CN109005003A - 一种应用准循环矩阵扩展的稀疏标签多址接入方法 - Google Patents

一种应用准循环矩阵扩展的稀疏标签多址接入方法 Download PDF

Info

Publication number
CN109005003A
CN109005003A CN201810670600.7A CN201810670600A CN109005003A CN 109005003 A CN109005003 A CN 109005003A CN 201810670600 A CN201810670600 A CN 201810670600A CN 109005003 A CN109005003 A CN 109005003A
Authority
CN
China
Prior art keywords
matrix
user
cyclic
quasi
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810670600.7A
Other languages
English (en)
Other versions
CN109005003B (zh
Inventor
姜明
杨文超
赵春明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810670600.7A priority Critical patent/CN109005003B/zh
Publication of CN109005003A publication Critical patent/CN109005003A/zh
Application granted granted Critical
Publication of CN109005003B publication Critical patent/CN109005003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • H04L1/0063Single parity check

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种应用准循环矩阵扩展的稀疏标签多址接入方法,采用QC结构的单位阵循环移位矩阵代替LDS CDMA系统扩频矩阵的非零元素,并适当选取每个循环移位矩阵的移位参数。该方法可以在过载率(用户数/资源数)一定的情况下,通过增大扩频矩阵的规模,获得更好的误比特率(BER)性能。

Description

一种应用准循环矩阵扩展的稀疏标签多址接入方法
技术领域
本发明涉及一种应用准循环矩阵扩展的稀疏标签多址接入方法,属于无线通信系统中的非正交码分多址接入技术领域。
背景技术
目前,主流的无线通信技术是以WCDMA、TD-SCDMA、CDMA-2000为代表的第三代移动通信技术,以LTE-TDD和LTE-FDD为代表的第四代移动通信技术。随着社会发展,通信系统需要更高的吞吐率、更多的接入用户以及更小的通信时延。这些需求也促使了人们对高能效、低时延、高可靠性的第五代移动通信系统(5G)的研究。
5G定义了三种应用场景:增强移动宽带、海量机型通信以及高可靠低时延通信。增强移动宽带场景需要更高的传输速率和更大的吞吐率,海量机型通信需要更多的接入以及更低的接收复杂度。传统的正交多址接入无法满足以上需求,因此,非正交多址接入凭借其高谱效率得到了人们的关注。非正交多址接入允许在同样的通信资源(如1个时隙、1个子载波或1个码道)上传输多个用户数据。目前非正交多址接入有功率域和码域两种实现方式。对于功率域的非正交多址接入,在接收端人为引入其他用户干扰,可以获得更高谱效率。每个用户以不同功率在接收端进行叠加,同时在接收端采用串行干扰抵消(SIC)方式对每个用户的数据进行检测。SIC检测器首先对高功率用户进行检测,然后根据信道信息计算出该用户的等效接收信号,从而能够将该用户对其他用户的干扰去除,并以此方法依次检测其他用户信号。码字域的非正交多址接入系统目前有很多实现方法。比如,稀疏码多址接入(SCMA)通过优化扩频序列来得到整形增益以及编码增益。此外,由于其扩频序列的稀疏特性,在接收端可以用较低复杂度的检测器。LDS CDMA可以看作SCMA的一种特殊情况,也是一种高谱效率的多址接入方式,同时在接收端可以采用信息传播算法(MPA)来对不同用户的数据进行检测。相比于最大似然(ML)检测算法,MPA是一种次优的检测算法。
发明内容
本发明所要解决的技术问题是提供一种应用准循环矩阵扩展的稀疏标签多址接入方法,扩展后的扩频矩阵在相同的过载率下,有着更好的误比特率性能。
本发明为了解决上述技术问题采用以下技术方案:本发明设计了一种应用准循环矩阵扩展的稀疏标签多址接入方法,基于非正交多址接入系统,实现系统最大用户数情形下,基站接收来自各用户发送信号的控制方法,包括如下步骤:
步骤A.获得系统最少用户数情形下所对应的系统正交资源数Mb,以及系统码字信道数Nb,并基于各用户分别在各系统正交资源上发送信号的情况,生成维度为Mb×Nb的基础标签矩阵Fb,其中,Fb中各元素的值表示各用户在各系统正交资源上是否发送信号,1表示已发送,0表示未发送;然后进入步骤B;
步骤B.基于一用户分配一个系统码字信道原则,获得系统最大用户数情形下所对应的系统正交资源数M,以及系统码字信道数N,并基于Z=M/Mb,获得准循环扩展倍数Z,然后进入步骤C;
步骤C.针对基础标签矩阵Fb中的各个元素分别进行扩展;其中,针对非零元素扩展为Z×Z维度单位阵的循环移位矩阵,并获得对应循环移位次数,作为该循环移位矩阵的循环移位参数;以及针对零元素扩展为Z×Z维度的全零矩阵,并定义该全零矩阵的循环移位参数为-1,然后进入步骤D;
步骤D.基于基础标签矩阵Fb中各个元素分别扩展所获矩阵的循环移位参数,组合构建循环移位参数矩阵P,即P的维度为Mb×Nb;然后进入步骤E;
步骤E.根据循环移位参数矩阵P,针对基础标签矩阵Fb,按准循环扩展倍数Z进行扩展,获得系统准循环分块结构标签矩阵F,即F的维度为M×N,然后进入步骤F;
步骤F.针对系统准循环分块结构标签矩阵F,获得各行中非零元素的个数,并作为对应行的行重ρm,m={0、…、M-1},ρm表示F中第m行中非零元素的个数,即第m行的行重;以及获得各列中非零元素的个数,并作为对应列的列重γn,n={0、…、N-1},γn表示F中第n列中非零元素的个数,即第n列的列重;然后进入步骤G;
步骤G.针对系统准循环分块结构标签矩阵F中各个非零元素,分别选择相对应的复数因子,进而得到不同的扩频序列,组成扩频矩阵H,然后进入步骤H;
步骤H.根据扩频矩阵H,分别为各个用户分配其所对应的扩频序列,然后进入步骤I;
步骤I.分别针对各用户对应系统码字信道上的发送信号进行编码、调制,然后分别针对各用户对应系统码字信道上调制后的信号,分别采用用户所对应的扩频序列进行扩频,最后针对不同用户扩频后的信号进行叠加,构成系统最大用户数情形下,基站所接收信号。
作为本发明的一种优选技术方案:所述步骤A中,基于系统最少用户数情形下、各用户分别在各系统正交资源上发送信号的情况,采用LDPC奇偶检验矩阵生成方法,生成维度为Mb×Nb的基础标签矩阵Fb
作为本发明的一种优选技术方案:所述步骤G中,分别针对系统准循环分块结构标签矩阵F中的各个非零元素,按如下公式:
选择相对应的复数因子,其中,j表示复数的虚部,jm={0、…、ρm-1},jm表示F中第m行中非零元素的序号,表示F中第m行中第jm个非零元素所在的列数,表示e的次方;q表示用户调制阶数,gcd()表示最大公约数运算;w0表示归一化系数,
本发明所述一种应用准循环矩阵扩展的稀疏标签多址接入方法采用以上技术方案与现有技术相比,具有以下技术效果:
(1)本发明所设计应用准循环矩阵扩展的稀疏标签多址接入方法,方法简单实用,不再需要对大规模的扩频矩阵进行单独设计;在过载率相同的情况下,同一个检测架构支持任意的用户数和时隙方案;该方法保证了扩频系统的稀疏特性,使接收端仍能应用复杂度低的MPA检测算法;此外,由于扩频矩阵短环的存在,会影响MPA检测算法的性能,所设计循环移位矩阵扩展法,可以保证扩展之后的矩阵最小环大于等于基矩阵的最小环长度;
(2)本发明所设计应用准循环矩阵扩展的稀疏标签多址接入方法,通过对扩频矩阵的基矩阵进行扩展,在相同的过载率以及同样采用MPA检测算法的情况下,可以达到更好的传输性能;扩展倍数增大时,性能接近于最优QAM以及SCMA系统;
(3)本发明所设计应用准循环矩阵扩展的稀疏标签多址接入方法,用户数不一定等于扩频系统的接入信道数,实际系统可以根据系统需求,如传输可靠性、接收端计算能力、系统时延要求等选择合适的扩展倍数,增加了系统的灵活性。
附图说明
图1是本发明所设计应用准循环矩阵扩展的稀疏标签多址接入方法的系统框图;
图2是采用QPSK调制的LDS CDMA的实施例示意图。
具体实施方式
下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。
如图1所示,本发明设计了一种应用准循环矩阵扩展的稀疏标签多址接入方法,基于非正交多址接入系统,实现系统最大用户数情形下,基站接收来自各用户发送信号的控制方法,实际应用当中,如图1所示,为了求得扩频矩阵H,具体执行包括如下步骤:
步骤A.获得系统最少用户数情形下所对应的系统正交资源数Mb,以及系统码字信道数Nb,并基于各用户分别在各系统正交资源上发送信号的情况,采用LDPC奇偶检验矩阵生成方法,生成维度为Mb×Nb的基础标签矩阵Fb,其中,Fb中各元素的值表示各用户在各系统正交资源上是否发送信号,1表示已发送,0表示未发送;然后进入步骤B。
上述步骤中采用LDPC奇偶检验矩阵生成方法,但不仅限于此方法,还可采用Gallager方法,MacKay和Neal提出的构造规则随机LDPC码方法,重复累加设计法构造不规则LDPC码,以及当前公认的对中短码长LDPC码构造非常有效的渐近边增长(PEG)算法。PEG算法可以在给定的行重、列重分布情况下,尽量避免短环的存在。
步骤B.基于一用户分配一个系统码字信道原则,获得系统最大用户数情形下所对应的系统正交资源数M,以及系统码字信道数N,并基于Z=M/Mb,获得准循环扩展倍数Z,然后进入步骤C。
步骤C.针对基础标签矩阵Fb中的各个元素分别进行扩展;其中,针对非零元素扩展为Z×Z维度单位阵的循环移位矩阵,并获得对应循环移位次数,作为该循环移位矩阵的循环移位参数;以及针对零元素扩展为Z×Z维度的全零矩阵,并定义该全零矩阵的循环移位参数为-1,然后进入步骤D。
步骤D.基于基础标签矩阵Fb中各个元素分别扩展所获矩阵的循环移位参数,组合构建循环移位参数矩阵P,即P的维度为Mb×Nb,如下所示;其中元素即为各循环移位参数,然后进入步骤E。
步骤E.根据循环移位参数矩阵P,针对基础标签矩阵Fb,按准循环扩展倍数Z进行扩展,获得系统准循环分块结构标签矩阵F,即F的维度为M×N,如下所示,然后进入步骤F。
步骤F.针对系统准循环分块结构标签矩阵F,获得各行中非零元素的个数,并作为对应行的行重ρm,m={0、…、M-1},ρm表示F中第m行中非零元素的个数,即第m行的行重;以及获得各列中非零元素的个数,并作为对应列的列重γn,n={0、…、N-1},γn表示F中第n列中非零元素的个数,即第n列的列重;然后进入步骤G。
步骤G.针对系统准循环分块结构标签矩阵F中各个非零元素,按如下公式:
选择相对应的复数因子,进而得到不同的扩频序列,组成扩频矩阵H,如下所示:
然后进入步骤H;其中,j表示复数的虚部,jm={0、…、ρm-1},jm表示F中第m行中非零元素的序号,表示F中第m行中第jm个非零元素所在的列数,表示e的次方;q表示用户调制阶数,gcd()表示最大公约数运算;w0表示归一化系数,从而保证扩频之后的能量归一。
步骤H.根据扩频矩阵H,分别为各个用户分配其所对应的扩频序列,然后进入步骤I。
步骤I.分别针对各用户对应系统码字信道上的发送信号进行编码、调制,这里编码方式,可以采用LDPC码、Turbo码,对用户数据进行编码,调制操作,可以采用QPSK调制器、16QAM调制器,得到用户调制后的信号。
然后分别针对各用户对应系统码字信道上调制后的信号,分别采用用户所对应的扩频序列进行扩频,最后针对不同用户扩频后的信号进行叠加,构成系统最大用户数情形下,基站所接收信号。
将上述所设计应用准循环矩阵扩展的稀疏标签多址接入方法,应用于实际当中,具体如下:
步骤A.获得系统最少用户数情形下所对应的系统正交资源数Mb=4,以及系统码字信道数Nb=6,并基于各用户分别在各系统正交资源上发送信号的情况,这里实施例中,采用PEG算法,生成维度为Mb×Nb的基础标签矩阵Fb,如下所示,然后进入步骤B。
PEG算法由于避免了短环的存在,可以保证接收端MPA检测算法有较好的性能。
步骤B.基于一用户分配一个系统码字信道原则,获得系统最大用户数情形下所对应的系统正交资源数M,以及系统码字信道数N,并基于Z=M/Mb,获得准循环扩展倍数Z,实际应用中,Z=1、10、15,接下来,按Z=10进行描述,即进入步骤C。
步骤C.针对基础标签矩阵Fb中的各个元素分别进行扩展;其中,针对非零元素扩展为Z×Z维度单位阵的循环移位矩阵,并获得对应循环移位次数,作为该循环移位矩阵的循环移位参数;以及针对零元素扩展为Z×Z维度的全零矩阵,并定义该全零矩阵的循环移位参数为-1,然后进入步骤D。
步骤D.基于基础标签矩阵Fb中各个元素分别扩展所获矩阵的循环移位参数,组合构建循环移位参数矩阵P,即P的维度为Mb×Nb,如下所示;其中元素即为各循环移位参数,然后进入步骤E。
步骤E.根据循环移位参数矩阵P,针对基础标签矩阵Fb,按准循环扩展倍数Z进行扩展,获得系统准循环分块结构标签矩阵F,即F的维度为M×N,然后进入步骤F。
步骤F.针对系统准循环分块结构标签矩阵F,获得各行中非零元素的个数,并作为对应行的行重ρm,m={0、…、M-1},ρm表示F中第m行中非零元素的个数,即第m行的行重;以及获得各列中非零元素的个数,并作为对应列的列重γn,n={0、…、N-1},γn表示F中第n列中非零元素的个数,即第n列的列重;然后进入步骤G。
步骤G.针对系统准循环分块结构标签矩阵F中各个非零元素,按如下公式:
选择相对应的复数因子,进而得到不同的扩频序列,组成扩频矩阵H,然后进入步骤H;其中,j表示复数的虚部,jm={0、…、ρm-1},jm表示F中第m行中非零元素的序号,表示F中第m行中第jm个非零元素所在的列数,表示e的次方;q表示用户调制阶数,gcd()表示最大公约数运算;w0表示归一化系数,从而保证扩频之后的能量归一。
步骤H.根据扩频矩阵H,分别为各个用户分配其所对应的扩频序列,然后进入步骤I。
步骤I.为信息比特选择合适的编码方式,本例中,采用码长为2170,打孔160比特,信息比特长度为1760,码率为的LDPC码。本例中,将编码后的码字经过QPSK调制器。然后分别针对各用户对应系统码字信道上调制后的信号,分别采用用户所对应的扩频序列进行扩频,最后针对不同用户扩频后的信号进行叠加,构成系统最大用户数情形下,基站所接收信号,即y=Hx+v,其中,x为用户发送向量,v为信道噪声,y为基站接收信号。
如图2所示,为采用QPSK调制的LDS CDMA,系统过载率为等效于8QAM系统的频谱利用率。其中,Ω={Nb,Mb,Z,γ,ρ},LDPC码率为7/8;基矩阵大小为Mb=4,Nb=6,行重为3,列重为2。基矩阵通过QC扩展得到最终的扩频矩阵,扩展倍数Z分别为1、10、15。实线为未编码性能,虚线为采用码率的LDPC码性能。从图中可以看出,对于未编码系统来说,当扩展倍数增大时,BER性能有明显提升,当Z=10时系统性能在高信噪比时可以超过8QAM的性能,继续增大扩展倍数Z=15时,性能改善不大。对于加入了LDPC编码之后的LDS CDMA系统,BER性能得到了很大改善,且扩展之后的编码性能逐渐逼近采用相同编码,相同用户资源和信道配置的SCMA系统方案。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (3)

1.一种应用准循环矩阵扩展的稀疏标签多址接入方法,基于非正交多址接入系统,实现系统最大用户数情形下,基站接收来自各用户发送信号的控制方法,其特征在于,包括如下步骤:
步骤A.获得系统最少用户数情形下所对应的系统正交资源数Mb,以及系统码字信道数Nb,并基于各用户分别在各系统正交资源上发送信号的情况,生成维度为Mb×Nb的基础标签矩阵Fb,其中,Fb中各元素的值表示各用户在各系统正交资源上是否发送信号,1表示已发送,0表示未发送;然后进入步骤B;
步骤B.基于一用户分配一个系统码字信道原则,获得系统最大用户数情形下所对应的系统正交资源数M,以及系统码字信道数N,并基于Z=M/Mb,获得准循环扩展倍数Z,然后进入步骤C;
步骤C.针对基础标签矩阵Fb中的各个元素分别进行扩展;其中,针对非零元素扩展为Z×Z维度单位阵的循环移位矩阵,并获得对应循环移位次数,作为该循环移位矩阵的循环移位参数;以及针对零元素扩展为Z×Z维度的全零矩阵,并定义该全零矩阵的循环移位参数为-1,然后进入步骤D;
步骤D.基于基础标签矩阵Fb中各个元素分别扩展所获矩阵的循环移位参数,组合构建循环移位参数矩阵P,即P的维度为Mb×Nb;然后进入步骤E;
步骤E.根据循环移位参数矩阵P,针对基础标签矩阵Fb,按准循环扩展倍数Z进行扩展,获得系统准循环分块结构标签矩阵F,即F的维度为M×N,然后进入步骤F;
步骤F.针对系统准循环分块结构标签矩阵F,获得各行中非零元素的个数,并作为对应行的行重ρm,m={0、…、M-1},ρm表示F中第m行中非零元素的个数,即第m行的行重;以及获得各列中非零元素的个数,并作为对应列的列重γn,n={0、…、N-1},γn表示F中第n列中非零元素的个数,即第n列的列重;然后进入步骤G;
步骤G.针对系统准循环分块结构标签矩阵F中各个非零元素,分别选择相对应的复数因子,进而得到不同的扩频序列,组成扩频矩阵H,然后进入步骤H;
步骤H.根据扩频矩阵H,分别为各个用户分配其所对应的扩频序列,然后进入步骤I;
步骤I.分别针对各用户对应系统码字信道上的发送信号进行编码、调制,然后分别针对各用户对应系统码字信道上调制后的信号,分别采用用户所对应的扩频序列进行扩频,最后针对不同用户扩频后的信号进行叠加,构成系统最大用户数情形下,基站所接收信号。
2.根据权利要求1所述一种应用准循环矩阵扩展的稀疏标签多址接入方法,其特征在于:所述步骤A中,基于系统最少用户数情形下、各用户分别在各系统正交资源上发送信号的情况,采用LDPC奇偶检验矩阵生成方法,生成维度为Mb×Nb的基础标签矩阵Fb
3.根据权利要求1所述一种应用准循环矩阵扩展的稀疏标签多址接入方法,其特征在于:所述步骤G中,分别针对系统准循环分块结构标签矩阵F中的各个非零元素,按如下公式:
选择相对应的复数因子,其中,j表示复数的虚部,jm={0、…、ρm-1},jm表示F中第m行中非零元素的序号,表示F中第m行中第jm个非零元素所在的列数,表示e的次方;q表示用户调制阶数,gcd()表示最大公约数运算;w0表示归一化系数,
CN201810670600.7A 2018-06-26 2018-06-26 一种应用准循环矩阵扩展的稀疏标签多址接入方法 Active CN109005003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810670600.7A CN109005003B (zh) 2018-06-26 2018-06-26 一种应用准循环矩阵扩展的稀疏标签多址接入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810670600.7A CN109005003B (zh) 2018-06-26 2018-06-26 一种应用准循环矩阵扩展的稀疏标签多址接入方法

Publications (2)

Publication Number Publication Date
CN109005003A true CN109005003A (zh) 2018-12-14
CN109005003B CN109005003B (zh) 2020-03-31

Family

ID=64601230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810670600.7A Active CN109005003B (zh) 2018-06-26 2018-06-26 一种应用准循环矩阵扩展的稀疏标签多址接入方法

Country Status (1)

Country Link
CN (1) CN109005003B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242967A (zh) * 2020-09-11 2021-01-19 北京邮电大学 一种多载波互补码单码循环移位多址接入方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534166A (zh) * 2008-03-10 2009-09-16 上海明波通信技术有限公司 准循环低密度奇偶校验码解码器及解码方法
CN105227191A (zh) * 2015-10-08 2016-01-06 西安电子科技大学 基于修正最小和算法的准循环ldpc码译码方法
US9584158B2 (en) * 2015-07-24 2017-02-28 Tidal Systems, Inc. Unified H-encoder for a class of multi-rate LDPC codes
CN106911431A (zh) * 2017-03-13 2017-06-30 哈尔滨工业大学 应用于稀疏编码多址接入系统解调过程中改进的部分边缘信息传递方法
CN107248902A (zh) * 2017-07-21 2017-10-13 电子科技大学 一种块压缩感知非正交多址系统多用户检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534166A (zh) * 2008-03-10 2009-09-16 上海明波通信技术有限公司 准循环低密度奇偶校验码解码器及解码方法
US9584158B2 (en) * 2015-07-24 2017-02-28 Tidal Systems, Inc. Unified H-encoder for a class of multi-rate LDPC codes
CN105227191A (zh) * 2015-10-08 2016-01-06 西安电子科技大学 基于修正最小和算法的准循环ldpc码译码方法
CN106911431A (zh) * 2017-03-13 2017-06-30 哈尔滨工业大学 应用于稀疏编码多址接入系统解调过程中改进的部分边缘信息传递方法
CN107248902A (zh) * 2017-07-21 2017-10-13 电子科技大学 一种块压缩感知非正交多址系统多用户检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAONING WU ET AL: "A Parity Structure for Scalable QC-LDPC CodesWith All Nodes of Degree Three", 《IEEE COMMUNICATIONS LETTERS》 *
姜明等: "低存储可线性编码的QC-LDPC码设计", 《东南大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242967A (zh) * 2020-09-11 2021-01-19 北京邮电大学 一种多载波互补码单码循环移位多址接入方法
CN112242967B (zh) * 2020-09-11 2021-11-23 北京邮电大学 一种多载波互补码单码循环移位多址接入方法

Also Published As

Publication number Publication date
CN109005003B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
US20230188254A1 (en) Apparatus and method for encoding and decoding channel in communication or broadcasting system
JP6552128B2 (ja) 複素次元あたりの投影が少ないコードブックを生成するためのシステムおよび方法ならびにその利用
KR101042747B1 (ko) 구조적 저밀도 패리티 검사 부호를 사용하는 통신시스템에서 데이터 송수신 장치 및 방법
JP4914497B2 (ja) 多入力多出力(mimo)システムにおいてデータを送信する方法およびシステム
RU2716044C1 (ru) Способы и системы кодирования и декодирования ldpc кодов
US9559722B1 (en) Network devices and methods of generating low-density parity-check codes and performing corresponding encoding of data
CN101335596B (zh) 一类低密度奇偶校验码的实现装置
US11456820B2 (en) Method and apparatus for wireless communications with unequal error protection
US10355816B2 (en) Communication method and communication device
WO2010102435A1 (en) Method and apparatus of a multiple-access communication system
WO2011071293A2 (en) Method and apparatus for channel encoding and decoding in a communication system using a low-density parity check code
CN106685586A (zh) 生成用于在信道中传输的低密度奇偶校验码的方法及设备
CN108934186A (zh) 用于通信中的纠错编码的方法和装置
US10887047B2 (en) Apparatus and method for encoding and decoding channel in communication or broadcasting system
KR102201073B1 (ko) 수신기, 복수의 송신기들, 다수의 송신기들로부터 사용자 데이터를 수신하는 방법 및 사용자 데이터를 송신하는 방법
Uchôa et al. Generalised Quasi-Cyclic LDPC codes based on progressive edge growth techniques for block fading channels
CN100423454C (zh) 一类低密度奇偶校验码的实现方法
CA3060788C (en) Method for performing encoding on basis of parity check matrix of ldpc code in wireless communication system and terminal using same
CN109005003A (zh) 一种应用准循环矩阵扩展的稀疏标签多址接入方法
CN107911152A (zh) 适用于任意发送天线数量的空间编码调制系统和方法
WO2011105834A2 (ko) 부호어의 생성 방법
Prieto et al. Experimental alamouti-stbc using ldpc codes for mimo channels over sdr systems
KR20210015634A (ko) 통신 시스템에서 폴라 코드를 사용한 신호의 송수신 방법 및 장치
CN104065454A (zh) 基于空间数据流数的动态符号交织和解交织方法及装置
Wang et al. A novel codeword grouped SCMA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant