CN109059971A - 一种三孔缝结构的传感器 - Google Patents

一种三孔缝结构的传感器 Download PDF

Info

Publication number
CN109059971A
CN109059971A CN201811114621.7A CN201811114621A CN109059971A CN 109059971 A CN109059971 A CN 109059971A CN 201811114621 A CN201811114621 A CN 201811114621A CN 109059971 A CN109059971 A CN 109059971A
Authority
CN
China
Prior art keywords
sensor
resonance
wavelength
hole crack
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811114621.7A
Other languages
English (en)
Other versions
CN109059971B (zh
Inventor
李琦
刘飞
傅涛
李海鸥
张法碧
陈永和
肖功利
孙堂友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201811114621.7A priority Critical patent/CN109059971B/zh
Publication of CN109059971A publication Critical patent/CN109059971A/zh
Application granted granted Critical
Publication of CN109059971B publication Critical patent/CN109059971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提出了一种三孔缝结构的传感器,利用此结构的三个偶极子谐振单元的明模式谐振与暗模式谐振的互作用,产生具有陡的非对称的响应谱线型,从而设计出具有法诺共振现象透射谱的三孔缝结构的传感器。在相同的开关对比度情况下,非对称响应谱线线型所需的波长偏移或者间隔比由单一的谐振腔得到的对称的类洛仑兹线型的谱宽小,可增加波分复用器的波长分辨率以及生物传感器的灵敏度。通过调控结构的几何参数,透射谱中出现了法诺峰的不同程度的红移,可实现法诺谐振的调谐,由缩比定理等比例地改变结构参数的尺度能实现传感器中谐振频率频段的变化,即工作频段不限于THz频段,本传感器可用于波分复用器、光开关、生物传感器等领域。

Description

一种三孔缝结构的传感器
技术领域
本发明涉及传感器领域,具体涉及一种三孔缝结构的传感器。
背景技术
法诺共振是共振现象的一种,其具有非对称的谱线形状,能显著提高器件的传感性能,近年来,人工电磁超材料在国际电磁学领域引起了广泛关注,其中,基于人工电磁超材料的法诺共振,更是成为此领域中一个新的热点。法诺共振是超材料中的重要谐振特性,它是由宽谱的明模式以及窄谱的暗模式相互干涉形成的,而暗模式也称亚辐射模式,是由入射电磁波的频率不等于偶极子谐振的固有频率,从而激励电磁波无法与偶极子直接耦合所引起的;明模式也称超辐射模式,是指内中的三个偶极子的同相振荡模式,其辐射损耗极高,这是由入射电磁波的频率恰好等于偶极子谐振的固有频率从而激励电磁波与偶极子直接耦合所引起的。
为了解决目前三孔缝结构的传感器性能中谱宽过大的技术问题。基于法诺共振现象,本发明将提供一种三孔缝结构的传感器,可以产生法诺共振现象,可增加波分复用器的波长分辨率以及生物传感器的灵敏度。
发明内容
本发明所要解决的技术问题是现有技术中存在的三孔缝结构的传感器性能差、谱宽所需大的技术问题。提供一种新的三孔缝结构的传感器,该三孔缝结构的传感器具有能够产生法诺谐振现象,提高器件的传感性能、在相同的开关对比度情况下,这种非对称响应谱线线型所需的波长偏移或者间隔比由单一的谐振腔得到的对称的类洛仑兹线型的谱宽小,可增加波分复用器的波长分辨率以及生物传感器的灵敏度的特点。该三孔缝结构的传感器可以放置于硅/石英/聚酰亚胺衬底之上,也可以置于光纤端面上,进而实现THz传感器的可用性。
为解决上述技术问题,采用的技术方案如下:
一种三孔缝结构的传感器,三孔缝结构的传感器包括厚度小于工作波长10-3倍厚的超表面;所述超表面的形状为规则几何形状,超表面内平行等间距对称的设置有三个矩型孔缝;所述超表面的材质为金属。
本发明中的集合形状包括正六边形、正方形、三角形、矩形,材质可以是为金/银/铜等金属导体。超表面内平行等间距对称地设置有三个矩形孔缝,它们的长度可以互不相等、一个靠近边缘的孔缝长度不等于另两个相同尺寸的孔缝长度、两侧相同尺寸孔缝的长度与中间孔缝长度不等、孔缝长度相等。由现有的缩比定理,等比例地改变本发明中的结构参数尺度,能实现传感器中谐振频率频段的相应变化。
上述方案中,为优化,进一步地,所述规则几何形状为正方形,所述三个矩型孔缝的长度相同。正方形超表面内平行等间距对称地设置有三个矩形孔缝,它们的长度可以互不相等、一个靠近边缘的孔缝长度不等于另两个相同尺寸的孔缝长度、两侧相同尺寸孔缝的长度与中间孔缝长度不等、孔缝长度相等。
上述方案中,进一步地,在参数固定为w=6μm,d=10μm,p=50μm,t=1μm,h=30μm时,得到明、暗模式的电场Ex图。从明模式电场Ex图可知,三个偶极子的振荡呈同相模式,从明模式电场Ex图可知,三个偶极子的振荡呈失相模式。
进一步地,在其他参数固定为上述情况时,所述矩形孔缝的宽度为5.2μm≤w≤7.4μm。可知随w的增加,明模式的位置无变化,暗模式的位置出现了轻微蓝移。
进一步地,在其他参数固定为上述情况时,所述矩形孔缝的间距为7.3μm≤d≤13μm。可知随d的增加,明模式的位置出现显著红移,暗模式的位置出现了明显蓝移。
进一步地,在其他参数固定为上述情况时,所述矩形孔缝的长度为20μm≤h≤42μm。可知随h的增加,明、暗模式的位置均出现了显著红移。
本发明的有益效果:本发明的三孔缝结构的传感器能够产生法诺谐振效应,超表面内包括三个偶极子谐振器,超表面中位于三个孔缝中的谐振偶极子相互耦合,进而形成偶极子集体振荡的情况,从而产生非对称的相应谱线型,得到法诺共振现象,由该传感器中透射谱具有法诺共振现象的陡的非对称的响应谱线型,透射系数能迅速从非对称的谱线的波峰下降到波谷,在相同的开关对比度情况下,这种非对称响应谱线线型所需的波长偏移或者间隔比由单一的谐振腔得到的对称的类洛仑兹线型的谱宽小得多,可增加波分复用器的波长分辨率以及生物传感器的灵敏度。因而此种陡峭的非对称的相应谱线型在波分复用器、光开关、传感器等领域均有极为重要的应用。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1,实施例1中的三孔缝结构的传感器示意图;
图2,矩形孔缝的宽w变化时的测试结果示意图;
图3,矩形孔缝之间间距d变化时的测试结果示意图;
图4,矩形孔缝长度h变化时的测试结果示意图。
图5,法诺谐振现象的明模式下的电场Ex图。
图6,法诺谐振现象的明模式下的电场Ex图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
本实施例提供一种三孔缝结构的传感器,如图1,包括正方形超表面,正方形超表面材质为金/银/铜等金属,正方形超表面内平行设置有三个相同且对称的矩形孔缝。
其中,本实施例定义如下:
矩形孔缝的长为h,宽为w,矩形孔缝之间间距为d。图1为二维结构,三孔缝结构的传感器边长为p,电磁波入射波矢k沿-z方向。电磁波自空气入射这一单元形成波在两种不同介质的传输的情形,电磁波沿波矢k入射,电场E沿x轴方向,磁场H位于yoz面且与波矢k、电场E均垂直。
本实施例采用基于有限元法的仿真软件进行模型建立、数值与解析计算。
具体地,建立结构参数为d=10μm,h=30μm,p=50μm,t=1μm的超表面滤波器模型,同时对参数w进行步进仿真。使用基于有限元法的仿真软件进行数值与解析计算,结果如图2,为透射系数与频率的关系图。
从图2可以看出,随着w以步长0.1μm从5.2μm增加到7.4μm,可见透射系数峰值均稳定的趋于1。法诺谐振透射谷的位置不随w的改变而变化,是稳定于f0=4.4THz处(图中以Dip及点画线表示)。而透射峰的位置随w的增加而发生轻微的蓝移(图中以Peak及实线表示),即w增大,透射峰所在频率增大。如图5,也就是说,随着w的增大,明模式位置保持不变,而暗模式位置发生了蓝移,如图6。为描述暗模式蓝移的快慢,本实施例定义调谐灵敏度s=Δf/Δw,计算出s=0.05THz/μm=50GHz/μm。
实施例2
本实施例是在实施例1的结构上建立结构在参数h=30μm,w=6μm,p=50μm,t=1μm的三孔缝结构的传感器模型结构,同时对参数d进行步进仿真。
使用基于有限元法的仿真软件进行数值与解析计算,结果如图3,为参数d变化时透射系数与频率的关系图。
图3中,表征了不同d时透射系数与频率的关系:d不同时均有明显的法诺共振现象,透射谷频率随d的变化而变化,透射谷的位置出现了几乎线性的红移(图中以Dip及黑色点画线表示):即d增大,透射谷频率减小。
另外,从图3可知,随着d的增加出现了透射谷几乎线性的红移(图中以Dip及黑色点画线表示),即法诺共振中的明模式的位置发生了红移,而d增大,透射谷频率增大(图中以Dip及黑色点画线表示),即暗模式的位置随着d的增加发生了蓝移。
但是本实施例中,暗模式的红移占主要部分。
为描述本实施例中明模式的红移快慢,本实施例定义调谐灵敏度s1=-Δf/Δd,计算出s1=0.09THz/μm=90GHz/μm。为描述本实施例中暗模式的蓝移快慢,本实施例定义调谐灵敏度s2=Δf/Δd,计算出s2=0.083THz/μm=83GHz/μm。综上,能够得出本实施例中,参数d对法诺谐振的透射峰频率很敏感。
实施例3
本实施例是在实施例1的结构上建立结构在参数w=6μm,d=10μm,p=50μm,t=1μm的三孔缝结构的传感器模型结构,同时对参数h进行步进仿真。
使用基于有限元法的仿真软件进行数值与解析计算,结果如图4,为透射系数与频率的关系图。
图4表征了不同h的透射系数与频率的关系图。如图4,为h和谐振频率的透射特性关系。随h的改变发生法诺谐振透射谷的红移(图中以Dip及点画线表示),随着h的增加出现了透射峰位置的红移(图中以Peak及实线表示),上述规律依次表明法诺共振中的明、暗两种模式的位置均发生了红移,且两者红移的快慢大致相同。
为描述本实施例中明模式的红移快慢,本实施例定义调谐灵敏度s1=-Δf/Δh,计算出s1=0.141THz/μm=141GHz/μm。为描述本实施例中暗模式的红移本实施例定义调谐灵敏度s2=Δf/Δh,计算出s2=0.0925THz/μm=92.5GHz/μm。对比实施例1-3中的结果,可知参数h对法诺谐振的透射谱谐振频率更敏感。
由于透射谱具有法诺共振现象的陡的非对称的响应谱线型,透射系数能迅速从非对称的谱线的波峰下降到波谷,实施例3的非对称响应谱线线型所需的波长偏移或者间隔比实施例2的更小。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员能够理解本发明,但是本发明不仅限于具体实施方式的范围,对本技术领域的普通技术人员而言,只要各种变化只要在所附的权利要求限定和确定的本发明精神和范围内,一切利用本发明构思的发明创造均在保护之列。

Claims (6)

1.一种三孔缝结构的传感器,其特征在于:三孔缝结构的传感器包括厚度小于工作波长的超表面;
所述超表面的形状为规则几何形状,超表面内平行等间距对称的设置有三个矩型孔缝;所述超表面的材质为金属。
2.根据权利要求1所述的三孔缝结构的传感器,其特征在于:所述规则几何形状为正方形,所述三个矩型孔缝的长度相同。
3.根据权利要求2所述的三孔缝结构的传感器,其特征在于:所述矩形孔缝的长度为20μm≤h≤42μm。
4.根据权利要求3所述的三孔缝结构的传感器,其特征在于:所述矩形孔缝的宽度为5.2μm≤w≤7.4μm。
5.根据权利要求4所述的三孔缝结构的传感器,其特征在于:三个矩形孔缝中,相邻矩形孔缝之间的间距均为d,其范围为7.3μm≤d≤13μm。
6.根据权利要求5所述的三孔缝结构的传感器,其特征在于:所述w=6μm,d=10μm,p=50μm,t=1μm,h=30μm。
CN201811114621.7A 2018-09-25 2018-09-25 一种三孔缝结构的传感器 Active CN109059971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811114621.7A CN109059971B (zh) 2018-09-25 2018-09-25 一种三孔缝结构的传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811114621.7A CN109059971B (zh) 2018-09-25 2018-09-25 一种三孔缝结构的传感器

Publications (2)

Publication Number Publication Date
CN109059971A true CN109059971A (zh) 2018-12-21
CN109059971B CN109059971B (zh) 2024-04-30

Family

ID=64763583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811114621.7A Active CN109059971B (zh) 2018-09-25 2018-09-25 一种三孔缝结构的传感器

Country Status (1)

Country Link
CN (1) CN109059971B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408907A (zh) * 2019-08-05 2019-11-05 安徽大学 检测肿瘤生物标记物的全介质超表面传感平台及设计方法
CN113295647A (zh) * 2021-05-13 2021-08-24 山东大学 基于Fano共振耦合谐振腔太赫兹波导传感器件及其制备方法
CN115453433A (zh) * 2022-11-09 2022-12-09 南方电网数字电网研究院有限公司 石墨烯非对称结构磁传感器及其参数确定方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010648A (ja) * 2005-06-01 2007-01-18 Canon Inc 局在プラズモン共鳴センサ
US20070165295A1 (en) * 2006-01-18 2007-07-19 Seoul National University Industry Foundation Terahertz or infrared filter using shape resonance
US20090310133A1 (en) * 2006-02-28 2009-12-17 Canon Kabushiki Kaisha Method for designing light transmission device, optical element and sensor
GB201006944D0 (en) * 2010-04-26 2010-06-09 Univ Southampton Spectral filter
US20120154793A1 (en) * 2010-09-21 2012-06-21 Imogen Pryce Tunable compliant optical metamaterial structures
CN103259098A (zh) * 2013-05-16 2013-08-21 大连理工大学 一种可以产生法诺共振增强和频率可调谐现象的多层对称超材料
CN203164701U (zh) * 2013-02-27 2013-08-28 金陵科技学院 基于gsm的仓库远程监控系统
CN104111565A (zh) * 2014-06-13 2014-10-22 苏州大学 一种基于表面等离激元法诺共振的微纳光开关及使用它的级联光开关
CN105789905A (zh) * 2016-02-26 2016-07-20 哈尔滨工业大学深圳研究生院 一种基于金属薄膜反结构的旋磁衬底超表面
CN105947972A (zh) * 2016-04-25 2016-09-21 郑州大学 多个纳米棒二聚体阵列结构、其制造方法、激发其Fano共振的方法以及包含其的光学传感器
US20160334758A1 (en) * 2015-05-11 2016-11-17 Purdue Research Foundation System for producing ultra-thin color phase hologram with metasurfaces
US20160341859A1 (en) * 2015-05-22 2016-11-24 Board Of Regents, The University Of Texas System Tag with a non-metallic metasurface that converts incident light into elliptically or circularly polarized light regardless of polarization state of the incident light
US20170276848A1 (en) * 2015-08-31 2017-09-28 National Technology & Engineering Solutions Of Sandia, Llc Rapidly tunable, narrow-band infrared filter arrays
US20170315102A1 (en) * 2014-10-20 2017-11-02 Board Of Regents, The University Of Texas System Enhanced nanoscale gas chromatography
US20180081081A1 (en) * 2016-09-21 2018-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical component, sensor and method for measuring an expansion and/or a temperature
CN108414473A (zh) * 2018-03-13 2018-08-17 重庆邮电大学 一种太赫兹波段超材料传感器
CN207764126U (zh) * 2018-01-30 2018-08-24 桂林电子科技大学 基于反射双共振谷光纤表面等离子共振传感器
CN108539423A (zh) * 2018-03-21 2018-09-14 上海师范大学 石墨烯基互补型非对称Π型结构THz调制器及制备方法
CN209589089U (zh) * 2018-09-25 2019-11-05 桂林电子科技大学 一种三孔缝结构的传感器

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010648A (ja) * 2005-06-01 2007-01-18 Canon Inc 局在プラズモン共鳴センサ
US20070165295A1 (en) * 2006-01-18 2007-07-19 Seoul National University Industry Foundation Terahertz or infrared filter using shape resonance
US20090310133A1 (en) * 2006-02-28 2009-12-17 Canon Kabushiki Kaisha Method for designing light transmission device, optical element and sensor
GB201006944D0 (en) * 2010-04-26 2010-06-09 Univ Southampton Spectral filter
US20120154793A1 (en) * 2010-09-21 2012-06-21 Imogen Pryce Tunable compliant optical metamaterial structures
CN203164701U (zh) * 2013-02-27 2013-08-28 金陵科技学院 基于gsm的仓库远程监控系统
CN103259098A (zh) * 2013-05-16 2013-08-21 大连理工大学 一种可以产生法诺共振增强和频率可调谐现象的多层对称超材料
CN104111565A (zh) * 2014-06-13 2014-10-22 苏州大学 一种基于表面等离激元法诺共振的微纳光开关及使用它的级联光开关
US20170315102A1 (en) * 2014-10-20 2017-11-02 Board Of Regents, The University Of Texas System Enhanced nanoscale gas chromatography
US20160334758A1 (en) * 2015-05-11 2016-11-17 Purdue Research Foundation System for producing ultra-thin color phase hologram with metasurfaces
US20160341859A1 (en) * 2015-05-22 2016-11-24 Board Of Regents, The University Of Texas System Tag with a non-metallic metasurface that converts incident light into elliptically or circularly polarized light regardless of polarization state of the incident light
US20170276848A1 (en) * 2015-08-31 2017-09-28 National Technology & Engineering Solutions Of Sandia, Llc Rapidly tunable, narrow-band infrared filter arrays
CN105789905A (zh) * 2016-02-26 2016-07-20 哈尔滨工业大学深圳研究生院 一种基于金属薄膜反结构的旋磁衬底超表面
CN105947972A (zh) * 2016-04-25 2016-09-21 郑州大学 多个纳米棒二聚体阵列结构、其制造方法、激发其Fano共振的方法以及包含其的光学传感器
US20180081081A1 (en) * 2016-09-21 2018-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical component, sensor and method for measuring an expansion and/or a temperature
CN207764126U (zh) * 2018-01-30 2018-08-24 桂林电子科技大学 基于反射双共振谷光纤表面等离子共振传感器
CN108414473A (zh) * 2018-03-13 2018-08-17 重庆邮电大学 一种太赫兹波段超材料传感器
CN108539423A (zh) * 2018-03-21 2018-09-14 上海师范大学 石墨烯基互补型非对称Π型结构THz调制器及制备方法
CN209589089U (zh) * 2018-09-25 2019-11-05 桂林电子科技大学 一种三孔缝结构的传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUANG-LI LEE,等: "Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays", SCIENTIFIC REPORTS, 24 February 2015 (2015-02-24) *
MINKYUNG KIM,ET AL.: "Active Color Control in a Metasurface by Polarization Rotation", 《APPL. SCI.》 *
曹扬;: "对称平面特异材料中的类Fano谐振(英文)", 发光学报, no. 02, 15 February 2013 (2013-02-15) *
肖功利等: "H型金属孔阵列结构强透射折射率传感特性研究", 《半导体光电》, vol. 39, no. 1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408907A (zh) * 2019-08-05 2019-11-05 安徽大学 检测肿瘤生物标记物的全介质超表面传感平台及设计方法
CN110408907B (zh) * 2019-08-05 2021-03-12 安徽大学 检测肿瘤生物标记物的全介质超表面传感平台及设计方法
CN113295647A (zh) * 2021-05-13 2021-08-24 山东大学 基于Fano共振耦合谐振腔太赫兹波导传感器件及其制备方法
CN113295647B (zh) * 2021-05-13 2022-04-12 山东大学 基于Fano共振耦合谐振腔太赫兹波导传感器件及其制备方法
CN115453433A (zh) * 2022-11-09 2022-12-09 南方电网数字电网研究院有限公司 石墨烯非对称结构磁传感器及其参数确定方法
CN115453433B (zh) * 2022-11-09 2023-01-20 南方电网数字电网研究院有限公司 石墨烯非对称结构磁传感器及其参数确定方法

Also Published As

Publication number Publication date
CN109059971B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN109059971A (zh) 一种三孔缝结构的传感器
CN106058481B (zh) 基于z型超表面的太赫兹反射式极化转换器
Al-Naib et al. Polarization and angle independent terahertz metamaterials with high Q-factors
Puscasu et al. Narrow-band, tunable infrared emission from arrays of microstrip patches
KR102040149B1 (ko) 적외선 검출기
Ma et al. Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split-ring resonator arrays
Xi et al. Accurate feeding of nanoantenna by singular optics for nanoscale translational and rotational displacement sensing
Singh et al. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials
KR101888175B1 (ko) 외곽 사각고리 추가형 테라헤르츠 능동공진기
CN105633588B (zh) 一种偏振不敏感导模谐振品质因子可调超材料谐振装置
Drysdale et al. Transmittance of a tunable filter at terahertz frequencies
WO2013143177A1 (zh) 平面光学元件及其设计方法
Chen et al. Polarization controllable multispectral symmetry-breaking absorberin mid-infrared
CN107037507A (zh) 一种高品质因子的全介质超材料谐振装置
JP2015231182A (ja) メタマテリアル受動素子
CN109683213B (zh) 锑化铟薄膜太赫兹超表面及其热调谐方法、制备方法
Li et al. Dynamic axial mode tuning in a rolled-up optical microcavity
CN110112513A (zh) 一种基于可调谐仿表面等离子体的宽带片上太赫兹开关
Yi et al. Experimental validation of a transformation optics based lens for beam steering
CN209589089U (zh) 一种三孔缝结构的传感器
Li et al. Tailoring Fano lineshapes using plasmonic nanobars for highly sensitive sensing and directional emission
Ruan et al. Tunable terahertz metamaterial filter based on applying distributed load
Chen et al. Double wavelength infrared emission by localized surface plasmonic thermal emitter
Huang et al. Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement
CN110277648A (zh) 一种对称型太赫兹偏振不敏感人工微结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant