频率的电磁波吸收损耗变化图。
具体实施方式
为更清楚地表述本发明的技术方案,下面结合具体实施例进一步说明,但不能用于限制本发明,此仅是本发明的部分实施例而已。如无特别说明,本发明实施例所采用的方法均为现有常规方法。本发明所用原料均可通过商业途径购买得到,本发明对其不作限定。
本发明实施例提供一种用于电波暗室的吸波锥形体,如图1-2所示,所述吸波锥形体为由一个正方形的底板1和四个等腰三角形的侧板2拼接而成的空心四角锥,所述底板1和侧板2均由由表及里依次设置的电磁波透射层3、电磁波损耗层4和电磁波透射层3组成,所述电磁波透射层3由电磁波透射复合材料组成,所述电磁波损耗层4由电磁波损耗复合材料组成。
所述电磁波透射复合材料的制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌均匀,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=(45~55):1:2;
(2)制备第一种碱激发矿渣胶凝材料:将粉煤灰和矿渣加入净浆搅拌机中,搅拌均匀,得到混合灰体,然后加入碱激发剂,搅拌均匀,得到第一种碱激发矿渣胶凝材料;按质量比计,粉煤灰:矿渣=(7:5)~(10:3),混合灰体:碱激发剂=1:(0.4~0.5);
(3)将碳酸氢钠加入环氧树脂胶中,搅拌均匀,得到混合物A;按质量体积比计,碳酸氢钠:环氧树脂胶=2~3g:20~30mL;
(4)将发泡聚苯乙烯颗粒先用去离子水洗涤2~3次,然后在60~70℃的烘箱中烘干,烘干时间为12h;
(5)将硅烷偶联剂加入混合物A中,混合均匀,然后加入经步骤(4)处理的发泡聚苯乙烯颗粒,然后用搅拌器搅拌均匀,待发泡聚苯乙烯颗粒的表面完全被湿润后,再加入第一种碱激发矿渣胶凝材料,并在净浆搅拌机中搅拌均匀,得到混合物B;硅烷偶联剂、混合物A、发泡聚苯乙烯颗粒和第一种碱激发矿渣胶凝材料的配比为,硅烷偶联剂:混合物A:发泡聚苯乙烯颗粒:第一种碱激发矿渣胶凝材料=1~1.5mL:10~12mL:10~11mL:18~22g;
(6)在混合物B初凝前,将其倒在一个塑料盘中,然后放在振动台上振动分离颗粒,将振动后的颗粒在65~75℃的水浴中加热10~15min,然后静置24h,得到改性发泡聚苯乙烯颗粒;
(7)制备第二种碱激发矿渣胶凝材料:将粉煤灰和矿渣加入净浆搅拌机中,搅拌均匀,得到混合灰体,然后加入碱激发剂,搅拌均匀,得到第二种碱激发矿渣胶凝材料;按质量比计,粉煤灰:矿渣=(7:5)~(10:3);按质量比计,混合灰体:碱激发剂=1:(0.3~0.35);
(8)将第二种碱激发矿渣胶凝材料和改性发泡聚苯乙烯颗粒加入净浆搅拌机中,搅拌均匀,然后依次加入稳泡剂和发泡剂,搅拌均匀,然后迅速装入模具中,使混合物料在模具中成型后割去面包头,然后拆模,得到试块;按质量比计,第二种碱激发矿渣胶凝材料:改性发泡聚苯乙烯颗粒=(4~6):1;稳泡剂、发泡剂和改性发泡聚苯乙烯颗粒的配比为,稳泡剂:发泡剂:改性发泡聚苯乙烯颗粒=2~4g:5~7mL:40~50g;稳泡剂为阿拉伯树胶粉,发泡剂为FP-180动物性发泡剂;
(9)将试块放入蒸压釜中,175~185℃下蒸压8h,然后放入温度为20℃、湿度为95%的养护箱中养护3天,得到电磁波透射复合材料。
所述电磁波损耗复合材料的制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌均匀,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=(45~55):1:2;
(2)制备碱激发矿渣胶凝材料:将粉煤灰和矿渣加入净浆搅拌机中,搅拌均匀,得到混合灰体,然后加入碱激发剂,搅拌均匀,得到碱激发矿渣胶凝材料;按质量比计,粉煤灰:矿渣=(7:5)~(10:3),混合灰体:碱激发剂=1:(0.3~0.35);
(3)将镍包铜粉和碳酸氢钠混合,并在净浆搅拌机中搅拌均匀,然后添加到环氧树脂胶中,用高速搅拌机搅拌均匀,得到混合胶体;按质量体积比计,镍包铜粉:碳酸氢钠:环氧树脂胶=8~12g:2~3g:18~22mL;
(4)用25mL的普通滴定管将所述混合胶体逐滴滴入甘油中,然后静置24h,得到硬化的胶体颗粒;每滴所述混合胶体的量约为0.05mL;
(5)将胶体颗粒在65~75℃的水浴中加热10~15min,然后静置24h,得到多孔胶体颗粒;
(6)将所述碱激发矿渣胶凝材料和所述多孔胶体颗粒混合,并在净浆搅拌机中搅拌均匀,然后装入模具中,并在振捣台上振捣15~20s,然后放入养护箱中,在温度为20℃、湿度为95%的环境条件下养护24h,拆模,对拆模后的材料在相同的环境条件下继续养护3天,即得所述电磁波损耗复合材料;按质量比计,碱激发矿渣胶凝材料:多孔胶体颗粒=8:1~10:1。
实施例1
本实施例1提供一种电磁波透射复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌8~10min,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=50:1:2;
(2)制备第一种碱激发矿渣胶凝材料:将粉煤灰和矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入碱激发剂,搅拌4~5min,得到第一种碱激发矿渣胶凝材料;按质量比计,粉煤灰:矿渣=7:3,混合灰体:碱激发剂=1:0.4;
(3)将碳酸氢钠加入环氧树脂胶中,搅拌3~5min,得到混合物A;按质量体积比计,碳酸氢钠:环氧树脂胶=1g:10mL;
(4)将发泡聚苯乙烯颗粒先用去离子水洗涤2~3次,然后在65℃的烘箱中烘干,烘干时间为12h;
(5)将10mL的硅烷偶联剂加入100mL的混合物A中,混合均匀,然后加入经步骤(4)处理的发泡聚苯乙烯颗粒100mL,然后用搅拌器搅拌4~5min,待发泡聚苯乙烯颗粒的表面完全被湿润后,再加入200g第一种碱激发矿渣胶凝材料,并在净浆搅拌机中搅拌30~35s,得到混合物B;
(6)在混合物B初凝前,将其倒在一个直径为30cm的塑料盘中,然后放在振动台上振动30~45s,以分离颗粒,将振动后的颗粒在70℃的水浴中加热10~15min,然后静置24h,得到改性发泡聚苯乙烯颗粒;
(7)制备第二种碱激发矿渣胶凝材料:将140g粉煤灰和60g矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入64g碱激发剂,搅拌4~5min,得到第二种碱激发矿渣胶凝材料;
(8)将200g第二种碱激发矿渣胶凝材料和40g改性发泡聚苯乙烯颗粒加入净浆搅拌机中,搅拌4~5min,使其混合均匀,然后依次加入2g阿拉伯树胶粉和5mL FP-180动物性发泡剂,搅拌20~25s,然后迅速将搅拌好的材料装入模具中并静置3h,成型后割去面包头,然后拆模,得到试块;
(9)将试块放入蒸压釜中,180℃下蒸压8h,然后放入温度为20℃、湿度为95%的养护箱中养护3天,得到所述电磁波透射复合材料。
实施例2
本实施例2提供一种电磁波透射复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌8~10min,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=45:1:2;
(2)制备第一种碱激发矿渣胶凝材料:将粉煤灰和矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入碱激发剂,搅拌4~5min,得到第一种碱激发矿渣胶凝材料;按质量比计,粉煤灰:矿渣=7:5,混合灰体:碱激发剂=1:0.45;
(3)将碳酸氢钠加入环氧树脂胶中,搅拌3~5min,得到混合物A;按质量体积比计,碳酸氢钠:环氧树脂胶=2g:30mL;
(4)将发泡聚苯乙烯颗粒先用去离子水洗涤2~3次,然后在60℃的烘箱中烘干,烘干时间为12h;
(5)将12mL的硅烷偶联剂加入110mL的混合物A中,混合均匀,然后加入经步骤(4)处理的发泡聚苯乙烯颗粒105mL,然后用搅拌器搅拌4~5min,待发泡聚苯乙烯颗粒的表面完全被湿润后,再加入180g第一种碱激发矿渣胶凝材料,并在净浆搅拌机中搅拌30~35s,得到混合物B;
(6)在混合物B初凝前,将其倒在一个直径为30cm的塑料盘中,然后放在振动台上振动30~45s,以分离颗粒,将振动后的颗粒在65℃的水浴中加热10~15min,然后静置24h,得到改性发泡聚苯乙烯颗粒;
(7)制备第二种碱激发矿渣胶凝材料:将140g粉煤灰和100g矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入72g碱激发剂,搅拌4~5min,得到第二种碱激发矿渣胶凝材料;
(8)将200g第二种碱激发矿渣胶凝材料和50g改性发泡聚苯乙烯颗粒加入净浆搅拌机中,搅拌4~5min,使其混合均匀,然后依次加入3g阿拉伯树胶粉和6mL FP-180动物性发泡剂,搅拌20~25s,然后迅速将搅拌好的材料装入模具中并静置3h,成型后割去面包头,然后拆模,得到试块;
(9)将试块放入蒸压釜中,175℃下蒸压8h,然后放入温度为20℃、湿度为95%的养护箱中养护3天,得到所述电磁波透射复合材料。
实施例3
本实施例3提供一种电磁波透射复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌8~10min,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=55:1:2;
(2)制备第一种碱激发矿渣胶凝材料:将粉煤灰和矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入碱激发剂,搅拌4~5min,得到第一种碱激发矿渣胶凝材料;按质量比计,粉煤灰:矿渣=10:3,混合灰体:碱激发剂=1:0.5;
(3)将碳酸氢钠加入环氧树脂胶中,搅拌3~5min,得到混合物A;按质量体积比计,碳酸氢钠:环氧树脂胶=3g:20mL;
(4)将发泡聚苯乙烯颗粒先用去离子水洗涤2~3次,然后在70℃的烘箱中烘干,烘干时间为12h;
(5)将15mL的硅烷偶联剂加入120mL的混合物A中,混合均匀,然后加入经步骤(4)处理的发泡聚苯乙烯颗粒110mL,然后用搅拌器搅拌4~5min,待发泡聚苯乙烯颗粒的表面完全被湿润后,再加入220g第一种碱激发矿渣胶凝材料,并在净浆搅拌机中搅拌30~35s,得到混合物B;
(6)在混合物B初凝前,将其倒在一个直径为30cm的塑料盘中,然后放在振动台上振动30~45s,以分离颗粒,将振动后的颗粒在75℃的水浴中加热10~15min,然后静置24h,得到改性发泡聚苯乙烯颗粒;
(7)制备第二种碱激发矿渣胶凝材料:将200g粉煤灰和60g矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入91g碱激发剂,搅拌4~5min,得到第二种碱激发矿渣胶凝材料;
(8)将240g第二种碱激发矿渣胶凝材料和40g改性发泡聚苯乙烯颗粒加入净浆搅拌机中,搅拌4~5min,使其混合均匀,然后依次加入4g阿拉伯树胶粉和7mL FP-180动物性发泡剂,搅拌20~25s,然后迅速将搅拌好的材料装入模具中并静置3h,成型后割去面包头,然后拆模,得到试块;
(9)将试块放入蒸压釜中,185℃下蒸压8h,然后放入温度为20℃、湿度为95%的养护箱中养护3天,得到所述电磁波透射复合材料。
实施例4
本实施例4提供一种电磁波透射复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌8~10min,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=48:1:2;
(2)制备第一种碱激发矿渣胶凝材料:将粉煤灰和矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入碱激发剂,搅拌4~5min,得到第一种碱激发矿渣胶凝材料;按质量比计,粉煤灰:矿渣=8:3,混合灰体:碱激发剂=1:0.4;
(3)将碳酸氢钠加入环氧树脂胶中,搅拌3~5min,得到混合物A;按质量体积比计,碳酸氢钠:环氧树脂胶=1g:10mL;
(4)将发泡聚苯乙烯颗粒先用去离子水洗涤2~3次,然后在70℃的烘箱中烘干,烘干时间为12h;
(5)将13mL的硅烷偶联剂加入110mL的混合物A中,混合均匀,然后加入经步骤(4)处理的发泡聚苯乙烯颗粒108mL,然后用搅拌器搅拌4~5min,待发泡聚苯乙烯颗粒的表面完全被湿润后,再加入210g第一种碱激发矿渣胶凝材料,并在净浆搅拌机中搅拌30~35s,得到混合物B;
(6)在混合物B初凝前,将其倒在一个直径为30cm的塑料盘中,然后放在振动台上振动30~45s,以分离颗粒,将振动后的颗粒在75℃的水浴中加热10~15min,然后静置24h,得到改性发泡聚苯乙烯颗粒;
(7)制备第二种碱激发矿渣胶凝材料:将170g粉煤灰和80g矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入80g碱激发剂,搅拌4~5min,得到第二种碱激发矿渣胶凝材料;
(8)将220g第二种碱激发矿渣胶凝材料和40g改性发泡聚苯乙烯颗粒加入净浆搅拌机中,搅拌4~5min,使其混合均匀,然后依次加入3.5g阿拉伯树胶粉和6.5mL FP-180动物性发泡剂,搅拌20~25s,然后迅速将搅拌好的材料装入模具中并静置3h,成型后割去面包头,然后拆模,得到试块;
(9)将试块放入蒸压釜中,185℃下蒸压8h,然后放入温度为20℃、湿度为95%的养护箱中养护3天,得到所述电磁波透射复合材料。
实施例5
本实施例5提供一种电磁波损耗复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,并搅拌10~15min,使其混合均匀,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=50:1:2;
(2)制备碱激发矿渣胶凝材料:将700g粉煤灰和300g矿渣加入净浆搅拌机中,搅拌120~150s,使其混合均匀,得到混合灰体,然后加入320g碱激发剂,搅拌4~5min,使其混合均匀,得到碱激发矿渣胶凝材料;
(3)将100g镍包铜粉和25g碳酸氢钠混合,并在净浆搅拌机中搅拌15~20s,使其混合均匀,然后添加到200mL的环氧树脂胶中,用高速搅拌机搅拌3~4min,使其均匀,得到混合胶体;
(4)用25mL的普通滴定管将所述混合胶体逐滴滴入甘油中(每滴约为0.05mL),然后静置24h,得到硬化的胶体颗粒;
(5)取出甘油中已凝固硬化的胶体颗粒,将胶体颗粒在70℃的水浴中加热10~15min,然后静置24h,得到多孔胶体颗粒;
(6)将1000g碱激发矿渣胶凝材料和125g多孔胶体颗粒混合,并在净浆搅拌机中搅拌4~5min,使其混合均匀,然后装入模具中,并在振捣台上振捣15~20s,然后放入养护箱中,在温度为20℃、湿度为95%的环境条件下养护24h,拆模,对拆模后的材料在相同的环境条件下继续养护3天,即得所述电磁波损耗复合材料。
实施例6
本实施例6提供一种电磁波损耗复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,并搅拌10~15min,使其混合均匀,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=45:1:2;
(2)制备碱激发矿渣胶凝材料:将700g粉煤灰和500g矿渣加入净浆搅拌机中,搅拌120~150s,使其混合均匀,得到混合灰体,然后加入360g碱激发剂,搅拌4~5min,使其混合均匀,得到碱激发矿渣胶凝材料;
(3)将100g镍包铜粉和20g碳酸氢钠混合,并在净浆搅拌机中搅拌15~20s,使其混合均匀,然后添加到180mL的环氧树脂胶中,用高速搅拌机搅拌3~4min,使其均匀,得到混合胶体;
(4)用25mL的普通滴定管将所述混合胶体逐滴滴入甘油中(每滴约为0.05mL),然后静置24h,得到硬化的胶体颗粒;
(5)取出甘油中已凝固硬化的胶体颗粒,将胶体颗粒在65℃的水浴中加热10~15min,然后静置24h,得到多孔胶体颗粒;
(6)将1100g碱激发矿渣胶凝材料和120g多孔胶体颗粒混合,并在净浆搅拌机中搅拌4~5min,使其混合均匀,然后装入模具中,并在振捣台上振捣15~20s,然后放入养护箱中,在温度为20℃、湿度为95%的环境条件下养护24h,拆模,对拆模后的材料在相同的环境条件下继续养护3天,即得所述电磁波损耗复合材料。
实施例7
本实施例7提供一种电磁波损耗复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,并搅拌10~15min,使其混合均匀,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=55:1:2;
(2)制备碱激发矿渣胶凝材料:将1000g粉煤灰和300g矿渣加入净浆搅拌机中,搅拌120~150s,使其混合均匀,得到混合灰体,然后加入455g碱激发剂,搅拌4~5min,使其混合均匀,得到碱激发矿渣胶凝材料;
(3)将120g镍包铜粉和30g碳酸氢钠混合,并在净浆搅拌机中搅拌15~20s,使其混合均匀,然后添加到220mL的环氧树脂胶中,用高速搅拌机搅拌3~4min,使其均匀,得到混合胶体;
(4)用25mL的普通滴定管将所述混合胶体逐滴滴入甘油中(每滴约为0.05mL),然后静置24h,得到硬化的胶体颗粒;
(5)取出甘油中已凝固硬化的胶体颗粒,将胶体颗粒在75℃的水浴中加热10~15min,然后静置24h,得到多孔胶体颗粒;
(6)将1200g碱激发矿渣胶凝材料和120g多孔胶体颗粒混合,并在净浆搅拌机中搅拌4~5min,使其混合均匀,然后装入模具中,并在振捣台上振捣15~20s,然后放入养护箱中,在温度为20℃、湿度为95%的环境条件下养护24h,拆模,对拆模后的材料在相同的环境条件下继续养护3天,即得所述电磁波损耗复合材料。
实施例8
本实施例8提供一种电磁波损耗复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,并搅拌10~15min,使其混合均匀,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=52:1:2;
(2)制备碱激发矿渣胶凝材料:将900g粉煤灰和400g矿渣加入净浆搅拌机中,搅拌120~150s,使其混合均匀,得到混合灰体,然后加入416g碱激发剂,搅拌4~5min,使其混合均匀,得到碱激发矿渣胶凝材料;
(3)将96g镍包铜粉和24g碳酸氢钠混合,并在净浆搅拌机中搅拌15~20s,使其混合均匀,然后添加到216mL的环氧树脂胶中,用高速搅拌机搅拌3~4min,使其均匀,得到混合胶体;
(4)用25mL的普通滴定管将所述混合胶体逐滴滴入甘油中(每滴约为0.05mL),然后静置24h,得到硬化的胶体颗粒;
(5)取出甘油中已凝固硬化的胶体颗粒,将胶体颗粒在75℃的水浴中加热10~15min,然后静置24h,得到多孔胶体颗粒;
(6)将1000g碱激发矿渣胶凝材料和120g多孔胶体颗粒混合,并在净浆搅拌机中搅拌4~5min,使其混合均匀,然后装入模具中,并在振捣台上振捣15~20s,然后放入养护箱中,在温度为20℃、湿度为95%的环境条件下养护24h,拆模,对拆模后的材料在相同的环境条件下继续养护3天,即得所述电磁波损耗复合材料。
实施例9
本实施例9提供一种电磁波损耗复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,并搅拌10~15min,使其混合均匀,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=48:1:2;
(2)制备碱激发矿渣胶凝材料:将800g粉煤灰和350g矿渣加入净浆搅拌机中,搅拌120~150s,使其混合均匀,得到混合灰体,然后加入345g碱激发剂,搅拌4~5min,使其混合均匀,得到碱激发矿渣胶凝材料;
(3)将80g镍包铜粉和20g碳酸氢钠混合,并在净浆搅拌机中搅拌15~20s,使其混合均匀,然后添加到200mL的环氧树脂胶中,用高速搅拌机搅拌3~4min,使其均匀,得到混合胶体;
(4)用25mL的普通滴定管将所述混合胶体逐滴滴入甘油中(每滴约为0.05mL),然后静置24h,得到硬化的胶体颗粒;
(5)取出甘油中已凝固硬化的胶体颗粒,将胶体颗粒在65℃的水浴中加热10~15min,然后静置24h,得到多孔胶体颗粒;
(6)将1000g碱激发矿渣胶凝材料和120g多孔胶体颗粒混合,并在净浆搅拌机中搅拌4~5min,使其混合均匀,然后装入模具中,并在振捣台上振捣15~20s,然后放入养护箱中,在温度为20℃、湿度为95%的环境条件下养护24h,拆模,对拆模后的材料在相同的环境条件下继续养护3天,即得所述电磁波损耗复合材料。
实施例10
本实施例10提供一种用于电波暗室的吸波锥形体,如图1-2所示,所述吸波锥形体为由一个正方形的底板1和四个等腰三角形的侧板2拼接而成的空心四角锥,所述底板1和侧板2均由由表及里依次设置的电磁波透射层3、电磁波损耗层4和电磁波透射层3组成,所述电磁波透射层3由实施例1的电磁波透射复合材料组成,所述电磁波损耗层4由实施例5的电磁波损耗复合材料组成。
实施例11
本实施例11提供一种用于电波暗室的吸波锥形体,如图1-2所示,所述吸波锥形体为由一个正方形的底板1和四个等腰三角形的侧板2拼接而成的空心四角锥,所述底板1和侧板2均由由表及里依次设置的电磁波透射层3、电磁波损耗层4和电磁波透射层3组成,所述电磁波透射层3由实施例2的电磁波透射复合材料组成,所述电磁波损耗层4由实施例6的电磁波损耗复合材料组成。
实施例12
本实施例12提供一种用于电波暗室的吸波锥形体,如图1-2所示,所述吸波锥形体为由一个正方形的底板1和四个等腰三角形的侧板2拼接而成的空心四角锥,所述底板1和侧板2均由由表及里依次设置的电磁波透射层3、电磁波损耗层4和电磁波透射层3组成,所述电磁波透射层3由实施例3的电磁波透射复合材料组成,所述电磁波损耗层4由实施例7的电磁波损耗复合材料组成。
实施例13
本实施例13提供一种用于电波暗室的吸波锥形体,如图1-2所示,所述吸波锥形体为由一个正方形的底板1和四个等腰三角形的侧板2拼接而成的空心四角锥,所述底板1和侧板2均由由表及里依次设置的电磁波透射层3、电磁波损耗层4和电磁波透射层3组成,所述电磁波透射层3由实施例4的电磁波透射复合材料组成,所述电磁波损耗层4由实施例8的电磁波损耗复合材料组成。
实施例14
本实施例14提供一种用于电波暗室的吸波锥形体,如图1-2所示,所述吸波锥形体为由一个正方形的底板1和四个等腰三角形的侧板2拼接而成的空心四角锥,所述底板1和侧板2均由由表及里依次设置的电磁波透射层3、电磁波损耗层4和电磁波透射层3组成,所述电磁波透射层3由实施例1的电磁波透射复合材料组成,所述电磁波损耗层4由实施例9的电磁波损耗复合材料组成。
对比例1
一种碱激发矿渣胶凝材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌8~10min,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=50:1:2;
(2)制备碱激发矿渣胶凝材料:将140g粉煤灰和60g矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入64g碱激发剂,搅拌4~5min,得到碱激发矿渣胶凝材料。
对比例2
一种复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌8~10min,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=50:1:2;
(2)制备碱激发矿渣胶凝材料:将140g粉煤灰和60g矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入64g碱激发剂,搅拌4~5min,得到碱激发矿渣胶凝材料;
(3)将200g碱激发矿渣胶凝材料和40g发泡聚苯乙烯颗粒加入净浆搅拌机中,搅拌4~5min,使其混合均匀,然后依次加入2g阿拉伯树胶粉和5mL FP-180动物性发泡剂,搅拌20~25s,然后迅速将搅拌好的材料装入模具中并静置3h,成型后割去面包头,然后拆模,得到试块;
(4)将试块放入蒸压釜中,180℃下蒸压8h,然后放入温度为20℃、湿度为95%的养护箱中养护3天,得到复合材料。
对比例2使用的发泡聚苯乙烯颗粒为市售购买的普通发泡聚苯乙烯颗粒,且使用前未对其作任何预处理。
对比例3
一种碱激发矿渣胶凝材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,搅拌10~15min,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=50:1:2;
(2)制备碱激发矿渣胶凝材料:将700g粉煤灰和300g矿渣加入净浆搅拌机中,搅拌120~150s,得到混合灰体,然后加入320g碱激发剂,搅拌4~5min,得到碱激发矿渣胶凝材料。
对比例4
一种复合材料,其制备方法包括如下步骤:
(1)制备碱激发剂:将水、水玻璃和氢氧化钠混合,并搅拌10~15min,使其混合均匀,然后静置24h,得到碱激发剂;按质量比计,水:水玻璃:氢氧化钠=50:1:2;
(2)制备碱激发矿渣胶凝材料:将700g粉煤灰和300g矿渣加入净浆搅拌机中,搅拌120~150s,使其混合均匀,得到混合灰体,然后加入320g碱激发剂,搅拌4~5min,使其混合均匀,得到碱激发矿渣胶凝材料;
(3)将1000g碱激发矿渣胶凝材料和125g镍包铜粉混合,并在净浆搅拌机中搅拌4~5min,然后装入模具中,并在振捣台上振捣15~20s,然后放入养护箱中,在温度为20℃、湿度为95%的环境条件下养护24h,拆模,对拆模后的材料在相同的环境条件下继续养护3天,即得所述复合材料。
对比例4使用的镍包铜粉未进行任何预处理。
对比例5
一种吸波平板,所述吸波平板由由表及里依次设有电磁波透射层、电磁波损耗层和电磁波透射层,所述电磁波透射层由实施例1的电磁波透射复合材料组成,所述电磁波损耗层由实施例5的电磁波损耗复合材料组成。
效果例
一、电磁波透射性能测试
将实施例1的电磁波透射复合材料、对比例1的碱激发矿渣胶凝材料和对比例2的复合材料制成同等规格的样板,进行电磁波透射性能测试。
测试方法(弓形法):在微波暗室中,从发射天线经过参考金属板再到达接收天线的电磁波功率为P1,将参考金属板换为样板后到达接收天线的功率为P2,吸波材料的吸波反射率为:┏=10㏒(P1/P2)。
测试结果如图3所示,图3中,A1为对比例1的碱激发矿渣胶凝材料制成的样板的电磁波反射损耗随频率的变化曲线,A2为对比例2的复合材料制成的样板的电磁波反射损耗随频率的变化曲线,A3为实施例1的电磁波透射复合材料制成的样板的电磁波反射损耗随频率的变化曲线。
结果分析:从图3可看出,用实施例1的电磁波透射复合材料制成的样板的电磁波透射性能最好,还可看出,与胶凝材料相比,本发明的电磁波透射复合材料具有明显更优异的电磁透射性能,也说明本发明制备的改性发泡聚苯乙烯颗粒能有效提高复合材料的电磁透射性能。
二、电磁波损耗性能测试
将实施例5的电磁波损耗复合材料、对比例3的碱激发矿渣胶凝材料和对比例4的复合材料制成同等规格的样板,进行电磁波损耗性能测试。
测试方法(弓形法):在微波暗室中,从发射天线经过参考金属板再到达接收天线的电磁波功率为P1,将参考金属板换为样板后到达接收天线的功率为P2,则吸波材料的吸波反射率为:┏=10㏒(P1/P2)。
测试结果如图4所示,图4中,B为对比例3的碱激发矿渣胶凝材料制成的样板的电磁波吸收损耗随频率的变化曲线,C为对比例4的复合材料制成的样板的电磁波吸收损耗随频率的变化曲线,D为实施例5的电磁波损耗复合材料制成的样板的电磁波吸收损耗随频率的变化曲线。
结果分析:从图4可看出,用实施例5的电磁波损耗复合材料制成的样板对电磁波吸收损耗的效果最好,还可看出,与胶凝材料相比,本发明的电磁波损耗复合材料具有明显更优异的电磁吸收损耗性能,也说明本发明制备的含镍包铜粉的多孔胶体颗粒能有效提高复合材料的电磁吸收损耗性能。
三、电磁波吸收损耗性能测试
以实施例10的吸波锥形体和对比例5的吸波平板作为试样,进行电磁波吸收损耗性能测试。
测试方法(弓形法):在微波暗室中,从发射天线经过参考金属板再到达接收天线的电磁波功率为P1,将参考金属板换为样板后到达接收天线的功率为P2,则吸波材料的吸波反射率为:┏=10㏒(P1/P2)。
测试结果如图5所示,图5中,A为对比例5的吸波平板的电磁波吸收损耗随频率的变化曲线,B为实施例10的吸波锥形体的电磁波吸收损耗随频率的变化曲线。
结果分析:从图5可看出,实施例10的吸波锥形体比对比例5的吸波平板具有更强的电磁波吸收损耗功能,说明空心四锥体结构的吸波材料比平板结构的吸波材料具有更强的电磁波吸收损耗功能。
发明人还对实施例11~14的吸波锥形体进行了同样的电磁波吸收损耗性能测试,测试结果显示:实施例11~14的吸波锥形体的电磁波吸收损耗性能与实施例10的接近,说明本发明的吸波锥形体具有优异的电磁波吸收损耗性能,适用作电波暗室的吸波材料。
本发明的实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (27)

1.一种用于电波暗室的吸波锥形体,其特征在于,所述吸波锥形体为由一个矩形底板和四个三角形侧板构成的空心四角锥,所述底板和侧板均包括由表及里依次设置的电磁波透射层、电磁波损耗层和电磁波透射层,所述电磁波透射层包括电磁波透射复合材料,所述电磁波损耗层包括电磁波损耗复合材料;
所述电磁波透射复合材料的制备方法,包括如下步骤:①将碳酸氢钠加入环氧树脂胶中,混合均匀,得到混合物A;②将硅烷偶联剂加入所述混合物A中,混合均匀,然后加入发泡聚苯乙烯颗粒,混合均匀,待发泡聚苯乙烯颗粒的表面完全被湿润后,加入碱激发矿渣胶凝材料,混合均匀,得到混合物B;③在所述混合物B初凝前,将其振动,以分离颗粒,将颗粒水浴加热,然后静置,得到改性发泡聚苯乙烯颗粒;④将碱激发矿渣胶凝材料与所述改性发泡聚苯乙烯颗粒混合均匀,然后依次加入稳泡剂和发泡剂,混合均匀,然后迅速装入模具中,定型后拆模,得到试块;⑤将所述试块进行蒸压、养护,即得所述电磁波透射复合材料;
所述电磁波损耗复合材料的制备方法,包括如下步骤:①将镍包铜粉和碳酸氢钠混合均匀,然后添加到环氧树脂胶中,混合均匀,得到混合胶体;②将所述混合胶体逐滴滴入甘油中,静置固化,得到硬化的胶体颗粒;③将所述胶体颗粒在水浴中加热,然后静置,得到多孔胶体颗粒;④将碱激发矿渣胶凝材料和所述多孔胶体颗粒混合均匀,然后装入模具中,然后振捣、养护、拆模、再养护,即得所述电磁波损耗复合材料。
2.如权利要求1所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发矿渣胶凝材料的制备方法为:将粉煤灰与矿渣混合均匀,得到混合灰体,然后向所述混合灰体中加入碱激发剂,混合均匀,即得所述碱激发矿渣胶凝材料。
3.如权利要求2所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发矿渣胶凝材料的制备方法中,按质量比计,粉煤灰:矿渣=(7:5)~(10:3)。
4.如权利要求2所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发矿渣胶凝材料的制备方法中,按质量比计,粉煤灰:矿渣=7:3。
5.如权利要求2所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发矿渣胶凝材料的制备方法中,按质量比计,混合灰体:碱激发剂=1:(0.3~0.5)。
6.如权利要求2所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发矿渣胶凝材料的制备方法中,按质量比计,混合灰体:碱激发剂=1:(0.4~0.5)。
7.如权利要求2所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发矿渣胶凝材料的制备方法中,按质量比计,混合灰体:碱激发剂=1:(0.3~0.35)。
8.如权利要求2所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发剂的制备方法为:将水、水玻璃和氢氧化钠混合均匀,然后静置24h,即得所述碱激发剂。
9.如权利要求8所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发剂的制备方法中,按质量比计,水:水玻璃:氢氧化钠=(45~55):1:2。
10.如权利要求8所述的用于电波暗室的吸波锥形体,其特征在于,所述碱激发剂的制备方法中,按质量比计,水:水玻璃:氢氧化钠=50:1:2。
11.如权利要求1所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤①中,按质量体积比计,碳酸氢钠:环氧树脂胶=2~3g:20~30mL;所述电磁波透射复合材料的制备方法的步骤②中,硅烷偶联剂、混合物A、发泡聚苯乙烯颗粒和碱激发矿渣胶凝材料的配比为,硅烷偶联剂:混合物A:发泡聚苯乙烯颗粒:碱激发矿渣胶凝材料=1~1.5mL:10~12mL:10~11mL:18~22g。
12.如权利要求11所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤①中,按质量体积比计,碳酸氢钠:环氧树脂胶=2.5g:25mL。
13.如权利要求11所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤②中,硅烷偶联剂、混合物A、发泡聚苯乙烯颗粒和碱激发矿渣胶凝材料的配比为,硅烷偶联剂:混合物A:发泡聚苯乙烯颗粒:碱激发矿渣胶凝材料=1mL:10mL:10mL:20g。
14.如权利要求1所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤②中,发泡聚苯乙烯颗粒在使用前,先用去离子水洗净并烘干;
所述电磁波透射复合材料的制备方法的步骤③中,将颗粒在65~75℃的水浴中加热10~15min,然后静置24h,得到所述改性发泡聚苯乙烯颗粒。
15.如权利要求1所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤④中,按质量比计,碱激发矿渣胶凝材料:改性发泡聚苯乙烯颗粒=(4~6):1;
所述电磁波透射复合材料的制备方法的步骤④中,稳泡剂、发泡剂和改性发泡聚苯乙烯颗粒的配比为,稳泡剂:发泡剂:改性发泡聚苯乙烯颗粒=2~4g:5~7mL:40~50g。
16.如权利要求15所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤④中,按质量比计,碱激发矿渣胶凝材料:改性发泡聚苯乙烯颗粒=5:1。
17.如权利要求15所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤④中,稳泡剂、发泡剂和改性发泡聚苯乙烯颗粒的配比为,稳泡剂:发泡剂:改性发泡聚苯乙烯颗粒=2g:5mL:44g。
18.如权利要求15所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤④中,稳泡剂为阿拉伯树胶粉。
19.如权利要求15所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤④中,发泡剂为FP-180动物性发泡剂。
20.如权利要求1所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波透射复合材料的制备方法的步骤⑤中,将试块放入蒸压釜中,175~185℃下蒸压8h,然后放入养护箱中养护3天,即得所述电磁波透射复合材料。
21.如权利要求20所述的用于电波暗室的吸波锥形体,其特征在于,所述养护箱的温度为20℃、湿度为95%。
22.如权利要求1所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波损耗复合材料的制备方法的步骤①中,按质量体积比计,镍包铜粉:碳酸氢钠:环氧树脂胶=8~12g:2~3g:18~22mL。
23.如权利要求22所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波损耗复合材料的制备方法的步骤①中,按质量体积比计,镍包铜粉:碳酸氢钠:环氧树脂胶=10g:2.5g:20mL。
24.如权利要求1所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波损耗复合材料的制备方法的步骤③中,将胶体颗粒在65~75℃的水浴中加热10~15min,然后静置24h,得到多孔胶体颗粒;
所述电磁波损耗复合材料的制备方法的步骤④的具体操作为:将碱激发矿渣胶凝材料和所述多孔胶体颗粒混合均匀,然后装入模具中,振捣15~20s,然后放入养护箱中养护24h,拆模,对拆模后的材料继续养护3天,即得所述电磁波损耗复合材料。
25.如权利要求24所述的用于电波暗室的吸波锥形体,其特征在于,所述养护在温度为20℃、湿度为95%的环境条件下进行。
26.如权利要求1所述的用于电波暗室的吸波锥形体,其特征在于,所述电磁波损耗复合材料的制备方法的步骤④中,按质量比计,碱激发矿渣胶凝材料:多孔胶体颗粒=8:1~10:1。
27.如权利要求1~26任一项所述的用于电波暗室的吸波锥形体,其特征在于,所述吸波锥形体为由一个正方形底板和四个等腰三角形侧板构成的空心四角锥。
CN201811000909.1A 2018-08-29 2018-08-29 一种用于电波暗室的吸波锥形体 Active CN109081637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811000909.1A CN109081637B (zh) 2018-08-29 2018-08-29 一种用于电波暗室的吸波锥形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811000909.1A CN109081637B (zh) 2018-08-29 2018-08-29 一种用于电波暗室的吸波锥形体

Publications (2)

Publication Number Publication Date
CN109081637A CN109081637A (zh) 2018-12-25
CN109081637B true CN109081637B (zh) 2020-10-09

Family

ID=64795255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811000909.1A Active CN109081637B (zh) 2018-08-29 2018-08-29 一种用于电波暗室的吸波锥形体

Country Status (1)

Country Link
CN (1) CN109081637B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2620748A (en) * 2022-07-19 2024-01-24 Low Carbon Mat Limited Composition
CN115260988B (zh) * 2022-08-15 2023-08-01 南京航空航天大学 一种复合吸波材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210573A (ja) * 2005-01-27 2006-08-10 Dainippon Printing Co Ltd 電磁波遮蔽部材
CN101591523A (zh) * 2009-07-07 2009-12-02 大连理工大学 梯度电磁波吸收材料及其制备方法
CN104371271A (zh) * 2013-08-15 2015-02-25 北京国浩传感器技术研究院(普通合伙) 一种新型耐腐蚀复合吸波材料
CN104575894A (zh) * 2013-10-28 2015-04-29 深圳光启创新技术有限公司 轻质磁性材料及其制备方法、吸波板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210573A (ja) * 2005-01-27 2006-08-10 Dainippon Printing Co Ltd 電磁波遮蔽部材
CN101591523A (zh) * 2009-07-07 2009-12-02 大连理工大学 梯度电磁波吸收材料及其制备方法
CN104371271A (zh) * 2013-08-15 2015-02-25 北京国浩传感器技术研究院(普通合伙) 一种新型耐腐蚀复合吸波材料
CN104575894A (zh) * 2013-10-28 2015-04-29 深圳光启创新技术有限公司 轻质磁性材料及其制备方法、吸波板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
水泥基复合吸波材料中多孔EPS球的应用;刘顺华;《2006年全国功能材料学术年会专辑(Ⅲ)》;20060701;全文 *
铁氧体/短切碳纤维吸波复合材料的制备与研究;潘彩红等;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20150430;全文 *

Also Published As

Publication number Publication date
CN109081637A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
CN109049883B (zh) 一种吸波复合板及其应用
CN109081637B (zh) 一种用于电波暗室的吸波锥形体
CN101591523B (zh) 梯度电磁波吸收材料及其制备方法
CN108975836B (zh) 一种电磁波透射复合材料及其制备方法和应用
CN101899221A (zh) 发泡型电磁吸波复合材料及其制备方法
CN107056325A (zh) 一种双层异形表面水泥基吸波材料及其制备方法
CN101769058A (zh) 泡沫散块填充的多层结构型微波暗室吸收材料
CN113072344B (zh) 具有可调控吸波性能的双层水泥基吸波材料及其应用方法
CN106495618A (zh) 一种磁性吸波水泥结构
CN112519351B (zh) 一种均质吸波方舱舱板及其制备方法
CN107574950B (zh) 一种隔声轻质复合墙体的制备方法
CN110746671A (zh) 一种微波暗室用吸波材料、吸波角锥及其制备方法
KR20010032034A (ko) 전파흡수재료, 전파흡수체 및 그것을 이용한 전파무향실 등
JP4375987B2 (ja) 電波吸収体用成型体およびその製造方法、ならびに電波吸収体
CN100372450C (zh) 具有闭孔结构的谐振群吸波体的制造方法
RU2242487C1 (ru) Композицонный материал для поглощения электромагнитного излучения и способ его получения
JP2000353893A (ja) 電波吸収体とその製造方法
CN105694345A (zh) 一种酚醛树脂保温板
CN103469960A (zh) 一种适合产业化制造、环保施工的保温复合外墙板及其制造方法
CN102060494B (zh) 一种有防磁性能的保温板
CN115103587A (zh) 一种阻燃吸波材料及其制备方法
CN114059682A (zh) 一种宽频高效多层型泡沫水泥基吸波板
CN117245758B (zh) 阻抗梯度吸水树脂增强电磁吸波混凝土的制备方法及构件
CN109081638B (zh) 一种电磁波损耗复合材料及其制备方法和应用
CN106190021A (zh) 一种沸石吸波材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181225

Assignee: GUANGZHOU DAWEI COMMUNICATION CO.,LTD.

Assignor: Guangzhou University

Contract record no.: X2022980024622

Denomination of invention: A wave absorbing cone for anechoic chamber

Granted publication date: 20201009

License type: Common License

Record date: 20221202

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181225

Assignee: Shenzhen Barium Rhenium Technology Co.,Ltd.

Assignor: Guangzhou University

Contract record no.: X2022980025101

Denomination of invention: A wave absorbing cone for anechoic chamber

Granted publication date: 20201009

License type: Common License

Record date: 20221207

Application publication date: 20181225

Assignee: GUANGZHOU SHILEVA EQUIPMENT CO.,LTD.

Assignor: Guangzhou University

Contract record no.: X2022980024871

Denomination of invention: A wave absorbing cone for anechoic chamber

Granted publication date: 20201009

License type: Common License

Record date: 20221206

EE01 Entry into force of recordation of patent licensing contract