CN109081353B - 一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用 - Google Patents

一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用 Download PDF

Info

Publication number
CN109081353B
CN109081353B CN201810806854.7A CN201810806854A CN109081353B CN 109081353 B CN109081353 B CN 109081353B CN 201810806854 A CN201810806854 A CN 201810806854A CN 109081353 B CN109081353 B CN 109081353B
Authority
CN
China
Prior art keywords
bottom ash
tobermorite
incinerator
humic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810806854.7A
Other languages
English (en)
Other versions
CN109081353A (zh
Inventor
罗宏伟
何东芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201810806854.7A priority Critical patent/CN109081353B/zh
Publication of CN109081353A publication Critical patent/CN109081353A/zh
Application granted granted Critical
Publication of CN109081353B publication Critical patent/CN109081353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用,将氢氧化钠水溶液与腐植酸水溶液以体积比1:1混合后与焚烧炉底灰,搅拌得到悬浮泥浆液;将悬浮泥浆液放置于120~180℃中水热反应24h,反应液冷却至室温,用去离子水洗涤,洗涤产物干燥,即得所述托贝莫来石;本发明解决了固体废弃物的资源化利用难题,利用腐植酸活化焚烧炉底灰制备了高吸附性能的托贝莫来石材料,实现了重金属废水的净化处理;本发明方法可广泛应用于电镀废水的净化处置,具有明显的社会和环境效益。本发明所述的托贝莫来石对含Cu2+废水中Cu2+的最大去除能力为270mg/g。

Description

一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用
(一)技术领域
本发明涉及一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用。
(二)背景技术
近年来,越来越多的城市固体废弃物已经成为沉重的社会负担,因为对废弃物的处理、储存和处置给政府部门造成了不同程度的环境和经济问题。垃圾焚烧处理是一种有效的方法,它可将废物的体积减少约90%,并将其质量减少约70%;它能够从废物中回收能源,是固废一体化管理的重要组成部分。焚烧炉底灰是焚烧过程中的主要副产品,占总量体积的85~95%。在美国,大部分焚烧炉底灰是通过掩埋进行处理的;而在一些欧洲和亚洲国家,约有50%的焚烧炉底灰被用于道路建设和水泥生产的次级建筑材料。为了延长垃圾填埋场的使用寿命,并将垃圾作为资源回收,开发环境友好及可持续的路径用于焚烧炉底灰的回收和再利用具有重大意义。
水热法是将废物转化为有附加值产品的强有力的手段。例如,设计某个合适的Ca/Al/Si摩尔比,使用焚烧炉底灰作为原料,经水热处理后可以形成新的矿物相:沸石和水钙铝榴石等。焚烧炉底灰的来源、活化碱液的种类、反应温度和时间都强烈地影响着这些次生矿物相的形成。参与焚烧炉底灰中无机物水热转化的主要化学反应为:二氧化硅和含铝矿物在碱性条件下溶解,然后与含钙矿物发生再沉淀。众所周知,焚烧炉底灰中含有少量的有机物,它们有时不会被完全氧化,这些未燃烧的有机物与随后形成的新有机化合物共存于底灰之中。
焚烧炉底灰中的有机物质在一定程度上决定了它的水热转化,经反应生成不同的矿物产品,因此有机质在焚烧炉底灰的回收利用中起着至关重要的作用。根据土壤有机质的分类,焚烧炉底灰中的有机质可分为腐殖质和非腐殖质。腐殖质主要由腐植酸和富里酸组成,它们被认为是溶解性有机碳的重要组成部分。腐植酸除了在焚烧炉底灰中存在,它还被发现广泛存在于自然环境中,并且它对重金属和有机污染物具有较高的亲和力。以前的研究表明,腐植酸和富里酸对城市固体废弃物的焚烧炉底灰的渗滤液中溶解性有机碳的贡献率分别为0.3~0.6%%和14~26%。
大多数情况下,焚烧炉底灰水热转化成超多孔层状结构或微细颗粒和结晶,具有较高的比表面积和离子交换容量,因此显示出优异的吸附性能。碱性条件有利于激活水热反应,而腐植酸可以参与其中。将反应产物用作吸附剂材料以有效地从水溶液中除去金属离子和有机污染物。因此,将焚烧炉底灰水热转化成吸附剂为垃圾焚烧和水污染治理提供了一种可持续的解决方案。
本发明利用腐植酸活化低成本的焚烧炉底灰制备托贝莫来石吸附材料,并将其应用于含重金属污染物的废水处理,既解决了焚烧炉底灰的资源化利用难题,又实现了高浓度废水的净化处置,具有明显的社会和环境效益。
(三)发明内容
本发明目的是提供一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用,解决了固体废弃物的资源化利用难题,同时制备的矿物托贝莫来石可以用于污水净化处理。
本发明采用的技术方案是:
本发明提供一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石,所述托贝莫来石按如下方法制备:将2.5mol/L的氢氧化钠水溶液与10~100mg/L(优选50mg/L)腐植酸水溶液以体积比1:1混合溶解完全,获得反应液;将焚烧炉底灰与反应液均匀混合,搅拌(优选搅拌30min)得到悬浮泥浆液;将悬浮泥浆液转移至不锈钢反应釜中密封,然后放置于120~180℃(优选160℃)的烘箱中水热反应24h,反应液冷却至室温,用去离子水洗涤,洗涤产物干燥(优选105℃干燥6h),即得所述托贝莫来石;所述反应釜内反应压力为1.4~1.8MPa。
进一步,所述反应液体积用量以焚烧炉底灰重量计为4~6ml/g(优选5ml/g)。
进一步,所述焚烧炉底灰的粒径小于300μm。
进一步,焚烧炉底灰的主要组分及质量含量为:CaO(54.06%)、SiO2(8.24%)、Al2O3(6.85%)和Fe2O3(4.59%),其余为杂质。
进一步,所述反应釜内反应压力为1.6MPa。
进一步,用去离子水洗涤,离心转速为9000r/min,离心时间为5min,重复离心洗涤3-5次,洗涤产物在105℃的烘箱中干燥6h,即得所述托贝莫来石。
本发明还提供一种所述利用腐植酸活化焚烧炉底灰制备的托贝莫来石在处理含重金属污染物废水中的应用,所述重金属污染物为Cu2+,所述应用方法为:将托贝莫来石作为吸附剂,加入含重金属污染物废水中,在pH为5.0、反应温度为25℃、转速为200r/min的摇床上进行吸附,去除废水中重金属。所述废水体积用量以托贝莫来石重量计为50ml/g。所述废水中重金属离子含量为600mg/L。
本发明所述腐植酸是指从土壤中分离提取的天然有机质样品,购买自Sigma-Aldrich公司,其主要组分及质量含量为:碳(58.13%)、氧(33.05%)、氮(4.13)、氢(3.68%)、硫(0.46%)和磷(0.24%),其余为杂质。本发明所述室温是指25-30℃。
与现有技术相比,本发明的有益效果主要体现在:
本发明解决了固体废弃物的资源化利用难题,利用腐植酸活化焚烧炉底灰制备了高吸附性能的托贝莫来石材料,实现了重金属废水的净化处理;本发明方法可广泛应用于电镀废水的净化处置,具有明显的社会和环境效益。
传统的托贝莫来石的制备方法需要向反应料液中补加额外的钙和硅元素,以使得钙和硅的摩尔比例达到或接近5:6;而本发明的制备方法无需添加额外的钙和硅,直接利用腐植酸活化焚烧炉底灰制得。
本发明所述的托贝莫来石对含Cu2+废水中Cu2+的最大去除能力为270mg/g。
(四)附图说明
图1是焚烧炉底灰扫描电子显微镜的图像,a放大倍数为20000倍,b放大倍数为50000倍;
图2是托贝莫来石扫描电子显微镜的图像,a放大倍数为50000倍,b放大倍数为100000倍;
图3为焚烧炉底灰和托贝莫来石的X射线衍射谱图;
图4为焚烧炉底灰和托贝莫来石对铜离子的吸附动力学曲线。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
本发明实施例所用腐植酸购买自Sigma-Aldrich公司,其主要组分及质量含量为:碳58.13%、氧33.05%、氮4.13%、氢3.68%、硫0.46%和磷0.24%,其余为杂质。
实施例1:焚烧炉底灰的来源
1、焚烧炉底灰
原材料焚烧炉底灰取自浙江省某垃圾焚烧发电厂,该垃圾焚烧厂的处理能力为:每天处理800吨的城市生活垃圾,每天的产电量为22兆瓦。所处理的城市生活垃圾种类包括:塑料制品、食品垃圾、纸制品、灰烬和淤泥、纺织品和皮革、木制品、玻璃、橡胶和陶瓷品等,这些生活垃圾在焚烧炉内经过800~1000℃的高温焚烧处理,筛选粒径小于300μm的底灰,获得焚烧炉底灰原料。
2、焚烧炉底灰结构鉴定
称取重量为1.0g的焚烧炉底灰原料,利用X射线衍射仪进行成分检测,得到焚烧炉底灰的X射线衍射谱图如图3所示。由图3可知:焚烧炉底灰的X射线衍射峰位于29.5°、47.6°和48.6°处,其主要成分及质量含量为:CaO(54.06%)、SiO2(8.24%)和Al2O3(6.85%)。
焚烧炉底灰的扫描电子显微镜图见图1所示,图1中的焚烧炉底灰原材料为片状或层状结构。
实施例2:托贝莫来石
1、托贝莫来石
将2.5mol/L的氢氧化钠水溶液与10mg/L腐植酸水溶液以体积比1:1进行混合,摇匀待完全溶解,获得反应液。取80mL反应液与16g的实施例1获得的焚烧炉底灰进行均匀混合,室温搅拌反应30min得到悬浮泥浆液。将该悬浮泥浆液即刻转移至不锈钢反应釜中密封保存,然后放置于180℃的烘箱进行水热反应24h,反应釜内反应压力为1.4MPa。待反应体系冷却至室温,利用去离子水重复离心洗涤三次,离心洗涤的试验条件为:在9000r/min的转速下离心5min,最终产物在105℃的烘箱中干燥6h,制得托贝莫来石12g。
2、托贝莫来石结构鉴定
称取重量为1.0g的步骤1制备的托贝莫来石,扫描电子显微镜的图像如图2所示。图1中的焚烧炉底灰原材料为片状或层状结构,而加入腐植酸和氢氧化钠经过水热反应之后,原材料的形貌由图1中的片状结构转变为图2中的碎片化颗粒结构。利用X射线衍射仪进行成分检测,得到托贝莫来石的X射线衍射谱图如图3所示。由图3可知:制备材料的X射线衍射峰位于36.1°、39.5°和43.3°处,主要成分为托贝莫来石。
实施例3:托贝莫来石
将2.5mol/L的氢氧化钠水溶液与50mg/L腐植酸水溶液以体积比1:1进行混合,摇匀待完全溶解,获得反应液。取100mL反应液与20g的实施例1获得的焚烧炉底灰进行均匀混合,室温搅拌反应30min,得到悬浮泥浆液。将该悬浮泥浆液即刻转移至不锈钢反应釜中密封保存,然后放置于180℃的烘箱进行水热反应24h,反应釜内反应压力为1.6MPa。待反应体系冷却至室温,利用去离子水重复离心洗涤三次,离心洗涤的试验条件为:在9000r/min的转速下离心5min,最终产物在105℃的烘箱中干燥6h,制得托贝莫来石16g,鉴定方法同实施例2,其主要成分为托贝莫来石。
实施例4:托贝莫来石
将2.5mol/L的氢氧化钠水溶液与100mg/L腐植酸水溶液以体积比1:1进行混合,摇匀待完全溶解,获得反应液。取120mL反应液与24g的实施例1获得的焚烧炉底灰进行均匀混合,室温搅拌反应30min,得到悬浮泥浆液。将该悬浮泥浆液即刻转移至不锈钢反应釜中密封保存,然后放置于180℃的烘箱进行水热反应24h,反应釜内反应压力为1.8MPa。待反应体系冷却至室温,利用去离子水重复离心洗涤三次,离心洗涤的试验条件为:在9000r/min的转速下离心5min,最终产物在105℃的烘箱中干燥6h,制得托贝莫来石20g,鉴定方法同实施例2,其主要成分为托贝莫来石。
实施例5:重金属废水的处理
称取重量为1.0g的实施例2制备的托贝莫来石,加入50mL初始浓度为600mg/L的硝酸铜水溶液,反应溶液的pH为5.0,反应温度为25℃,在转速为200r/min的摇床上平衡反应10h,分别在0.5h、1h、2.5h、4h、6h、8h和10h取样,利用电感耦合等离子体质谱检测反应液中剩余的铜离子浓度,得到托贝莫来石对铜离子的吸附动力学曲线如图4所示,横坐标为反应时间,纵坐标为每克托贝莫来石吸附的铜离子质量。由图4可知:托贝莫来石在反应时间为10h达到吸附平衡,对铜离子的最大吸附容量为:270mg/g。
同样条件下以实施例1焚烧炉底灰原料为对照,得到焚烧炉底灰对铜离子的吸附动力学曲线如图4所示。由图4可知:焚烧炉底灰在反应时间为1h达到吸附平衡,对铜离子的最大吸附容量为:48mg/g。

Claims (8)

1.一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石,其特征在于所述托贝莫来石按如下方法制备:将2.5mol/L的氢氧化钠水溶液与10~100mg/L腐植酸水溶液以体积比1:1混合溶解完全,获得反应液;将焚烧炉底灰与反应液均匀混合,室温搅拌得到悬浮泥浆液;将悬浮泥浆液转移至不锈钢反应釜中密封,然后放置于120~180℃的烘箱中水热反应24h,反应液冷却至室温,用去离子水洗涤,洗涤产物干燥,即得所述托贝莫来石;所述反应釜内反应压力为1.4~1.8MPa;焚烧炉底灰质量组成包括:CaO 54.06%、SiO2 8.24%、Al2O36.85%和Fe2O3 4.59%。
2.如权利要求1所述利用腐植酸活化焚烧炉底灰制备的托贝莫来石,其特征在于所述反应液体积用量以焚烧炉底灰重量计为4~6ml/g。
3.如权利要求1所述利用腐植酸活化焚烧炉底灰制备的托贝莫来石,其特征在于,所述焚烧炉底灰的粒径小于300μm。
4.如权利要求1所述利用腐植酸活化焚烧炉底灰制备的托贝莫来石,其特征在于所述反应釜内反应压力为1.6MPa。
5.如权利要求1所述利用腐植酸活化焚烧炉底灰制备的托贝莫来石,其特征在于用去离子水洗涤,离心转速为9000r/min,离心时间为5min,重复离心洗涤三次,洗涤产物在105℃的烘箱中干燥6h,即得所述托贝莫来石。
6.一种权利要求1所述利用腐植酸活化焚烧炉底灰制备的托贝莫来石在处理含重金属污染物废水中的应用,其特征在于所述重金属污染物为Cu2+
7.如权利要求6所述的应用,其特征在于所述应用方法为:将托贝莫来石作为吸附剂,加入含重金属污染物废水中,在pH为5.0、反应温度为25℃、转速为200r/min的摇床上进行吸附,去除废水中重金属。
8.如权利要求7所述的应用,其特征在于所述废水体积用量以托贝莫来石重量计为50ml/g。
CN201810806854.7A 2018-07-18 2018-07-18 一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用 Active CN109081353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810806854.7A CN109081353B (zh) 2018-07-18 2018-07-18 一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810806854.7A CN109081353B (zh) 2018-07-18 2018-07-18 一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用

Publications (2)

Publication Number Publication Date
CN109081353A CN109081353A (zh) 2018-12-25
CN109081353B true CN109081353B (zh) 2020-11-13

Family

ID=64838413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810806854.7A Active CN109081353B (zh) 2018-07-18 2018-07-18 一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用

Country Status (1)

Country Link
CN (1) CN109081353B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194148B (zh) * 2020-10-16 2022-07-12 河南理工大学 一种利用微波水热合成托贝莫来石去除重金属离子的方法
CN117185795A (zh) * 2023-09-20 2023-12-08 深圳信息职业技术学院 废玻璃低温水热法制备托贝莫来石耐火材料的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106315605B (zh) * 2016-08-31 2018-04-10 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 利用低品位凹凸棒石黏土制备1.1nm托贝莫来石的方法
CN108393081B (zh) * 2018-04-18 2021-01-22 贵州大学 一种托贝莫来石催化剂的制备方法

Also Published As

Publication number Publication date
CN109081353A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
Nie et al. Novel recycling of incinerated sewage sludge ash (ISSA) and waste bentonite as ceramsite for Pb-containing wastewater treatment: Performance and mechanism
Chunfeng et al. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals
Jha et al. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+
Behin et al. Developing a zero liquid discharge process for zeolitization of coal fly ash to synthetic NaP zeolite
CN102746023B (zh) 一种同步脱氮除磷的人工湿地基质填料及其制备方法
Liang et al. Phosphorus recovery from incinerated sewage sludge ash (ISSA) and reutilization of residues for sludge pretreated by different conditioners
Zhang et al. Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent for removal of Cr (VI) from water
Wajima et al. Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb2+, NH4+ and PO43− from aqueous solution
Sun et al. Green synthesis of ceramsite from industrial wastes and its application in selective adsorption: Performance and mechanism
CN108178605A (zh) 一种高吸附性能给水厂残泥免烧陶粒的制备方法及用途
Carvalheiras et al. Metakaolin/red mud-derived geopolymer monoliths: Novel bulk-type sorbents for lead removal from wastewaters
Rashed et al. Heavy metals removal from wastewater by adsorption on modified physically activated sewage sludge
CN109081353B (zh) 一种利用腐植酸活化焚烧炉底灰制备的托贝莫来石及应用
CN114425549B (zh) 一种垃圾焚烧飞灰微波水热解毒及同步合成托贝莫来石的方法
CN101514037A (zh) 污泥吸附去除废水中低浓度重金属的方法
Su et al. Modification and resource utilization of coal gasification slag-based material: A review
Liu et al. Removal of phosphorus using biochar derived from Fenton sludge: Mechanism and performance insights
Wang et al. Experimental and mechanistic study on the removal of lead from solution by sulfuric acid modified steel slag adsorbent
Wang et al. Synthesis of layered double hydroxides from municipal solid waste incineration fly ash for heavy metal adsorption
CN113289572A (zh) 一种利用粉煤灰提铝渣制备重金属离子吸附剂的方法
Wang et al. Utilizing different types of biomass materials to modify steel slag for the preparation of composite materials used in the adsorption and solidification of Pb in solutions and soil
CN109126411B (zh) 一种剩余污泥负载铁尾矿改性吸附剂及其制备方法
Stănciulescu et al. Process water treatment in a thermal power plant: characteristics and sediment/sludge disposal.
Yang et al. Phosphate removal mechanism of a novel magnesium slag-modified coal gasification coarse slag adsorbent
CN107381705B (zh) 一种相变调控分离回收水中多种阳离子重金属的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant