CN109072058A - 快速脱水的堵漏材料(lcm) - Google Patents

快速脱水的堵漏材料(lcm) Download PDF

Info

Publication number
CN109072058A
CN109072058A CN201780023528.2A CN201780023528A CN109072058A CN 109072058 A CN109072058 A CN 109072058A CN 201780023528 A CN201780023528 A CN 201780023528A CN 109072058 A CN109072058 A CN 109072058A
Authority
CN
China
Prior art keywords
lcm
composition
drilling fluid
tackifier
jujube tree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780023528.2A
Other languages
English (en)
Other versions
CN109072058B (zh
Inventor
穆迪·阿马努拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of CN109072058A publication Critical patent/CN109072058A/zh
Application granted granted Critical
Publication of CN109072058B publication Critical patent/CN109072058B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/514Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Road Paving Structures (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明提供了一种快速脱水的堵漏材料(LCM)组合物。该LCM组合物可包含携带液、火山灰、增粘剂和枣树轴纤维。该携带液可以是水并且该增粘剂可以是纤维素微纤维。该LCM组合物可以形成快速脱水的漏失控制浆料(RDLCS)。可以通过在混合器中将携带液、火山灰、增粘剂和枣树轴纤维混合以形成均质混合物来形成LCM组合物。本发明还提供了井漏控制的方法和快速脱水LCM的制造方法。

Description

快速脱水的堵漏材料(LCM)
技术领域
本公开主要涉及在用钻井液钻探期间控制井眼中的井漏。更具体而言,本公开的实施方案涉及一种堵漏材料(LCM)。
背景技术
井漏是钻井作业期间遇到的常见挑战之一。井漏可能在作业的任何阶段期间遇到,并且当泵入井中的钻井液(其可包括钻井泥浆)部分返回或不返回到地面时发生。虽然预期会有一些流体漏失,但是从安全、经济或环境的角度来看,不希望有过多的流体漏失。井漏与井控制、井眼不稳定、管道粘连、不成功的生产试验、完井后差的烃产量以及由泥浆颗粒堵塞孔隙和孔喉造成的地层损害的问题有关。在极端情况下,井漏问题可能会迫使放弃井。
井漏可以发生在诸如天然裂隙性地层、溶洞性地层和高渗透性地层之类的各种地层中。薄弱地层中的次生裂缝也可能会引发井漏。当井控和维持井眼稳定性所需的泥浆比重超过地层的压裂梯度时,次生裂缝可能会引发井漏。具有低压裂梯度的枯竭储层地层可能易受次生井漏的影响。由于在这种地层中使用的泥浆的泥浆比重窗口较窄,因此因为用于支撑地层的泥浆比重可容易地超过地层的抗裂性,所以在不发生诱发性井漏的情况下钻探一些枯竭区域可能是困难的。由于钻井泥浆不能从井眼中移除低重力固体和高重力固体,因此,也可能发生诱发性井漏。泥浆中固体的积累可能使流体密度增加超过泥浆比重窗口的上限并在地层中产生次生裂缝,从而导致井漏问题。
发明内容
不同类型的传统和特别设计的漏失控制材料、浆液和段塞被用于控制井漏。漏失控制材料通常可以分为几类,其可以包括表面抹灰和浅堵塞材料、裂缝密封和较深的堵塞材料或漏失控制浆料、间隙桥接和孔堵塞材料。这些堵漏材料(LCM)被用于通过阻塞钻井泥浆进入地层的路径来减轻井漏。在井漏情况下使用的LCM的类型取决于井漏的程度和地层的类型。然而,当在中度至重度的漏失情况下使用常规的LCM和井漏段塞时,它们通常会失效。此外,常规的漏失控制段塞和含有较新的LCM的浆料也缺乏对中度至重度漏失区域进行密封和阻塞的能力。另外,如果钻井液或LCM与储层周围的环境相互作用,则井漏可能导致环境问题。此外,购买和输入LCM到钻井位置可能是昂贵且耗时的。因此,需要堵漏材料以克服与井漏相关的钻探挑战,特别是在中度至重度漏失区域。
本公开的实施方案大体涉及快速脱水的LCM组合物(也称为快速脱水的漏失控制浆料(RDLCS)),以控制井眼中的井漏区域中的井漏。更具体地,本公开的实施方案涉及快速脱水的LCM组合物,其包含携带液、颗粒材料(例如,火山灰)、粘性材料(也称为“增粘剂”)和有机纤维材料(例如,来自枣树的轴纤维(rachis fiber))。
在一些实施方案中,提供了一种堵漏材料(LCM)组合物。该LCM组合物包含:携带液;包含火山灰的颗粒材料;增粘剂;和包含枣树轴纤维的纤维材料。在一些实施方案中,所述携带液、所述颗粒材料、所述增粘剂和所述纤维材料形成均质混合物。在一些实施方案中,所述携带液包括水。在一些实施方案中,所述增粘剂包括纤维素微纤维。在一些实施方案中,所述颗粒材料由火山灰组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述LCM组合物在100磅/平方英寸的压差(psid)下的脱水时间小于3分钟。在一些实施方案中,所述火山灰占所述LCM组合物的至少6重量%。在一些实施方案中,所述枣树轴纤维占所述LCM组合物的至少6重量%。
另外,在一些实施方案中,提供了一种控制井眼中井漏区域的井漏的方法。该方法包括将改良的钻井液引入井眼中,使得所述改良的钻井液接触所述井漏区域并降低所述井漏区域中的井漏率。所述改良的钻井液包含钻井液和堵漏材料(LCM)组合物。该LCM组合物包含:携带液;包含火山灰的颗粒材料;增粘剂;和包含枣树轴纤维的纤维材料。在一些实施方案中,该方法包括将所述堵漏材料添加到所述钻井液中以产生所述改良的钻井液。在一些实施方案中,所述携带液包括水。在一些实施方案中,所述增粘剂包括纤维素微纤维。在一些实施方案中,所述改良的钻井液由所述钻井液和所述LCM组合物组成。在一些实施方案中,所述颗粒材料由火山灰组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述LCM组合物在100磅/平方英寸的压差(psid)下的脱水时间小于3分钟。在一些实施方案中,所述火山灰占所述LCM组合物的至少6重量%。在一些实施方案中,所述枣树轴纤维占所述LCM组合物的至少6重量%。
此外,在一些实施方案中,提供了一种改良的钻井液。该改良的钻井液包含:钻井液和堵漏材料(LCM)组合物。该LCM组合物包含:携带液;包含火山灰的颗粒材料;增粘剂;和包含枣树轴纤维的纤维材料。在一些实施方案中,所述携带液、所述颗粒材料、所述增粘剂和所述纤维材料形成均质混合物。在一些实施方案中,所述携带液包括水。在一些实施方案中,所述增粘剂包括纤维素微纤维。在一些实施方案中,所述颗粒材料由火山灰组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述火山灰占所述LCM组合物的至少6重量%。在一些实施方案中,所述枣树轴纤维占所述LCM组合物的至少6重量%。
此外,在一些实施方案中,提供了一种形成堵漏材料的方法。该方法包括添加携带液以形成混合物;向所述混合物中添加颗粒材料,所述颗粒材料包含火山灰;向所述混合物中添加增粘剂;和向所述混合物中添加纤维材料,所述纤维材料包含枣树轴纤维。在一些实施方案中,所述携带液包括水。在一些实施方案中,所述增粘剂包括纤维素微纤维。在一些实施方案中,所述颗粒材料由火山灰组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述纤维材料由枣树轴纤维组成。在一些实施方案中,所述火山灰占所述LCM组合物的至少6重量%。在一些实施方案中,所述枣树轴纤维占所述LCM组合物的至少6重量%。
附图说明
图1描绘了在根据本公开的实施方案的脱水试验法中形成的三个实施例LCM组合物的三个堵头的图片。
具体实施方式
现在将参考本公开的所述实施方案对本公开进行更全面地描述。然而,本公开可以以许多不同的形式体现并且不应该被解释为限于本公开中阐述的所述实施方案。相反,提供这些实施方案是为了使本公开彻底和完整,并且这些实施方案将本公开的范围完全传达给本领域技术人员。
在钻井眼时,将钻井液连续地泵入井眼中以清理和清洁井眼和锉屑。钻井液从泥浆坑泵入井眼并再次返回至地面。当返回到地面的钻井液的流速小于泵入井眼的钻井液的流速,产生井漏区域,并且这种返回的钻井液的减少或缺失被称为井漏。
本公开包含用作堵漏材料(LCM)的组合物,以在钻井时减轻或防止井中的这种井漏并防止或减少钻井泥浆的漏失。本公开中描述的组合物可以在地层的裂缝中产生实心堵头,以减少或防止钻井泥浆漏失到周围地层中。本公开中描述的组合物可以在约100psid(磅/平方英寸的压差)以上的超平衡压力下在2至3分钟内挤出所有流体相。此外,本公开中描述的组合物是环境友好的、无毒的和环境安全的,使得使用这种组合物进行井漏控制对地下环境和周围含水层几乎没有或没有有害影响。
另外,本公开中描述的组合物使用可在当地获得的原材料并且可以促进当地工业(例如枣农业)的经济和就业增长。本公开中描述的组合物还为枣农场废物提供了可行的回收途径(即,在生产枣之后丢弃的部分枣树)。此外,由当地可得的原材料生产组合物可以降低或消除与输入其他LCM相关的成本。
本公开包括快速脱水的LCM组合物以控制井眼中的井漏区域的井漏。在一些实施方案中,快速脱水的LCM组合物包含携带液、颗粒材料、粘性材料(也称为“增粘剂”)和有机纤维材料。在一些实施方案中,快速脱水的LCM组合物包含水、火山灰、纤维素微纤维增粘剂和来自枣树(也称为“枣椰树”)的轴纤维。在一些实施方案中,LCM组合物可以形成快速脱水的漏失控制浆料(RDLCS)。
实施例
本公开包括以下实施例以说明本公开的实施方案。本领域技术人员应理解,以下实施例中公开的技术和组合物表示那些发现在本公开的实践中能够很好地起作用的技术和组合物,因此可以被认为是用于本公开实践的构成模式。然而,本领域技术人员应当理解,鉴于本公开内容,在不脱离本公开的精神和范围的情况下,可以对所公开的具体实施方案进行许多改变并且仍然获得相同或相似的结果。
将以下非限制性实施例的LCM组合物制备为LCM段塞并评价该LCM组合物以确定脱水的快速性。表1示出了在脱水试验中使用的快速脱水的漏失控制浆料的LCM组合物的配方,其中以毫升(ml)或克(g)和重量(wt)%示出各组分的组成:
表1:脱水试验用LCM配方
如上所示,每种配方包含不同量的携带液、火山灰、增粘剂和来自枣树的轴纤维。如在本公开中使用的,术语“火山灰”是指在火山爆发期间产生的且直径小于约2毫米(mm)的颗粒。这种颗粒可包括粉碎的岩石、矿物和火山玻璃。如上所示,试验的配方包括由荷兰Roosendaal的Cosun Biobased Products制造的纤维素微纤维增粘剂在一些实施方案中,纤维材料可以是从枣树(phoenix dactylifera)获得的轴纤维。
使用具有过滤单元的美国石油协会(API)压滤机,通过使用以下脱水试验法测试配方1、2和3,所述配方包含进行测试的LCM组合物:
1、通过以下列顺序在高速混合器中混合各组分来制备配方:携带液、颗粒材料、增粘剂和纤维材料;
2、用配方的350立方厘米(cc)段塞填充API压滤机的过滤单元;
3、将过滤单元安装到API压滤机上,固定上盖,并在约100psi压力下连接空气压力管线;和
4、测量段塞的脱水时间(即,流体(约350cc)被去除的时间)。
表2中示出了配方1、配方2和配方3的测试用LCM组合物的脱水试验法的结果,其中测量的脱水时间以分钟(分钟)计,并且测量的由脱水的段塞形成的堵头的厚度以mm计:
表2:脱水试验结果
配方1 配方2 配方3
脱水时间(min) 2 1.5 1
堵头厚度(mm) 29.76 44.45 47.27
如表2所示,对于在100psi压力下的API单元中的350cc段塞,各个配方表现出小于3分钟的脱水时间(即,在100psid超平衡下,在小于3分钟的脱水时间内形成实心堵头)。各配方之间的脱水时间的变化可能取决于段塞中的颗粒材料(例如,火山灰)的浓度。因此,各种试验用配方可适合作为快速脱水的LCM组合物,以阻塞不同尺寸的裂缝并减少或防止钻井泥浆的漏失。
图1描绘了由上述实验得到的三个堵头的图片。通过配方1的脱水试验法形成第一堵头100。通过配方2的脱水试验法形成图1所示的第二堵头102,以及通过配方3的脱水试验法形成图1所示的第三堵头104。图1所示的堵头显示出从配方1到配方3的厚度增加。例如,堵头104的厚度大于堵头102的厚度,并且堵头102的厚度大于堵头100的厚度。
因此,如表2和图1中所示,通过脱水沉积的堵头的厚度可随着颗粒材料(例如,火山灰)浓度的增加而增厚。沉积的堵头的稳定性可取决于裂缝的尺寸、堵头刚度、挤出阻力、界面摩擦阻力、堵头厚度和其他因素。因此,由于堵头厚度是堵头的稳定性的一个因素,所以相对于其他类似的快速脱水的LCM组合物,用于较大裂缝的快速脱水的LCM组合物可包含更高浓度的颗粒材料(例如,火山灰)。
快速脱水的LCM组合物
在一些实施方案中,快速脱水的LCM(也称为漏失控制浆料)可以由携带液、纤维材料、颗粒材料和增粘剂组成。携带液可包括淡水、海水、盐水或地层流体。纤维材料可包括源自枣树废料的纤维材料。颗粒材料可包括火山灰。增粘剂可包括合适的商购增粘剂,其可以在100psi至500psi的超平衡压力下使浆料快速脱水。上表1示出了实施例组合物。
在一些实施方案中,快速脱水的LCM组合物可包含携带液、颗粒材料、增粘剂和纤维材料。在一些实施方案中,携带液可包括水。例如,携带液可包括淡水(具有相对低(即,小于5000ppm)浓度的总溶解固体的水)、海水(例如,盐度在约33,000份每百万(ppm)至约37,000份每百万(ppm)范围内的水)、人造盐水、天然盐水、微咸水或地层水。在一些实施方案中,颗粒材料可包括火山灰。在一些实施方案中,火山灰可以从当地来源获得,以降低进口LCM产品、组分或这两者的成本。在一些实施方案中,增粘剂可包括衍生自原始植物材料的纤维素微纤维。在一些实施方案中,增粘剂可以是无毒增粘剂,其具有在约5重量%至约25重量%范围内的纤维素和水并且pH在约3至约6的范围内。在一些实施方案中,增粘剂可包括由荷兰Roosendaal的Cosun Biobased Products制造的在一些实施方案中,纤维材料可包括枣树的轴纤维。
在一些实施方案中,快速脱水的LCM组合物可包含作为携带液的水、作为颗粒材料的火山灰、作为增粘剂的纤维素微纤维和作为纤维材料的枣树轴纤维。在一些实施方案中,火山灰可以占快速脱水的LCM组合物段塞的6重量%,并且枣树轴纤维可以占快速脱水的LCM组合物段塞的6重量%。在一些实施方案中,当快速脱水的LCM组合物经受挤压或超平衡压力时,其可在100psid超平衡下在小于约3分钟内消除所有流体相,在100psid超平衡下在小于约2分钟内消除所有流体相,或在100psid超平衡下在小于约1分30秒内消除所有流体相。在一些实施方案中,当快速脱水的LCM组合物经受挤压或超平衡压力时,其可在裂缝中形成实心堵头,以防止或减少钻井泥浆进入周围地层的漏失。在一些实施方案中,与具有较低浓度的颗粒材料的快速脱水的LCM组合物相比,具有相对较高浓度的颗粒材料(例如,火山灰)的快速脱水的LCM组合物可以形成具有相对较大厚度的堵头。
在具有枣树轴纤维作为纤维材料(即,由纤维组成的材料)的一些实施方案中,枣树轴纤维可以由来自枣加工的废物副产物产生,并且轴纤维可以是从枣加工厂获得的,以提供可持续的颗粒材料来源。此外,当地的轴纤维来源可以降低输入LCM产品、组分或这两者的成本。在一些实施方案中,轴纤维可以从物种枣椰树(phoenix dactylifera)中获得。应当理解,在一些实施方案中,轴纤维可以从转基因枣树(即,转基因生物体(GMO))获得。在一些实施方案中,通过清洁纤维,例如通过在纤维上吹气以除去灰尘、垃圾和其他材料,然后使用工业研磨机切碎、粉碎和研磨纤维来制备枣树轴纤维。在一些实施方案中,可以通过筛来筛分经加工的纤维,以获得所需尺寸的纤维材料,以用于本文所述的LCM组合物。
在一些实施方案中,枣树轴纤维可包括未经处理的枣树轴纤维,因此使制造方法、纤维和所得的LCM组合物保留了环境友好和可生物降解性质。如在本公开中所使用的,术语“未经处理的”或“没有处理的”是指未经碱处理或酸处理,未经漂白,未经化学改变,未经氧化,以及没有除可能的水分干燥之外的任何提取或反应过程。术语“未经处理的”或“没有处理的”不包括研磨或加热以除去水分,但包括可改变纤维特性或性质的化学或其他工艺。在这样的实施方案中,可以在粉碎、研磨、干燥或任何其他加工之前,期间或之后不经过处理而制造枣树纤维。
在一些实施方案中,可以通过将携带液添加到LCM组合物,将颗粒材料(例如,火山灰)添加到LCM组合物,添加增粘剂并将纤维材料(例如,枣树的轴纤维)添加到LCM组合物来形成快速脱水的LCM组合物。在一些实施方案中,可以通过首先添加携带液,然后添加颗粒材料(例如,火山灰),然后添加增粘剂,再然后添加纤维材料(例如,枣树的轴纤维)来形成快速脱水的LCM组合物。可以通过在高速混合器中将携带液、颗粒材料、增粘剂和纤维材料混合并形成均质LCM混合物(例如均质流体段塞)来形成LCM组合物。在其他实施方案中,可以通过在高速混合器中将携带液、颗粒材料、增粘剂和纤维材料混合以形成均质LCM悬浮液或其他混合物来形成LCM组合物。在一些实施方案中,可在添加各组分后,将LCM组合物混合一段时间段(例如,在约4分钟至约5分钟的范围内)。在一些实施方案中,可在加入所有组分以形成均质LCM混合物之后将LCM组合物混合另一段时间(例如,在约10分钟至约15分钟的范围内)。在一些实施方案中,可以在没有任何添加剂或处理的情况下生产快速脱水的LCM组合物,因此使快速脱水的LCM组合物及制造方法均保留了环境友好和可生物降解性质。在其他实施方案中,快速脱水的LCM组合物可以与添加剂混合或以其他方式与添加剂组合或以其他方式处理。在一些实施方案中,添加剂可以与LCM混合或以其他方式与LCM组合以改变LCM的流变学或pH。在一些实施方案中,此类添加剂可包括软化剂、表面活化剂(表面活性剂)、粘度剂、稀释剂、分散剂、涂料(例如粒料涂料)、pH调节剂、杀虫剂、杀生物剂或其任何合适的组合。
在一些实施方案中,可以将快速脱水的LCM组合物直接添加到钻井液(例如钻井泥浆)中,以产生包括LCM组合物的改良的钻井液。例如,在一些实施方案中,可以将快速脱水的LCM组合物添加到油基钻井泥浆或水基钻井泥浆中(例如,与油基钻井泥浆或水基钻井泥浆混合)。在一些实施方案中,可以在泥浆系统的泥浆坑中添加快速脱水的LCM组合物。在将快速脱水的LCM组合物添加到钻井液中之后,改良的钻井液可以以这样的泵速循环,该泵速可以有效地定位钻井液使其与井眼中的井漏区域接触,使得快速脱水的LCM组合物改良井漏区域(例如,通过进入并阻塞井漏区域中的地层中的多孔和可渗透路径、裂纹和裂缝,例如在裂缝中形成堵头)。
如在本公开中所指出的,快速脱水的LCM组合物的机械性质可以防止快速脱水的LCM组合物的降解,同时作为防滤失剂或地层强化材料在井下循环。此外,快速脱水的LCM组合物的环保、无毒和环境友好性质可以最小化或防止任何环境影响,及对使用快速脱水的LCM组合物的钻井现场周围的生态系统、栖息地、种群、作物和植物的任何影响。
在本公开中,范围可以表达为从约某个特定值,或至约另一个特定值,并包括这两者。当表示为这样的范围时,应当理解,另一实施方案是从一个特定值到其他特定值,或包括这两者,以及所述范围内的所有组合。
在本申请中,在引用专利或出版物的情况下,这些参考文献的全部内容旨在通过引用并入本申请中,以便更全面地描述与本公开相关的现有技术的情况,除非这些参考文献与本申请中的陈述相矛盾。
鉴于本说明书,本公开的各个方面的进一步修改和替代实施方案对本领域技术人员是明显的。因此,该说明书仅被解释为说明性的,并且是为了教导本领域技术人员实现本公开中描述的实施方案的一般方式。应理解,本公开中示出和描述的形式将被视为实施方案的实例。在不脱离所附权利要求中描述的公开内容的精神和范围的情况下,可以对本公开中描述的元素进行改变。本公开中使用的标题仅用于组织目的,并不意味着用于限制说明书的范围。

Claims (29)

1.一种堵漏材料(LCM)组合物,所述组合物包含:
携带液;
包含火山灰的颗粒材料;
增粘剂;和
包含枣树轴纤维的纤维材料。
2.根据权利要求1所述的LCM组合物,其中所述携带液、所述颗粒材料、所述增粘剂和所述纤维材料形成均质混合物。
3.根据前述权利要求中任一项所述的LCM组合物,其中所述携带液包括水。
4.根据前述权利要求中任一项所述的LCM组合物,其中所述增粘剂包括纤维素微纤维。
5.根据前述权利要求中任一项所述的LCM组合物,其中所述颗粒材料由火山灰组成。
6.根据前述权利要求中任一项所述的LCM组合物,其中所述纤维材料由枣树轴纤维组成。
7.根据前述权利要求中任一项所述的LCM组合物,其中所述LCM组合物在100磅/平方英寸的压差(psid)下的脱水时间小于3分钟。
8.根据前述权利要求中任一项所述的LCM组合物,其中所述火山灰占所述LCM组合物的至少6重量%。
9.根据前述权利要求中任一项所述的LCM组合物,其中所述枣树轴纤维占所述LCM组合物的至少6重量%。
10.一种控制井眼中的井漏区域的井漏的方法,包括:
将改良的钻井液引入所述井眼中,使得所述改良的钻井液接触所述井漏区域并降低进入所述井漏区域的井漏率,其中所述改良的钻井液包含钻井液和堵漏材料(LCM)组合物,其中所述LCM组合物包含:
携带液;
包含火山灰的颗粒材料;
增粘剂;和
包含枣树轴纤维的纤维材料。
11.根据权利要求10所述的方法,包括将所述堵漏材料添加到所述钻井液中以产生所述改良的钻井液。
12.根据权利要求10或11所述的方法,其中所述携带液包括水。
13.根据权利要求10、11或12所述的方法,其中所述增粘剂包括纤维素微纤维。
14.根据权利要求10、11、12或13所述的方法,其中所述改良的钻井液由所述钻井液和所述LCM组合物组成。
15.根据权利要求10、11、12、13或14所述的方法,其中所述颗粒材料由火山灰组成。
16.根据权利要求10、11、12、13、14或15所述的方法,其中所述纤维材料由枣树轴纤维组成。
17.根据权利要求10、11、12、13、14、15或16所述的方法,其中所述火山灰占所述LCM组合物的至少6重量%。
18.根据权利要求10、11、12、13、14、15、16或17所述的方法,其中所述枣树轴纤维占所述LCM组合物的至少6重量%。
19.一种改良的钻井液,其包含:
钻井液;和
堵漏材料(LCM),其中所述LCM包含:
携带液;
包含火山灰的颗粒材料;
增粘剂;和
包含枣树轴纤维的纤维材料。
20.根据权利要求19所述的改良的钻井液,其中所述携带液包括水。
21.根据权利要求19或20所述的改良的钻井液,其中所述增粘剂包括纤维素微纤维。
22.根据权利要求19、20或21所述的改良的钻井液,其中所述颗粒材料由火山灰组成。
23.根据权利要求19、20、21或22所述的改良的钻井液,其中所述纤维材料由枣树轴纤维组成。
24.一种形成堵漏材料(LCM)组合物的方法,包括:
添加携带液以形成混合物;
向所述混合物中添加颗粒材料,所述颗粒材料包含火山灰;
向所述混合物中添加增粘剂;和
向所述混合物中添加纤维材料,所述纤维材料包含枣树轴纤维。
25.根据权利要求24所述的方法,其中所述LCM组合物包含均质混合物。
26.根据权利要求24或25所述的方法,其中所述携带液包括水。
27.根据权利要求24、25或26所述的方法,其中所述增粘剂包括纤维素微纤维。
28.根据权利要求24、25、26或27所述的方法,其中所述颗粒材料由火山灰组成。
29.根据权利要求24、25、26、27或28所述的方法,其中所述纤维材料由枣树轴纤维组成。
CN201780023528.2A 2016-04-13 2017-04-13 快速脱水的堵漏材料(lcm) Expired - Fee Related CN109072058B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662322044P 2016-04-13 2016-04-13
US62/322,044 2016-04-13
US15/458,452 2017-03-14
US15/458,452 US10023781B2 (en) 2016-04-13 2017-03-14 Rapidly dehydrating lost circulation material (LCM)
PCT/US2017/027287 WO2017180796A1 (en) 2016-04-13 2017-04-13 Rapidly dehydrating lost circulation material (lcm)

Publications (2)

Publication Number Publication Date
CN109072058A true CN109072058A (zh) 2018-12-21
CN109072058B CN109072058B (zh) 2021-01-26

Family

ID=60040341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780023528.2A Expired - Fee Related CN109072058B (zh) 2016-04-13 2017-04-13 快速脱水的堵漏材料(lcm)

Country Status (6)

Country Link
US (3) US10023781B2 (zh)
EP (1) EP3443046B1 (zh)
CN (1) CN109072058B (zh)
CA (1) CA3018788C (zh)
SA (1) SA518400047B1 (zh)
WO (1) WO2017180796A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10457846B2 (en) 2015-11-17 2019-10-29 Saudi Arabian Oil Company Date palm seed-based lost circulation material (LCM)
US10023781B2 (en) 2016-04-13 2018-07-17 Saudi Arabian Oil Company Rapidly dehydrating lost circulation material (LCM)
US10800959B2 (en) 2016-06-30 2020-10-13 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US10544345B2 (en) 2016-06-30 2020-01-28 Saudi Arabian Oil Company Flaky date fruit CAP for moderate to severe loss control
US11713407B2 (en) 2016-06-30 2023-08-01 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US10259982B2 (en) 2016-07-12 2019-04-16 Saudi Arabian Oil Company Date seed-based multi-modal particulate admixture for moderate to severe loss control
US10392549B2 (en) 2016-08-31 2019-08-27 Saudi Arabian Oil Company Date tree trunk-based fibrous loss circulation materials
US10800960B2 (en) 2016-09-27 2020-10-13 Saudi Arabian Oil Company Date tree leaflet-based flaky lost circulation material
US10487253B2 (en) * 2016-11-08 2019-11-26 Saudi Arabian Oil Company Date tree spikelet-based additive for mechanical reinforcement of weak and unstable lost circulation material (LCM) seals/plugs
US10611943B2 (en) * 2016-12-08 2020-04-07 Saudi Arabian Oil Company Acid-soluble plug forming rapidly dehydrating loss control slurry
US10336930B2 (en) 2016-12-19 2019-07-02 Saudi Arabian Oil Company Date tree waste-based binary fibrous mix for moderate to severe loss control
US10479920B2 (en) 2017-05-30 2019-11-19 Saudi Arabian Oil Company Date tree trunk and rachis-based superfine fibrous materials for seepage loss control
US10352116B2 (en) 2017-11-16 2019-07-16 Saudi Arabian Oil Company ARC perm-squeeze RDF—a permeable plug forming rapidly dehydrating fluid
US10266742B1 (en) 2018-02-06 2019-04-23 Saudi Arabian Oil Company ARC hybrid particle mix for seal and plug quality enhancement
US10240411B1 (en) 2018-03-22 2019-03-26 Saudi Arabian Oil Company Trimodal hybrid loss prevention material (LPM) for preventative and curative loss control
US10988665B2 (en) 2019-04-04 2021-04-27 Saudi Arabian Oil Company Permeable and decomposable plug forming rapidly dehydrating fluid (RDF)
US20230078038A1 (en) * 2020-02-19 2023-03-16 Halliburton Energy Services, Inc. Rheology Modifiers For High Fluid-Loss Squeeze Lost Circulation Materials
US11136487B2 (en) 2020-02-25 2021-10-05 Saudi Arabian Oil Company Date seed-based chips lost circulation material
US11066899B1 (en) 2020-03-18 2021-07-20 Saudi Arabian Oil Company Methods of sealing a subsurface formation with saudi arabian volcanic ash
US11820707B2 (en) 2020-03-18 2023-11-21 Saudi Arabian Oil Company Geopolymer cement slurries, cured geopolymer cement and methods of making and use thereof
US10920121B1 (en) 2020-03-18 2021-02-16 Saudi Arabian Oil Company Methods of reducing lost circulation in a wellbore using Saudi Arabian volcanic ash
US11098235B1 (en) 2020-03-18 2021-08-24 Saudi Arabian Oil Company Methods of converting drilling fluids into geopolymer cements and use thereof
US11015108B1 (en) 2020-03-18 2021-05-25 Saudi Arabian Oil Company Methods of reducing lost circulation in a wellbore using Saudi Arabian volcanic ash
US11820708B2 (en) 2020-03-18 2023-11-21 Saudi Arabian Oil Company Geopolymer cement slurries, cured geopolymer cement and methods of making and use thereof
US11041347B1 (en) 2020-04-07 2021-06-22 Saudi Arabian Oil Company Composition and method of manufacturing of whole and ground date palm seed lost circulation material (LCM)
US11254851B2 (en) 2020-06-25 2022-02-22 Saudi Arabian Oil Company Vulcanized rubber and date tree based lost circulation material (LCM) blend
US11346072B2 (en) * 2020-07-07 2022-05-31 Saudi Arabian Oil Company Flow barrier to prevent infiltration of wastewater from wastewater disposal ponds
US11549047B2 (en) 2020-08-14 2023-01-10 Saudi Arabian Oil Company Engineered loss control slurry with improved performance
US11649398B1 (en) * 2021-12-09 2023-05-16 Saudi Arabian Oil Company Composition and method of using date palm fibers in hydraulic fracturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016879A (en) * 1997-10-31 2000-01-25 Burts, Jr.; Boyce D. Lost circulation additive, lost circulation treatment fluid made therefrom, and method of minimizing lost circulation in a subterranean formation
CN102660240A (zh) * 2012-05-14 2012-09-12 新疆贝肯能源工程股份有限公司 多温度段mtc固井液及其配制方法
US20140353043A1 (en) * 2013-06-03 2014-12-04 Saudi Arabian Oil Company Method of Conversion of a Drilling Mud to a Gel-Based Lost Circulation Material to Combat Lost Circulation During Continuous Drilling

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2483936A (en) 1947-11-18 1949-10-04 Phillips Petroleum Co Drilling fluid
US2600404A (en) 1948-07-13 1952-06-17 Nat Lead Co Treatment of well-drilling fluids
US2749308A (en) 1952-06-21 1956-06-05 Weyerhaeuser Timber Co Material for treating oil well drilling fluids
US2912380A (en) 1953-07-17 1959-11-10 American Viscose Corp Drilling fluids and method of preventing loss thereof from well holes
US2779417A (en) 1954-02-15 1957-01-29 Stanolind Oil & Gas Co Plugging well casing perforations
US2789948A (en) 1954-05-18 1957-04-23 Texas Co Lost circulation
US2811488A (en) 1954-06-28 1957-10-29 Texas Co Lost circulation
US2943679A (en) 1955-07-15 1960-07-05 Pan American Petroleum Corp Well-servicing compositions and methods
US2943680A (en) 1955-07-15 1960-07-05 Pan American Petroleum Corp Hard plant seeds in well-servicing compositions and methods
US4110225A (en) 1975-03-03 1978-08-29 Standard Oil Company (Indiana) Sealing wells
US4275788A (en) 1980-01-28 1981-06-30 Bj-Hughes Inc. Method of plugging a well
US4619772A (en) 1982-05-23 1986-10-28 Black James K Method and material for increasing viscosity and controlling of oil well drilling and work-over fluids
US4957166A (en) 1989-07-14 1990-09-18 Marath Oil Company Lost circulation treatment for oil field drilling operations
US5004553A (en) 1989-10-16 1991-04-02 Venture Innovations, Inc. Well working compositions, method of decreasing the seepage loss from such compositions, and additive therefor
US5118664A (en) 1991-03-28 1992-06-02 Bottom Line Industries, Inc. Lost circulation material with rice fraction
US5197324A (en) 1992-02-12 1993-03-30 Dowell Schlumberger Incorporated Methods and apparatus using a gel to isolate mainline valves in a pipeline during a hydrotest
JPH0671171A (ja) 1992-06-17 1994-03-15 Masanaka Watanabe 吸着剤、トロピカルパーム
CA2119316C (en) 1993-04-05 2006-01-03 Roger J. Card Control of particulate flowback in subterranean wells
US5484028A (en) 1994-08-18 1996-01-16 Grinding & Sizing Co., Inc. Method of drilling with fluid including nut cork and drilling fluid additive
US6271001B1 (en) 1995-03-23 2001-08-07 Bio Polymers Pty. Ltd. Cultured plant cell gums for food, pharmaceutical, cosmetic and industrial applications
US5801127A (en) 1997-10-16 1998-09-01 Duhon, Sr.; Jimmy J. Olive pulp additive in drilling operations
US6098712A (en) 1997-10-31 2000-08-08 Bottom Line Industries, Inc. Method of plugging a well
US6102121A (en) 1997-10-31 2000-08-15 BottomLine Industries, Inc. Conformance improvement additive, conformance treatment fluid made therefrom, method of improving conformance in a subterranean formation
AU2001231075A1 (en) 2000-01-24 2001-07-31 Robert R. Wood Improved drilling fluids
US7271131B2 (en) 2001-02-16 2007-09-18 Baker Hughes Incorporated Fluid loss control and sealing agent for drilling depleted sand formations
US6806232B1 (en) 2001-05-31 2004-10-19 Steve Cart Composition of drilling fluids comprising ground elastomeric crumb rubber material and a method of decreasing seepage and whole mud loss using such composition
US6790812B2 (en) 2001-11-30 2004-09-14 Baker Hughes Incorporated Acid soluble, high fluid loss pill for lost circulation
US6976537B1 (en) 2002-01-30 2005-12-20 Turbo-Chem International, Inc. Method for decreasing lost circulation during well operation
US6861392B2 (en) 2002-03-26 2005-03-01 Halliburton Energy Services, Inc. Compositions for restoring lost circulation
US6939833B2 (en) 2002-08-01 2005-09-06 Burts, Iii Boyce Donald Additive for, treatment fluid for, and method of plugging a tubing/casing annulus in a well bore
US6932158B2 (en) 2002-08-01 2005-08-23 Burts, Iii Boyce Donald Well plug additive, well plug treatment fluid made therefrom, and method of plugging a well
US20040129460A1 (en) 2002-08-01 2004-07-08 Macquoid Malcolm Method for using coconut coir as a lost circulation material for well drilling
JP2006504527A (ja) 2002-10-30 2006-02-09 ソイル サブ テクノロジーズ プロプライエタリー リミテッド ヤシ廃棄物の処理方法
US20040244978A1 (en) 2003-06-04 2004-12-09 Sun Drilling Products Corporation Lost circulation material blend offering high fluid loss with minimum solids
US20050113260A1 (en) 2003-11-21 2005-05-26 Wood Robert R. Drilling fluids
US7297662B2 (en) 2004-01-29 2007-11-20 Turbo-Chem International, Inc. Method and composition for inhibiting lost circulation during well operation
CA2461524C (en) 2004-03-18 2013-05-28 Wayne L. Bennett Method of sealing subterranean zones
US7226895B2 (en) 2004-04-06 2007-06-05 Baker Hughes Incorporated Drilling fluid systems for reducing circulation losses
US7537054B2 (en) 2004-07-02 2009-05-26 Halliburton Energy Services, Inc. Cement compositions comprising high aspect ratio materials and methods of use in subterranean formations
US7284611B2 (en) 2004-11-05 2007-10-23 Halliburton Energy Services, Inc. Methods and compositions for controlling lost circulation in subterranean operations
US20060106136A1 (en) 2004-11-17 2006-05-18 Abu-Sharkh Basel F Weatherable, mechanically stable polypropylene based date palm reinforced composites
US7488705B2 (en) 2004-12-08 2009-02-10 Halliburton Energy Services, Inc. Oilwell sealant compositions comprising alkali swellable latex
US20110214870A1 (en) 2005-04-26 2011-09-08 Mano Shaarpour Lost circulation composition
US20090286697A1 (en) 2005-04-26 2009-11-19 Mano Shaarpour Lost circulation composition
US7629297B2 (en) 2005-04-26 2009-12-08 Mano Shaarpour Lost circulation composition
US20090305911A1 (en) 2006-11-30 2009-12-10 Engineered Drilling Solutions Inc. Downhole drilling compositions and methods of preparation
CN101311243B (zh) 2007-05-25 2010-05-19 四川仁智油田技术服务股份有限公司 油气储层裂缝暂堵剂
CA2693431C (en) 2007-07-06 2012-04-03 Terry W. Hoskins Drilling fluid additive for reducing lost circulation in a drilling operation
US7612021B2 (en) 2007-08-24 2009-11-03 Halliburton Energy Services, Inc. Methods and compositions utilizing lost-circulation materials comprising composite particulates
WO2010019535A2 (en) 2008-08-12 2010-02-18 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Thermoplastic cellulosic fiber blends as lost circulation materials
CN101724383B (zh) 2008-10-15 2012-12-12 中国石油天然气股份有限公司 一种钻井液随钻堵漏剂
EP2196516A1 (en) 2008-12-11 2010-06-16 Services Pétroliers Schlumberger Lost circulation material for drilling fluids
US20100181110A1 (en) 2009-01-20 2010-07-22 Harr Robert E Green directional drilling fluid composition
WO2010088484A2 (en) 2009-01-30 2010-08-05 M-I L.L.C. Defluidizing lost circulation pills
US20100230169A1 (en) 2009-03-12 2010-09-16 Daniel Guy Pomerleau Compositions and methods for inhibiting lost circulation during well operations
US20100230164A1 (en) 2009-03-12 2010-09-16 Daniel Guy Pomerleau Compositions and methods for inhibiting lost circulation during well operation
US7964537B2 (en) 2009-04-30 2011-06-21 Rayborn Sr Jerry Air drilling misting fluid contains syrups
US8673825B2 (en) 2009-04-30 2014-03-18 Mudmasters Group, LLC Drilling fluid additive with low freezing point
US7923413B2 (en) 2009-05-19 2011-04-12 Schlumberger Technology Corporation Lost circulation material for oilfield use
EP2261458A1 (en) 2009-06-05 2010-12-15 Services Pétroliers Schlumberger Engineered fibres for well treatments
CN102127403B (zh) 2010-01-18 2013-01-09 四川仁智油田技术服务股份有限公司 钻井高效堵漏剂
AU2011293056B2 (en) 2010-08-26 2014-04-03 Canadian Energy Services L.P. Drilling fluid and method for drilling in coal-containing formations
BR112013008125A2 (pt) 2010-09-21 2016-08-09 Mohammad As Ad "aditivo de fluido de perfuração."
US8563479B2 (en) 2010-11-03 2013-10-22 Saudi Arabian Oil Company Volcanic ash-based drilling mud to overcome drilling challenges
US9834719B2 (en) 2010-11-30 2017-12-05 Schlumberger Technology Corporation Methods for servicing subterranean wells
US20120157354A1 (en) 2010-12-16 2012-06-21 Leiming Li Friction reducer
AU2012236141B2 (en) 2011-04-01 2016-11-17 Terravia Holdings, Inc. Biomass-based oil field chemicals
US9006151B2 (en) 2011-09-12 2015-04-14 Saudi Arabian Oil Company Water-based drilling fluid composition having a multifunctional mud additive for reducing fluid loss during drilling
US8887808B2 (en) 2011-11-09 2014-11-18 Halliburton Energy Services, Inc. Engineered methods and materials for wellbore strengthening in subterranean operations
WO2013192621A1 (en) 2012-06-22 2013-12-27 Clearwater International, Llc Cement systems including a chia derived thickening agent and methods for making and using same
MX368374B (es) 2012-07-13 2019-09-30 Nfluids Inc Fluidos de perforacion con nanoparticulas y particulas granulares y su uso para refuerzo de la pared interior de pozos.
US20140038857A1 (en) 2012-07-31 2014-02-06 Matthew L. Miller Lost Circulation Material With A Multi-Modal Large Particle Size Distribution
GB2506603A (en) 2012-10-02 2014-04-09 Brendon Steven O'toole Drilling fluids comprising ground grape seeds
US20140102987A1 (en) 2012-10-17 2014-04-17 Saudi Arabian Oil Company Plant based material useful in adsorbing petroleum products, processes for making these, and uses thereof
US9598927B2 (en) 2012-11-15 2017-03-21 Halliburton Energy Services, Inc. Expandable coating for solid particles and associated methods of use in subterranean treatments
CN203035080U (zh) 2013-01-06 2013-07-03 中国建筑第六工程局有限公司 一种防止卵石层钻孔塌孔的结构
US9322231B2 (en) 2013-01-29 2016-04-26 Halliburton Energy Services, Inc. Wellbore fluids comprising mineral particles and methods relating thereto
US9175529B2 (en) 2013-02-19 2015-11-03 Halliburton Energy Services, Inc. Methods and compositions for treating subterranean formations with interlocking lost circulation materials
US9416306B2 (en) 2013-02-28 2016-08-16 Halliburton Energy Services, Inc. Clean fluid loss control additives
US8739872B1 (en) 2013-03-01 2014-06-03 Halliburton Energy Services, Inc. Lost circulation composition for fracture sealing
US20140256600A1 (en) 2013-03-08 2014-09-11 Solazyme, Inc. Oleaginous Microbial Lubricants
US8935957B2 (en) 2013-03-13 2015-01-20 Halliburton Energy Services, Inc. Methods of designing a drilling fluid having suspendable loss circulation material
MX2015014605A (es) 2013-04-19 2016-05-31 Lubrizol Oilfield Solutions Inc Sistemas de desviacion hidraulica para mejorar tratamientos de matriz y metodos para utilizar los mismos.
US9688901B2 (en) 2013-07-05 2017-06-27 James Blair Fontenot Lost circulation drilling fluids comprising elastomeric rubber particles and a method for decreasing whole mud loss using such composition
US9868891B2 (en) 2013-08-19 2018-01-16 Georgia-Pacific Chemicals Llc Methods for producing emulsifiers for oil-based drilling fluids
CN104419392A (zh) 2013-09-03 2015-03-18 卢廷建 石油钻井液用随钻封闭暂堵剂(fb)
US20150072901A1 (en) 2013-09-09 2015-03-12 Clearwater International Llc Lost circulation and fluid loss materials containing guar chaff and methods for making and using same
CA2924404A1 (en) 2013-09-16 2015-03-19 Solid Fluids & Technologies Corp. Additives for controlling lost circulation and methods of making and using same
WO2015069229A1 (en) 2013-11-05 2015-05-14 Halliburton Energy Services, Inc. Wellbore fluid additives of fibrillated fibers
WO2015076852A1 (en) 2013-11-25 2015-05-28 Halliburton Energy Services, Inc. A fiber suspending agent for lost-circulation materials
US9140118B2 (en) 2013-11-26 2015-09-22 Halliburton Energy Services, Inc. Modeling the suspendability of fibers in a treatment fluid using equations
CN103740346B (zh) 2013-12-31 2016-02-24 东营泰尔石油技术有限公司 堵漏增韧剂
CA2932901A1 (en) 2014-02-26 2015-09-03 Halliburton Energy Services, Inc. Protein-based fibrous bridging material and process and system for treating a wellbore
US8992670B1 (en) 2014-03-14 2015-03-31 King Fahd University Of Petroleum And Minerals Use of granular activated carbon (GAC) produced from date palm pits for the removal of gas phase volatile organic compound (VOC) benzene as a model VOC pollutant from continuous flow gas streams
MY174937A (en) 2014-03-17 2020-05-24 Univ Sains Malaysia A method for producing a thermally stable fluid loss reducing agent for water-based drilling fluid
WO2015191055A1 (en) 2014-06-10 2015-12-17 Halliburton Energy Services, Inc. Lost-circulation materials of two different types of fibers
GB2540706B (en) 2014-06-24 2021-07-14 Halliburton Energy Services Inc Acid soluble flakes as lost circulation material
CN104087274B (zh) 2014-07-14 2016-10-19 中国石油集团渤海钻探工程有限公司 多级封堵承压堵漏剂
WO2016019416A1 (en) 2014-08-05 2016-02-11 Ryanto Husodo Drilling fluid additive
US9963628B2 (en) 2014-08-19 2018-05-08 Halliburton Energy Services, Inc. Curauá fibers as lost-circulation materials and fluid-loss additives in wellbore fluids
EP3286280B1 (en) 2015-04-23 2020-08-05 Saudi Arabian Oil Company Date seed powder as a fluid loss additive for drilling fluids
US20170058180A1 (en) 2015-09-01 2017-03-02 King Fahd University Of Petroleum And Minerals Environmentally safe filtration control agents for drilling fluids
US9783727B2 (en) 2015-10-22 2017-10-10 Halliburton Energy Services, Inc. Fluid loss control package for use in subterranean formation operations
US10457846B2 (en) 2015-11-17 2019-10-29 Saudi Arabian Oil Company Date palm seed-based lost circulation material (LCM)
US10023781B2 (en) 2016-04-13 2018-07-17 Saudi Arabian Oil Company Rapidly dehydrating lost circulation material (LCM)
US10800959B2 (en) 2016-06-30 2020-10-13 Saudi Arabian Oil Company Date tree waste-based compound fibrous LCMs
US10544345B2 (en) 2016-06-30 2020-01-28 Saudi Arabian Oil Company Flaky date fruit CAP for moderate to severe loss control
US10259982B2 (en) 2016-07-12 2019-04-16 Saudi Arabian Oil Company Date seed-based multi-modal particulate admixture for moderate to severe loss control
US10392549B2 (en) 2016-08-31 2019-08-27 Saudi Arabian Oil Company Date tree trunk-based fibrous loss circulation materials
US9623067B1 (en) 2016-10-24 2017-04-18 King Saud University Method of preparing date palm seed nanoparticles
US10611943B2 (en) 2016-12-08 2020-04-07 Saudi Arabian Oil Company Acid-soluble plug forming rapidly dehydrating loss control slurry
US10352116B2 (en) 2017-11-16 2019-07-16 Saudi Arabian Oil Company ARC perm-squeeze RDF—a permeable plug forming rapidly dehydrating fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016879A (en) * 1997-10-31 2000-01-25 Burts, Jr.; Boyce D. Lost circulation additive, lost circulation treatment fluid made therefrom, and method of minimizing lost circulation in a subterranean formation
CN102660240A (zh) * 2012-05-14 2012-09-12 新疆贝肯能源工程股份有限公司 多温度段mtc固井液及其配制方法
US20140353043A1 (en) * 2013-06-03 2014-12-04 Saudi Arabian Oil Company Method of Conversion of a Drilling Mud to a Gel-Based Lost Circulation Material to Combat Lost Circulation During Continuous Drilling

Also Published As

Publication number Publication date
CA3018788A1 (en) 2017-10-19
WO2017180796A1 (en) 2017-10-19
US10759984B2 (en) 2020-09-01
US20170298263A1 (en) 2017-10-19
US10023781B2 (en) 2018-07-17
US20180155599A1 (en) 2018-06-07
US10087353B2 (en) 2018-10-02
SA518400047B1 (ar) 2021-05-18
CN109072058B (zh) 2021-01-26
CA3018788C (en) 2020-04-07
EP3443046B1 (en) 2020-05-13
US20180340109A1 (en) 2018-11-29
EP3443046A1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
CN109072058A (zh) 快速脱水的堵漏材料(lcm)
CA3063166C (en) Date tree trunk and rachis-based superfine fibrous materials for seepage loss control
US10767096B2 (en) Date tree waste-based binary fibrous mix for moderate to severe loss control
CN110139909A (zh) 形成酸溶性堵头的快速脱水的漏失控制浆料
CN106661929A (zh) 含有高温滤失控制添加剂的水基井筒维护液
US11434404B2 (en) Rapidly dehydrating lost circulation material (LCM)
US10988666B2 (en) Permeable and decomposable plug forming rapidly dehydrating fluid (RDF)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210126