CN109034476B - 一种高速铁路沿线极端风速大数据聚类预测方法 - Google Patents

一种高速铁路沿线极端风速大数据聚类预测方法 Download PDF

Info

Publication number
CN109034476B
CN109034476B CN201810843354.0A CN201810843354A CN109034476B CN 109034476 B CN109034476 B CN 109034476B CN 201810843354 A CN201810843354 A CN 201810843354A CN 109034476 B CN109034476 B CN 109034476B
Authority
CN
China
Prior art keywords
wind speed
prediction
wind
time
svm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810843354.0A
Other languages
English (en)
Other versions
CN109034476A (zh
Inventor
刘辉
吴海平
段铸
尹恒鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201810843354.0A priority Critical patent/CN109034476B/zh
Publication of CN109034476A publication Critical patent/CN109034476A/zh
Application granted granted Critical
Publication of CN109034476B publication Critical patent/CN109034476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q50/40

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种高速铁路沿线极端风速大数据聚类预测方法,根据近期风速状况,通过在目标测风点构建目标测风站和时移测风站,对测风站的数据进行去噪处理后,并进行风速样本聚类,利用LS‑SVM对去噪后的风速聚类样本数据进行训练,构建各测风站在多种步长下的风速预测模型;选用各模型进行多种步长的最优预测组合,实现多步迭代预测,提高预测精度,降低随机误差的干扰;实现了铁路沿线风速超前预测,可以提前得知事故多发区域的风速环境状况,及时、有效地指导列车运行,保障列车运营安全。

Description

一种高速铁路沿线极端风速大数据聚类预测方法
技术领域
本发明属于铁路风速预测领域,特别涉及一种高速铁路沿线极端风速大数据聚类预测方法。
背景技术
我国高速铁路发展迅速,已成为有代表性的中国名片。就目前全世界范围内的发展现状来说,中国高速铁路成绩辉煌。但随着高速铁路速度的提升,面临着新的问题和挑战。大风是制约高速铁路发展的主要障碍之一,严重威胁运营安全。一方面,优化车身设计和车体材料必不可少,另一方面,如何快速精准地预测大风到来的时间与风速也有着不可忽视的意义。
大风的恶劣影响随着列车运行速度的增加而愈发显著,严重制约着铁路客运货运提速和经济的发展。
发明内容
本发明为了实现铁路沿线短期风速的高精度预测,提出一种高速铁路沿线极端风速大数据聚类预测方法,根据历史风速数据,将风速环境进行聚类,提高预测模型对突变风速的预测精度,根据近期风速状况,选用各模型多种步长的最优预测组合,实现多步迭代预测,降低时间成本,降低随机误差的干扰。
一种高速铁路沿线极端风速大数据聚类预测方法,包括以下步骤:
步骤1:在铁路目标测风点设置测风站,包括目标测风站和时移测风站;
所述目标测风站距离铁路目标测风点100米,所述时移测风站至少包括3个,且设置铁路目标测风点与目标测风站所在连线上,第一个时移测风站距离铁路目标测风点500米,相邻时移测风站之间间距为500米;
步骤2:构建训练样本数据;
以相同采样频率采集各测风站在历史时间段内的风速,依次将各测风站的历史风速,以时间间隔T内的风速中值作为各测风站的样本时刻风速,即将每个时间间隔T内的多个风速的中值作为一个样本时刻的风速值,压缩历史风速数据;
将样本时刻风速依次以聚类时间T’进行划分,若每个聚类时间T’内的样本时刻风速数据的最大极值与均值的差值超过均值的30%,则该聚类时间T’内的样本时刻风速聚类为突变风速样本,否则,聚类为平稳风速样本,随机选择各测风站在至少10个不同时段的突变风速样本和平稳风速样本,获得训练样本数据;
所述聚类时间T’的时间至少为120min,各测风站的风速采集时间间隔为3-5秒,时间间隔T的取值为5min;
所述训练样本数据中的每个样本为一个突变风速样本或平稳风速样本;
步骤3:利用训练样本数据和设置的预测步长,构建基于LS-SVM的风速预测模型组;
LS-SVM,即最小二乘支持向量机。
依次以目标测风站和所有时移测风站中任意三个测风站在任意历史时刻t0的风速值作为输入数据,剩余测风站在t0+Δt时刻的风速值作为输出数据,对LS-SVM模型进行训练,获得各测风站预测步长为Δt的基于LS-SVM的风速预测模型;
所述预测步长Δt的取值依次为p、2p、3p、4p,p为预测步长单元时间,取值范围为1-5min,一种预测步长对应一组基于LS-SVM的风速预测模型;
四个预测步长,一共四组风速预测模型,每组风速预测模型包含四个测风站的风速预测模型;
每组风速预测模型的输入数据为四个测风站在某时刻的风速,输出数据为经过时间Δt后,四个测风站的预测风速;
实际上每组风速预测模型中某个测风站的风速预测模型是指利用另外三个测风站的在某时刻的风速,对该测风站在经过时间Δt后的风速进行预测;
步骤4:根据目标预测时间,构建所有测风站的预测任务迭代向量;
将目标预测时间m拆分为n个子预测时间hi,依据子预测时间与风速预测模型组的步长进行对应,选择各子预测时间对应的风速预测模型组,形成各测风站预测任务迭代向量l={hi,j},hi,j表示第i个子预测时间选择第j个风速预测模型组进行风速预测的预测子任务,i的取值范围为1-n,j的取值范围为1-4;
所述目标预测时间m是指在经过时间m后进行风速预测;
每个子预测时间需要选择一个对应步长的风速预测模型组进行四个测风站的在经过子预测时间时的风速预测;
每一个子预测时间选择一个风速预测模型组进行一次子任务预测,称为一个预测子任务,一个预测子任务的输入为四个测风站同一时刻的风速数据,一共四个数据,输出为四个测风站经过子预测时间对应步长Δt之后同一时刻的风速数据,一共四个数据,输出数据可以直接用于下一个预测子任务的输入,避免了常规预测方法中对多余风速值的预测,减少迭代次数,提升预测精度;
步骤5:利用步骤4获得的任意一种预测任务迭代向量,进行风速预测;
以当前时刻t时刻四个测风站的风速数据作为所选预测任务迭代向量中第一个预测子任务的输入数据,以所选预测任务迭代向量最后一个预测子任务输出数据中的目标测风站的风速数据作为目标预测时间m目标测风点的风速预测值;
前一个预测子任务的输出数据作为后一个预测子任务的输入数据。
进一步的,利用最新历史风速数据,选取最优预测任务迭代向量,进行风速预测,获得最优风速预测结果,具体过程如下:
步骤A:基于目标预测时间m,选用与当前时刻t相距m+4p时间段内的历史风速数据按照训练样本数据的构建方法,获得预测样本数据,并从预测样本数据中选出各测风站依次在t、t-m、t-m-p、t-m-2p、t-m-3p、t-m-4p以及t-p、t-2p、t-3p、t-4p时的风速;
步骤B:将四个测风站在时刻为t-m、t-m-p、t-m-2p、t-m-3p、t-m-4p时的风速,依次作为每个预测任务迭代向量的输入数据,获得每个预测任务迭代向量在t、t-p、t-2p、t-3p、t-4p时获得的目标测风站预测风速;
步骤C:计算每个预测任务迭代向量依次在t、t-p、t-2p、t-3p、t-4p时获得的目标测风站预测风速与实测风速的误差,并对误差求取均值,得到每个预测任务迭代向量的总体预测误差;
步骤D:选取总体预测误差值最小的预测任务迭代向量作为最优预测任务迭代向量,进行风速预测,获得最优风速预测结果。
进一步的,设置预测任务迭代向量权重,构建最优预测任务迭代融合向量,进行风速预测,获得最优风速预测结果,;
将所有预测任务迭代向量的总体预测误差值,按照从小到大排序,选取前5个预测任务迭代向量,并依据所选的5个预测任务迭代向量的总体预测误差值占所选5个预测任务迭代向量的总体预测误差值之和的比例,设置各预测任务迭代向量的权重,构建最优任务迭代融合向量,进行风速预测,获得最优风速预测结果。
选取5个预测任务迭代向量,对同一时刻的风速进行5次预测,按照每个预测任务迭代向量的权重,将5次预测结果进行权重组合,得到目标测风站的预测风速;
进一步的,对各测风站的样本数据进行交互卡尔曼滤波处理,将滤波后的数据用于模型训练和预测任务迭代向量的选取。
进一步的,所述预测任务迭代向量中每个预测子任务的子预测时间满足以下公式:
Figure BDA0001746086830000031
其中,hmin的取值为预测步长单元时间。
进一步的,在与铁路平行的方向上,每个测风站两侧等间距设置有同类型测风站,获得目标测风站组和时移测风站组,其中时移测风站组包括第一时移测风站组、第二时移测风站组以及第三时移测风站组;
从目标测风站组各测风站测得的风速值中,选取相同采样时刻的最大风速值作为虚拟目标测风站的各采样时刻的风速值,以虚拟目标测风站作为目标样本测风站;
从各时移测风站组中,选取相同采样时刻的风速值与对虚拟测风站对应时刻的风速值显著性最大的时移测风站,获得时移目标测风站。
进一步的,对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时采用以下至少一种方法进行优化:
1)狼群-模拟退火算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400];
2)水循环算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400];
3)混沌差分蝙蝠算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400]。
进一步的,采用狼群-模拟退火算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤1.1):以个体狼位置作为所述基于LS-SVM风速预测模型中LS-SVM的参数γ和参数σ2,随机初始化狼群中的每只个体狼并设置狼群参数:
狼群规模取值范围为:[50,200],步长因子取值范围为:[50,120],探狼比例因子取值范围为:[2,6],最大游走次数取值范围为:[10,40],距离判定因子取值范围为:[40,100],最大奔袭次数取值范围为:[4,16],更新比例因子取值范围为:[2,6],最大迭代次数取值范围为:[500,1000],最大搜索精度取值范围为:[0.001,0.005];设定模拟退火算法的退火初始温度为100、退火速率为φ=0.8、退火迭代次数t2=1,当前温度下最大退火循环次数为Lmax=6;
步骤1.2):设定适应度函数,并确定初始最优头狼位置和迭代次数t1,t1=1;
将个体狼位置的对应的LS-SVM的参数γ和参数σ2代入基于LS-SVM的风速预测模型中,并利用个体狼位置确定的基于LS-SVM模型的风速预测模型输出风速预测值,将得到的风速预测值跟期望风速值之间的均方误差的倒数作为人工狼的适应度函数F1
Figure BDA0001746086830000041
其中,M表示训练次数,xi、yi分别表示第i次训练的风速预测值和期望输出值;
步骤1.3):依次对所有人工狼进行游走行为、奔袭行为、围攻行为,按照个体狼的适应度更新狼群,获得更新后的最优头狼位置;
步骤1.4):判断是否到达优化精度要求或最大迭代次数,若没有到达,令t1=t1+1转至步骤1.5),若到达,转至步骤1.7);
步骤1.5):对本代中的头狼个体进行模拟退火操作,在得到的头狼位置gi邻域内随机选择新的位置gj并计算两者适应度之差ΔF1=F1(gi)-F1(gj),计算选择概率P=exp(-ΔF1/Tei),Tei为当前温度;如果P>random[0,1),则将当前头狼位置由gi替换为gj,并以gj作为下次寻优的开始,否则以gi开始下一次寻优;
步骤1.6):令t2=t2+1,按照Tei+1=Tei*φ进行降温退火,若t2<Lmax,转至步骤1.5),否则,转至步骤1.3);
步骤1.7):输出头狼位置对应的LS-SVM的参数γ和参数σ2
进一步的,采用水循环算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤2.1):每个降雨层作为所述LS-SVM的参数γ和参数σ2,初始化降雨层;
步骤2.2):将降雨层对应的参数γ和参数σ2代入基于LS-SVM的风速预测模型中,利用降雨层确定的基于LS-SVM的风速预测模型计算以风速训练子样本为输入的风速预测值与风速训练期望样本的均方误差的倒数作为第二适应度函数;
Figure BDA0001746086830000051
其中,M表示训练次数,xi、yi分别表示第i次训练的风速预测值和期望输出值;
步骤2.3):以适应度最大的降雨层作为大海,以适应度次于大海的且适应度较大降雨层作为河流,其余的降雨层作为向河流或大海流动的溪流;
步骤2.4):在流动过程中,如果溪流的适应度高于河流的适应度,则溪流河流互换位置,如果河流的适应度高于大海的适应度,河流大海互换位置,最后使溪流流入河流,河流流入海洋;
步骤2.5):判断河流与海洋适应度之间的差值绝对值是否小于极小值,若是,转至步骤2.6);若否,重复步骤2.5);
步骤2.6):判断是否到达最大迭代次数,若否,进入下一次迭代,从降雨层种群中舍弃该河流,重新进行降雨过程,生成随机降雨层加入种群,转至步骤2.3);若是,输出海洋降雨层对应的参数作为所述LS-SVM的参数γ和参数σ2
进一步的,采用混沌差分蝙蝠算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤3.1):以蝙蝠个体的位置作为基于LS-SVM的风速预测模型中所述LS-SVM的参数γ和参数σ2
蝙蝠种群规模的取值范围为[100,500],蝙蝠个体最大脉冲频率r0=0.5,最大脉冲声音强度A0的取值范围为[0.3,0.8],蝙蝠搜索频率增加系数的取值范围为[0.02,0.05],声音强度衰减系数的取值范围为[0.75,0.95],交叉概率设置为0.5,变异概率设置为0.5,适应度方差阈值的取值范围为[0.01,0.06],搜索脉冲频率的取值范围为[0,1.5],最大迭代次数的取值范围为[200,500],最大搜索精度的取值范围为[0.02,0.1];
步骤3.2):根据混沌映射序列初始化蝙蝠种群中每个蝙蝠个体的位置、速度、频率;
步骤3.3):设定适应度函数,并确定初始最优蝙蝠个体位置和迭代次数t3,t3=1;
将蝙蝠个体位置对应的参数γ和参数σ2代入基于LS-SVM的风速预测模型,利用蝙蝠个体位置确定的基于LS-SVM的风速预测模型计算以风速训练子样本为输入的风速预测值与风速训练期望样本的均方误差的倒数作为第三适应度函数;
Figure BDA0001746086830000061
其中,M表示训练次数,xi、yi分别表示第i次训练的风速预测值和期望输出值。
步骤3.4):利用设定的脉冲频率更新蝙蝠的搜索脉冲频率、位置和速度;
步骤3.5):若Random1>ri,则对于个体最优位置的蝙蝠进行随机扰动,生成最优位置蝙蝠的扰动位置;
其中Random1为在闭区间[0,1]上均匀分布的随机数,ri为第i只蝙蝠的脉冲频率;
步骤3.6):若Random2>Ei,代表最优蝙蝠个体的扰动位置的适应度优于扰动前位置的适应度,将最优蝙蝠个体移动至扰动位置,否则最优蝙蝠个体位置不动;
其中Random2为在闭区间[0,1]上均匀分布的随机数,Ei为第i只蝙蝠的声音强度;
步骤3.7):计算当前种群的所有蝙蝠个体的适应度以及蝙蝠种群的种群适应度方差;
根据蝙蝠种群的种群适应度方差判断早熟状态,若蝙蝠种群适应度方差小于给定的阈值,对所有蝙蝠个体进行交叉和变异操作,并转至步骤3.5),否则,选出最优蝙蝠个体,转至步骤3.8);
步骤3.8):判断是否到达最大迭代次数或最大搜索精度,若是,输出最优蝙蝠个体位置对应的基于LS-SVM的风速预测模型中所述LS-SVM的参数γ和参数σ2,若否,t3=t3+1,转至步骤3.4)。
有益效果
本发明提供了一种高速铁路沿线极端风速大数据聚类预测方法,将风速大数据聚类为突变和平稳两类,随机输入到预测模型中进行训练,增强预测模型的泛化能力,提高对突变风速的适应度;根据近期风速状况,选用各模型多种步长的最优预测组合,实现多步迭代预测,显著降低模型的迭代次数,降低随机误差的干扰,实现基于风速大数据聚类的铁路沿线风速高精度预测;相比于现有技术而言,其优点具体包含以下几点:
1.通过在目标测风点构造一个目标测风站并且选择3个时移测风站,获得相应数据,将风速大数据聚类为突变和平稳两类,全部输入到各预测模型,使得预测模型能高精度地对两种风速环境进行预测;选用一个模型进行两种类别风速的训练,避免了两种模型针对风速类别训练中模型选用方面的人为干扰,降低了预测误差;设定了若干个预测步长,以三个测风站同一时刻风速数据作为输入,第四个测风站延迟一个预测步长后的风速数据作为输出,建立四个测风站之间的风速数据关系,每一次预测都可以得到四个测风站的预测数据;将目标预测时间分解成多种组合,每种组合为若干个预测时间之和,预测时间与模型预测步长相对应,通过多个预测时间跳动式完成对目标时刻的风速预测,减少了滚动预测中风速预测模型的迭代预测次数,并且对多种组合依据当前风速环境进行寻优,最优组合进行风速预测;基于风速大数据聚类的预测方法,显著提高了预测精度,提高了模型的鲁棒性;
2.通过采用狼群-模拟退火混合算法、水循环算法和混沌差分蝙蝠算法分别对LS-SVM的参数γ和参数σ2进行初始参数优化,避免了初始参数选取不当对模型训练过程的干扰和预测能力的影响,也避免了经验法确定参数初始值的局限性;
3.利用本发明所提出的方法,当列车运行至风速多变区域,能够实现基于风速大数据聚类的铁路沿线突变风速超前预测,通过预测模型,针对性地突变风速进行高精度预测,提前得知风速多变区域的风速环境状况,及时、有效地指导列车运行,保障列车运营安全。
附图说明
图1为本发明所述方法中的预测模型训练示意图;
图2为本发明所述方法的风速预测流程示意图;
图3为测风站设置示意图。
具体实施方式
下面将结合附图和实施例对本发明做进一步的说明。
如图1和图2所示,一种高速铁路沿线极端风速大数据聚类预测方法,包括以下步骤:
步骤1:在铁路目标测风点设置测风站,包括目标测风站和时移测风站;
所述目标测风站距离铁路目标测风点100米,所述时移测风站至少包括3个,且设置铁路目标测风点与目标测风站所在连线上,第一个时移测风站距离铁路目标测风点500米,相邻时移测风站之间间距为500米;
如图3所示,在与铁路平行的方向上,每个测风站两侧等间距设置有同类型测风站,获得目标测风站组和时移测风站组,其中时移测风站组包括第一时移测风站组、第二时移测风站组以及第三时移测风站组;
从目标测风站组各测风站测得的风速值中,选取相同采样时刻的最大风速值作为虚拟目标测风站的各采样时刻的风速值,以虚拟目标测风站作为目标样本测风站;
从各时移测风站组中,选取相同采样时刻的风速值与对虚拟测风站对应时刻的风速值显著性最大的时移测风站,获得时移目标测风站。
步骤2:构建训练样本数据;
以相同采样频率采集各测风站在历史时间段内的风速,依次将各测风站的历史风速,以时间间隔T内的风速中值作为各测风站的样本时刻风速,即将每个时间间隔T内的多个风速的中值作为一个样本时刻的风速值,压缩历史风速数据;
将样本时刻风速依次以聚类时间T’进行划分,若每个聚类时间T’内的样本时刻风速数据的最大极值与均值的差值超过均值的30%,则该聚类时间T’内的样本时刻风速聚类为突变风速样本,否则,聚类为平稳风速样本,随机选择各测风站在至少10个不同时段的突变风速样本和平稳风速样本,获得训练样本数据;
所述聚类时间T’的时间至少为120min,各测风站的风速采集时间间隔为3-5秒,时间间隔T的取值为5min;
所述训练样本数据中的每个样本为一个突变风速样本或平稳风速样本;
在本实例中,间隔3S采集一次风速;
对各测风站的样本数据进行交互卡尔曼滤波处理,将滤波后的数据用于模型训练和预测任务迭代向量的选取。
步骤3:利用训练样本数据和设置的预测步长,构建基于LS-SVM的风速预测模型组;
依次以目标测风站和所有时移测风站中任意三个测风站在任意历史时刻t0的风速值作为输入数据,剩余测风站在t0+Δt时刻的风速值作为输出数据,对LS-SVM模型进行训练,获得各测风站预测步长为Δt的基于LS-SVM的风速预测模型;
所述预测步长Δt的取值依次为p、2p、3p、4p,p为预测步长单元时间,取值范围为1-5min,一种预测步长对应一组基于LS-SVM的风速预测模型;
四个预测步长,一共四组风速预测模型,每组风速预测模型包含四个测风站的风速预测模型;
每组风速预测模型的输入数据为四个测风站在某初始时刻的风速,输出数据为经过时间Δt1后,四个测风站的预测风速,以经过时间Δt1之后四个测风站的预测风速作为风速预测模型组的输入数据,输出为经过时间Δt1+Δt2后四个测风站的预测风速,省略了对从初始时刻到经过时间Δt1这一过程中的时刻进行风速预测,跳动式完成对目标时间的预测;
实际上每组风速预测模型中某个测风站的风速预测模型是指利用另外三个测风站的在某时刻的风速,对该测风站在经过时间Δt后的风速进行预测;
对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时采用以下至少一种方法进行优化:
1)狼群-模拟退火算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400];
2)水循环算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400];
3)混沌差分蝙蝠算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400]。
采用狼群-模拟退火算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤1.1):以个体狼位置作为所述基于LS-SVM风速预测模型中LS-SVM的参数γ和参数σ2,随机初始化狼群中的每只个体狼并设置狼群参数:
狼群规模取值范围为:[50,200],步长因子取值范围为:[50,120],探狼比例因子取值范围为:[2,6],最大游走次数取值范围为:[10,40],距离判定因子取值范围为:[40,100],最大奔袭次数取值范围为:[4,16],更新比例因子取值范围为:[2,6],最大迭代次数取值范围为:[500,1000],最大搜索精度取值范围为:[0.001,0.005];设定模拟退火算法的退火初始温度为100、退火速率为φ=0.8、退火迭代次数t2=1,当前温度下最大退火循环次数为Lmax=6;
步骤1.2):设定适应度函数,并确定初始最优头狼位置和迭代次数t1,t1=1;
将个体狼位置的对应的LS-SVM的参数γ和参数σ2代入基于LS-SVM的风速预测模型中,并利用个体狼位置确定的基于LS-SVM模型的风速预测模型输出风速预测值,将得到的风速预测值跟期望风速值之间的均方误差的倒数作为人工狼的适应度函数F1
Figure BDA0001746086830000101
其中,M表示训练次数,xi、yi分别表示第i次训练的风速预测值和期望输出值;
步骤1.3):依次对所有人工狼进行游走行为、奔袭行为、围攻行为,按照个体狼的适应度更新狼群,获得更新后的最优头狼位置;
步骤1.4):判断是否到达优化精度要求或最大迭代次数,若没有到达,令t1=t1+1转至步骤1.5),若到达,转至步骤1.7);
步骤1.5):对本代中的头狼个体进行模拟退火操作,在得到的头狼位置gi邻域内随机选择新的位置gj并计算两者适应度之差ΔF1=F1(gi)-F1(gj),计算选择概率P=exp(-ΔF1/Tei),Tei为当前温度;如果P>random[0,1),则将当前头狼位置由gi替换为gj,并以gj作为下次寻优的开始,否则以gi开始下一次寻优;
步骤1.6):令t2=t2+1,按照Tei+1=Tei*φ进行降温退火,若t2<Lmax,转至步骤1.5),否则,转至步骤1.3);
步骤1.7):输出头狼位置对应的LS-SVM的参数γ和参数σ2
采用水循环算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤2.1):每个降雨层作为所述LS-SVM的参数γ和参数σ2,初始化降雨层;
步骤2.2):将降雨层对应的参数γ和参数σ2代入基于LS-SVM的风速预测模型中,利用降雨层确定的基于LS-SVM的风速预测模型计算以风速训练子样本为输入的风速预测值与风速训练期望样本的均方误差的倒数作为第二适应度函数;
Figure BDA0001746086830000102
其中,M表示训练次数,xi、yi分别表示第i次训练的风速预测值和期望输出值;
步骤2.3):以适应度最大的降雨层作为大海,以适应度次于大海的且适应度较大降雨层作为河流,其余的降雨层作为向河流或大海流动的溪流;
步骤2.4):在流动过程中,如果溪流的适应度高于河流的适应度,则溪流河流互换位置,如果河流的适应度高于大海的适应度,河流大海互换位置,最后使溪流流入河流,河流流入海洋;
步骤2.5):判断河流与海洋适应度之间的差值绝对值是否小于极小值,若是,转至步骤2.6);若否,重复步骤2.5);
步骤2.6):判断是否到达最大迭代次数,若否,进入下一次迭代,从降雨层种群中舍弃该河流,重新进行降雨过程,生成随机降雨层加入种群,转至步骤2.3);若是,输出海洋降雨层对应的参数作为所述LS-SVM的参数γ和参数σ2
采用混沌差分蝙蝠算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤3.1):以蝙蝠个体的位置作为基于LS-SVM的风速预测模型中所述LS-SVM的参数γ和参数σ2
蝙蝠种群规模的取值范围为[100,500],蝙蝠个体最大脉冲频率r0=0.5,最大脉冲声音强度A0的取值范围为[0.3,0.8],蝙蝠搜索频率增加系数的取值范围为[0.02,0.05],声音强度衰减系数的取值范围为[0.75,0.95],交叉概率设置为0.5,变异概率设置为0.5,适应度方差阈值的取值范围为[0.01,0.06],搜索脉冲频率的取值范围为[0,1.5],最大迭代次数的取值范围为[200,500],最大搜索精度的取值范围为[0.02,0.1];
步骤3.2):根据混沌映射序列初始化蝙蝠种群中每个蝙蝠个体的位置、速度、频率;
步骤3.3):设定适应度函数,并确定初始最优蝙蝠个体位置和迭代次数t3,t3=1;
将蝙蝠个体位置对应的参数γ和参数σ2代入基于LS-SVM的风速预测模型,利用蝙蝠个体位置确定的基于LS-SVM的风速预测模型计算以风速训练子样本为输入的风速预测值与风速训练期望样本的均方误差的倒数作为第三适应度函数;
Figure BDA0001746086830000111
其中,M表示训练次数,xi、yi分别表示第i次训练的风速预测值和期望输出值。
步骤3.4):利用设定的脉冲频率更新蝙蝠的搜索脉冲频率、位置和速度;
步骤3.5):若Random1>ri,则对于个体最优位置的蝙蝠进行随机扰动,生成最优位置蝙蝠的扰动位置;
其中Random1为在闭区间[0,1]上均匀分布的随机数,ri为第i只蝙蝠的脉冲频率;
步骤3.6):若Random2>Ei,代表最优蝙蝠个体的扰动位置的适应度优于扰动前位置的适应度,将最优蝙蝠个体移动至扰动位置,否则最优蝙蝠个体位置不动;
其中Random2为在闭区间[0,1]上均匀分布的随机数,Ei为第i只蝙蝠的声音强度;
步骤3.7):计算当前种群的所有蝙蝠个体的适应度以及蝙蝠种群的种群适应度方差;
根据蝙蝠种群的种群适应度方差判断早熟状态,若蝙蝠种群适应度方差小于给定的阈值,对所有蝙蝠个体进行交叉和变异操作,并转至步骤3.5),否则,选出最优蝙蝠个体,转至步骤3.8);
步骤3.8):判断是否到达最大迭代次数或最大搜索精度,若是,输出最优蝙蝠个体位置对应的基于LS-SVM的风速预测模型中所述LS-SVM的参数γ和参数σ2,若否,t3=t3+1,转至步骤3.4)。
步骤4:根据目标预测时间,构建所有测风站的预测任务迭代向量;
将目标预测时间m拆分为n个子预测时间hi,依据子预测时间与风速预测模型组的步长进行对应,选择各子预测时间对应的风速预测模型组,形成各测风站预测任务迭代向量l={hi,j},hi,j表示第i个子预测时间选择第j个风速预测模型组进行风速预测的预测子任务,i的取值范围为1-n,j的取值范围为1-4;
所述目标预测时间m是指在经过时间m后进行风速预测;
每个子预测时间需要选择一个对应步长的风速预测模型组进行四个测风站的在经过子预测时间时的风速预测;
每一个子预测时间选择一个风速预测模型组进行一次子任务预测,称为一个预测子任务,一个预测子任务的输入为四个测风站同一时刻的风速数据,一共四个数据,输出为四个测风站经过子预测时间对应步长Δt之后同一时刻的风速数据,一共四个数据,输出数据可以直接用于下一个预测子任务的输入,避免了常规预测方法中对多余风速值的预测,减少迭代次数,提升预测精度;
利用最新历史风速数据,选取最优预测任务迭代向量,进行风速预测,获得最优风速预测结果,具体过程如下:
步骤A:基于目标预测时间m,选用与当前时刻t相距m+4p时间段内的历史风速数据按照训练样本数据的构建方法,获得预测样本数据,并从预测样本数据中选出各测风站依次在t、t-m、t-m-p、t-m-2p、t-m-3p、t-m-4p以及t-p、t-2p、t-3p、t-4p时的风速;
步骤B:将四个测风站在时刻为t-m、t-m-p、t-m-2p、t-m-3p、t-m-4p时的风速,依次作为每个预测任务迭代向量的输入数据,获得每个预测任务迭代向量在t、t-p、t-2p、t-3p、t-4p时获得的目标测风站预测风速;
步骤C:计算每个预测任务迭代向量依次在t、t-p、t-2p、t-3p、t-4p时获得的目标测风站预测风速与实测风速的误差,并对误差求取均值,得到每个预测任务迭代向量的总体预测误差;
步骤D:采用以下两种方法获取用于进行风速预测的预测任务迭代向量;
1)选取总体预测误差值最小的作为最优预测任务迭代向量,进行风速预测,获得最优风速预测结果;
2)设置预测任务迭代向量权重,构建最优预测任务迭代融合向量,进行风速预测,获得最优风速预测结果;
将所有预测任务迭代向量的总体预测误差值,按照从小到大排序,选取前5个预测任务迭代向量,并依据所选的5个预测任务迭代向量的总体预测误差值占所选5个预测任务迭代向量的总体预测误差值之和的比例,设置各预测任务迭代向量的权重,构建最优任务迭代融合向量,进行风速预测,获得最优风速预测结果。
选取5个预测任务迭代向量,对同一时刻的风速进行5次预测,按照每个预测任务迭代向量的权重,将5次预测结果进行权重组合,得到目标测风站的预测风速;
所述预测任务迭代向量中每个预测子任务的子预测时间满足以下公式:
Figure BDA0001746086830000131
其中,hmin的取值为预测步长单元时间。
步骤5:利用步骤4获得的任意一种预测任务迭代向量,进行风速预测;
以当前时刻t时刻四个测风站的风速数据作为所选预测任务迭代向量中第一个预测子任务的输入数据,以所选预测任务迭代向量最后一个预测子任务输出数据中的目标测风站的风速数据作为目标预测时间m目标测风点的风速预测值;
前一个预测子任务的输出数据作为后一个预测子任务的输入数据。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

1.一种高速铁路沿线极端风速大数据聚类预测方法,其特征在于,包括以下步骤:
步骤1:在铁路目标测风点设置测风站,包括目标测风站和时移测风站;
所述目标测风站距离铁路目标测风点100米,所述时移测风站至少包括3个,且设置铁路目标测风点与目标测风站所在连线上,第一个时移测风站距离铁路目标测风点500米,相邻时移测风站之间间距为500米;
步骤2:风速环境聚类,构建训练样本数据;
以相同采样频率采集各测风站在历史时间段内的风速,依次将各测风站的历史风速,以时间间隔T内的风速中值作为各测风站的样本时刻风速,将样本时刻风速依次以聚类时间T’进行划分,若每个聚类时间T’内的样本时刻风速数据的最大极值与均值的差值超过均值的30%,则该聚类时间T’内的样本时刻风速聚类为突变风速样本,否则,聚类为平稳风速样本,随机选择各测风站在至少10个不同时段的突变风速样本和平稳风速样本,获得训练样本数据;
所述聚类时间T’的时间至少为120min,各测风站的风速采集时间间隔为TF,TF取值范围为3-5秒,时间间隔T的取值为5min;
所述训练样本数据中的每个样本为一个突变风速样本或平稳风速样本;
步骤3:利用训练样本数据和设置的预测步长,构建基于LS-SVM的风速预测模型组;
依次以目标测风站和所有时移测风站中任意三个测风站在任意历史时刻t0的风速值作为输入数据,剩余测风站在t0+Δt时刻的风速值作为输出数据,对LS-SVM模型进行训练,获得各测风站预测步长为Δt的基于LS-SVM的风速预测模型;
预测步长Δt的取值依次为p、2p、3p、4p,p为预测步长单元时间,取值范围为1-5min,一种预测步长对应一组基于LS-SVM的风速预测模型;
步骤4:根据目标预测时间,构建所有测风站的预测任务迭代向量;
将目标预测时间m拆分为n个子预测时间hi,依据子预测时间与风速预测模型组的步长进行对应,选择各子预测时间对应的风速预测模型组,形成各测风站预测任务迭代向量l={hi,j},hi,j表示第i个子预测时间选择第j个风速预测模型组进行风速预测的预测子任务,i的取值范围为1-n,j的取值范围为1-4;
每个子预测时间需要选择一个对应步长的风速预测模型组进行四个测风站的在经过子预测时间时的风速预测;
步骤5:利用步骤4获得的任意一种预测任务迭代向量,进行风速预测;
以当前时刻t时刻四个测风站的风速数据作为所选预测任务迭代向量中第一个预测子任务的输入数据,以所选预测任务迭代向量最后一个预测子任务输出数据中的目标测风站的风速数据作为目标预测时间m目标测风点的风速预测值;
前一个预测子任务的输出数据作为后一个预测子任务的输入数据。
2.根据权利要求1所述的方法,其特征在于,利用最新历史风速数据,选取最优预测任务迭代向量,进行风速预测,获得最优风速预测结果,具体过程如下:
步骤A:基于目标预测时间m,选用与当前时刻t相距m+4p时间段内的历史风速数据按照训练样本数据的构建方法,获得预测样本数据,并从预测样本数据中选出各测风站依次在t、t-m、t-m-p、t-m-2p、t-m-3p、t-m-4p以及t-p、t-2p、t-3p、t-4p时的风速;
步骤B:将四个测风站在时刻为t-m、t-m-p、t-m-2p、t-m-3p、t-m-4p时的风速,依次作为每个预测任务迭代向量的输入数据,获得每个预测任务迭代向量在t、t-p、t-2p、t-3p、t-4p时获得的目标测风站预测风速;
步骤C:计算每个预测任务迭代向量依次在t、t-p、t-2p、t-3p、t-4p时获得的目标测风站预测风速与实测风速的误差,并对误差求取均值,得到每个预测任务迭代向量的总体预测误差;
步骤D:选取总体预测误差值最小的预测任务迭代向量作为最优预测任务迭代向量,进行风速预测,获得最优风速预测结果。
3.根据权利要求2所述的方法,其特征在于,设置预测任务迭代向量权重,构建最优预测任务迭代融合向量,进行风速预测,获得最优风速预测结果;
将所有预测任务迭代向量的总体预测误差值,按照从小到大排序,选取前5个预测任务迭代向量,并依据所选的5个预测任务迭代向量的总体预测误差值占所选5个预测任务迭代向量的总体预测误差值之和的比例,设置各预测任务迭代向量的权重,构建最优任务迭代融合向量,进行风速预测,获得最优风速预测结果。
4.根据权利要求2所述的方法,其特征在于,对各测风站的样本数据进行交互卡尔曼滤波处理,将滤波后的数据用于模型训练和预测任务迭代向量的选取。
5.根据权利要求1所述的方法,其特征在于,所述预测任务迭代向量中每个预测子任务的子预测时间满足以下公式:
Figure FDA0002695423060000021
其中,hmin的取值为预测步长单元时间。
6.根据权利要求1-5任一项所述的方法,其特征在于,在与铁路平行的方向上,每个测风站两侧等间距设置有同类型测风站,获得目标测风站组和时移测风站组,其中时移测风站组包括第一时移测风站组、第二时移测风站组以及第三时移测风站组;
从目标测风站组各测风站测得的风速值中,选取相同采样时刻的最大风速值作为虚拟目标测风站的各采样时刻的风速值,以虚拟目标测风站作为目标样本测风站;
从各时移测风站组中,选取相同采样时刻的风速值与对虚拟测风站对应时刻的风速值显著性最大的时移测风站,获得时移目标测风站。
7.根据权利要求6所述的方法,其特征在于,对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时采用以下至少一种方法进行优化:
1)狼群-模拟退火算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400];
2)水循环算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400];
3)混沌差分蝙蝠算法,所使用的LS-SVM输入层节点个数为3,输出层节点个数为1;训练过程中的最大迭代次数设置为200,γ的搜索区间为[0,100],σ2的搜索区间为[0,400]。
8.根据权利要求7所述的方法,其特征在于,采用狼群-模拟退火算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤1.1):以个体狼位置作为所述基于LS-SVM风速预测模型中LS-SVM的参数γ和参数σ2,随机初始化狼群中的每只个体狼并设置狼群参数:
狼群规模取值范围为:[50,200],步长因子取值范围为:[50,120],探狼比例因子取值范围为:[2,6],最大游走次数取值范围为:[10,40],距离判定因子取值范围为:[40,100],最大奔袭次数取值范围为:[4,16],更新比例因子取值范围为:[2,6],最大迭代次数取值范围为:[500,1000],最大搜索精度取值范围为:[0.001,0.005];设定模拟退火算法的退火初始温度为100、退火速率为
Figure FDA0002695423060000031
退火迭代次数t2=1,当前温度下最大退火循环次数为Lmax=6;
步骤1.2):设定适应度函数,并确定初始最优头狼位置和迭代次数t1,t1=1;
将个体狼位置的对应的LS-SVM的参数γ和参数σ2代入基于LS-SVM的风速预测模型中,并利用个体狼位置确定的基于LS-SVM模型的风速预测模型输出风速预测值,将得到的风速预测值跟期望风速值之间的均方误差的倒数作为人工狼的适应度函数F1
Figure FDA0002695423060000032
其中,M表示训练次数,xi1、yi1分别表示第i1次训练的风速预测值和期望输出值;
步骤1.3):依次对所有人工狼进行游走行为、奔袭行为、围攻行为,按照个体狼的适应度更新狼群,获得更新后的最优头狼位置;
步骤1.4):判断是否到达优化精度要求或最大迭代次数,若没有到达,令t1=t1+1转至步骤1.5),若到达,转至步骤1.7);
步骤1.5):对本代中的头狼个体进行模拟退火操作,在得到的头狼位置gi邻域内随机选择新的位置gj并计算两者适应度之差ΔF1=F1(gi)-F1(gj),计算选择概率P=exp(-ΔF1/Tei),Tei为当前温度;如果P>random[0,1),则将当前头狼位置由gi替换为gj,并以gj作为下次寻优的开始,否则以gi开始下一次寻优;
步骤1.6):令t2=t2+1,按照
Figure FDA0002695423060000042
进行降温退火,若t2<Lmax,转至步骤1.5),否则,转至步骤1.3);
步骤1.7):输出头狼位置对应的LS-SVM的参数γ和参数σ2
9.根据权利要求7所述的方法,其特征在于,采用水循环算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤2.1):每个降雨层作为所述LS-SVM的参数γ和参数σ2,初始化降雨层;
步骤2.2):将降雨层对应的权值、阈值参数γ和参数σ2代入基于LS-SVM的风速预测模型中,利用降雨层确定的基于LS-SVM的风速预测模型计算以风速训练子样本为输入的风速预测值与风速训练期望样本的均方误差的倒数作为第二适应度函数;
Figure FDA0002695423060000041
其中,M表示训练次数,xi1、yi1分别表示第i1次训练的风速预测值和期望输出值;
步骤2.3):以适应度最大的降雨层作为大海,以适应度次于大海的且适应度较大降雨层作为河流,其余的降雨层作为向河流或大海流动的溪流;
步骤2.4):在流动过程中,如果溪流的适应度高于河流的适应度,则溪流河流互换位置,如果河流的适应度高于大海的适应度,河流大海互换位置,最后使溪流流入河流,河流流入海洋;
步骤2.5):判断河流与海洋适应度之间的差值绝对值是否小于极小值,若是,转至步骤2.6);若否,重复步骤2.3);
步骤2.6):判断是否到达最大迭代次数,若否,进入下一次迭代,从降雨层种群中舍弃该河流,重新进行降雨过程,生成随机降雨层加入种群,转至步骤2.3);若是,输出海洋降雨层对应的参数作为所述LS-SVM的参数γ和参数σ2
10.根据权利要求7所述的方法,其特征在于,采用混沌差分蝙蝠算法对所述基于LS-SVM的风速预测模型中的LS-SVM的参数γ和参数σ2同时进行优化的步骤如下:
步骤3.1):以蝙蝠个体的位置作为基于LS-SVM的风速预测模型中所述LS-SVM的参数γ和参数σ2
蝙蝠种群规模的取值范围为[100,500],蝙蝠个体最大脉冲频率r0=0.5,最大脉冲声音强度A0的取值范围为[0.3,0.8],蝙蝠搜索频率增加系数的取值范围为[0.02,0.05],声音强度衰减系数的取值范围为[0.75,0.95],交叉概率设置为0.5,变异概率设置为0.5,适应度方差阈值的取值范围为[0.01,0.06],搜索脉冲频率的取值范围为[0,1.5],最大迭代次数的取值范围为[200,500],最大搜索精度的取值范围为[0.02,0.1];
步骤3.2):根据混沌映射序列初始化蝙蝠种群中每个蝙蝠个体的位置、速度、频率;
步骤3.3):设定适应度函数,并确定初始最优蝙蝠个体位置和迭代次数t1,t1=1;
将蝙蝠个体位置对应的参数γ和参数σ2代入基于LS-SVM的风速预测模型,利用蝙蝠个体位置确定的基于LS-SVM的风速预测模型计算以风速训练子样本为输入的风速预测值与风速训练期望样本的均方误差的倒数作为第三适应度函数;
Figure FDA0002695423060000051
其中,M表示训练次数,xi1、yi1分别表示第i1次训练的风速预测值和期望输出值;
步骤3.4):利用设定的脉冲频率更新蝙蝠的搜索脉冲频率、位置和速度;
步骤3.5):若Random1>ri2,则对于个体最优位置的蝙蝠进行随机扰动,生成最优位置蝙蝠的扰动位置;
其中Random1为在闭区间[0,1]上均匀分布的随机数,ri2为第i2只蝙蝠的脉冲频率;
步骤3.6):若Random2>Ei2,代表最优蝙蝠个体的扰动位置的适应度优于扰动前位置的适应度,将最优蝙蝠个体移动至扰动位置,否则最优蝙蝠个体位置不动;
其中Random2为在闭区间[0,1]上均匀分布的随机数,Ei2为第i2只蝙蝠的声音强度;
步骤3.7):计算当前种群的所有蝙蝠个体的适应度以及蝙蝠种群的种群适应度方差;
根据蝙蝠种群的种群适应度方差判断早熟状态,若蝙蝠种群适应度方差小于给定的阈值,对所有蝙蝠个体进行交叉和变异操作,并转至步骤3.5),否则,选出最优蝙蝠个体,转至步骤3.8);
步骤3.8):判断是否到达最大迭代次数或最大搜索精度,若是,输出最优蝙蝠个体位置对应的基于LS-SVM的风速预测模型中所述LS-SVM的参数γ和参数σ2,若否,t1=t1+1,转至步骤3.4)。
CN201810843354.0A 2018-07-27 2018-07-27 一种高速铁路沿线极端风速大数据聚类预测方法 Active CN109034476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810843354.0A CN109034476B (zh) 2018-07-27 2018-07-27 一种高速铁路沿线极端风速大数据聚类预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810843354.0A CN109034476B (zh) 2018-07-27 2018-07-27 一种高速铁路沿线极端风速大数据聚类预测方法

Publications (2)

Publication Number Publication Date
CN109034476A CN109034476A (zh) 2018-12-18
CN109034476B true CN109034476B (zh) 2020-11-17

Family

ID=64647128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810843354.0A Active CN109034476B (zh) 2018-07-27 2018-07-27 一种高速铁路沿线极端风速大数据聚类预测方法

Country Status (1)

Country Link
CN (1) CN109034476B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110009035B (zh) * 2019-04-03 2020-10-27 中南大学 一种基于图像匹配的测风站群空间聚类方法
CN109978275B (zh) * 2019-04-03 2021-03-12 中南大学 一种混合cfd和深度学习的极端大风风速预测方法及系统
CN110165414B (zh) * 2019-05-13 2021-03-30 复旦大学 一种用于宽带RCS减缩的反射型宽带4-bit编码超表面

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609788A (zh) * 2012-02-17 2012-07-25 中南大学 一种高速铁路沿线风速智能混合预测方法
CN106772695A (zh) * 2016-11-14 2017-05-31 中南大学 一种融合多测风站实测数据的铁路沿线风速预测方法
CN106779148A (zh) * 2016-11-14 2017-05-31 中南大学 一种多模型多特征融合的高速铁路沿线风速预测方法
CN107506865A (zh) * 2017-08-30 2017-12-22 华中科技大学 一种基于lssvm优化的负荷预测方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609788A (zh) * 2012-02-17 2012-07-25 中南大学 一种高速铁路沿线风速智能混合预测方法
CN106772695A (zh) * 2016-11-14 2017-05-31 中南大学 一种融合多测风站实测数据的铁路沿线风速预测方法
CN106779148A (zh) * 2016-11-14 2017-05-31 中南大学 一种多模型多特征融合的高速铁路沿线风速预测方法
CN107506865A (zh) * 2017-08-30 2017-12-22 华中科技大学 一种基于lssvm优化的负荷预测方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system";Hui Liu,Hong-qi Tian,Yan-fei Li;《Journal of Wind Engineering and Industrial Aerodynamics》;20150319;全文 *
"基于相似性样本的LSSVM短期风速和风功率预测研究";章伟、邓院昌;《电网与清洁能源》;20131130;全文 *
"基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测";王贺 等;《电工技术学报》;20140430;全文 *

Also Published As

Publication number Publication date
CN109034476A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109034476B (zh) 一种高速铁路沿线极端风速大数据聚类预测方法
CN108304668B (zh) 一种结合水文过程数据和历史先验数据的洪水预测方法
CN109214581B (zh) 一种考虑风向和置信区间的铁路沿线风速预测方法
CN107293115B (zh) 一种用于微观仿真的交通流量预测方法
CN109064748B (zh) 基于时间聚类分析和可变卷积神经网络的交通平均速度预测方法
CN110517482B (zh) 一种基于3d卷积神经网络的短时交通流预测方法
CN103489039B (zh) 具有在线自整定优化能力的高速公路交通流量融合预测方法
CN106779148A (zh) 一种多模型多特征融合的高速铁路沿线风速预测方法
CN112907970B (zh) 一种基于车辆排队长度变化率的可变车道转向控制方法
CN109143408B (zh) 基于mlp的动态区域联合短时降水预报方法
CN104008278A (zh) 一种基于特征向量和最小二乘支持向量机的pm25浓度预测方法
CN109190839B (zh) 一种融合风向的铁路沿线风速智能滚动预测方法
CN103942461A (zh) 基于在线贯序极限学习机的水质参数预测方法
JP5023325B2 (ja) リカレントニューラルネットワークを用いた不規則時系列データの学習・予測方法
CN107133686A (zh) 基于时空数据模型的城市级pm2.5浓度预测方法
CN103268525A (zh) 一种基于wd-rbf的水文时间序列模拟预测方法
CN109034478B (zh) 一种高速铁路沿线大风迭代竞争高精度预测方法
Hoi et al. Prediction of daily averaged PM10 concentrations by statistical time-varying model
CN109711593B (zh) 一种面向瞬时计算决策的高速铁路沿线风速预测方法
CN109063907B (zh) 一种高速铁路沿线极大风速智能遍历大步长预测方法
CN111667694B (zh) 一种基于改进dtw-knn的短时交通流预测方法
Kyriacou et al. Bayesian traffic state estimation using extended floating car data
CN109002860B (zh) 一种高速铁路沿线突变风速智能适应性匹配预测方法
Hu et al. Adaptive environmental sampling for underwater vehicles based on ant colony optimization algorithm
CN110188967B (zh) 基于混沌人群算法和贝叶斯网络的电力负荷概率性预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant