CN109004907B - 可配置的射频功率放大器 - Google Patents

可配置的射频功率放大器 Download PDF

Info

Publication number
CN109004907B
CN109004907B CN201810579768.7A CN201810579768A CN109004907B CN 109004907 B CN109004907 B CN 109004907B CN 201810579768 A CN201810579768 A CN 201810579768A CN 109004907 B CN109004907 B CN 109004907B
Authority
CN
China
Prior art keywords
voltage
amplifier
coupling
power amplifier
cascode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810579768.7A
Other languages
English (en)
Other versions
CN109004907A (zh
Inventor
梁宝文
林嘉亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Realtek Semiconductor Corp
Original Assignee
Realtek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realtek Semiconductor Corp filed Critical Realtek Semiconductor Corp
Publication of CN109004907A publication Critical patent/CN109004907A/zh
Application granted granted Critical
Publication of CN109004907B publication Critical patent/CN109004907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • H03F1/223Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively with MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0023Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier in emitter-coupled or cascode amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0029Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier using FETs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/541Transformer coupled at the output of an amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

射频功率放大器包含输入耦合器、堆叠放大器对及输出组合器。输入耦合器用以接收输入电压且分别依据第一偏压及第二偏压输出第一耦合电压及第二耦合电压。堆叠放大器对用以接收第一耦合电压及第二耦合电压且依据第一直流电压、第二直流电压及第三直流电压输出第一输出电压及第二输出电压。输出组合器用以依据第一输出电压及第二输出电压的组合建立一组合输出电压。堆叠放大器对包含第一放大器及一第二放大器。第一放大器操作于供应自第二直流电压至第一直流电压的一电力。第二放大器操作于供应自第三直流电压至第二直流电压的一电力。

Description

可配置的射频功率放大器
技术领域
本公开中所述实施例内容涉及一种功率放大电路,且特别涉及具有低失真的射频功率放大器。
背景技术
功率放大器被广泛地使用于许多应用中。一种现有的功率放大器利用NMOS(n-通道金属氧化物半导体)或PMOS(p-通道金属氧化物半导体)晶体管作为增益装置。增益装置作为共源极放大器。在一般的配置中,当NMOS(PMOS)晶体管作为共源极放大器时,NMOS(PMOS)晶体管的栅极端耦接至输入电压,NMOS(PMOS)晶体管的源极端连接至地(电源)节点,NMOS(PMOS)晶体管的漏极端通过电感器连接至电源(地)节点。共源极放大器的输出接至NMOS(PMOS)晶体管的漏极端。
现有功率放大器的第一个问题是,将会在其输出中产生相当可观的二次失真。第二个问题是,在晶体管(NMOS或PMOS)的漏极-源极电压的平均值几乎等于电源供应电压(其为电源节点与地节点之间的电压差),当功率放大器达到全输出能力时,漏极-源极电压的峰值可为两倍。高的漏极-源极电压在晶体管上造成高应力且可能损害晶体管。为了使晶体管维持其可靠度,需要迫切的限制电源供应电压。这不利地限制了现有功率放大器的全输出能力。
如何提供一种可克服以上问题的一种方法以及装置以降低二次失真且亦缓解可靠度的问题,是当前存在的需求。
发明内容
在一实施例中,射频功率放大器包含:一输入耦合器,用以接收一输入电压且分别依据一第一偏压以及一第二偏压输出一第一耦合电压以及一第二耦合电压;一堆叠放大器对,用以接收第一耦合电压以及第二耦合电压且依据一第一直流电压、一第二直流电压以及一第三直流电压输出一第一输出电压以及一第二输出电压;以及一输出组合器,用以依据第一输出电压以及第二输出电压的一组合建立一组合输出电压,其中堆叠放大器对包含一第一放大器以及一第二放大器,第一放大器操作于供应自第二直流电压至第一直流电压的一电力。
附图说明
为让本公开的上述和其他目的、特征、优点与实施例能更明显易懂,所附附图的说明如下:
图1是依照本公开一实施例所示出的一种功率放大器的功能方框图;
图2示出一交流耦合网络的示意图;
图3A示出第一形式的放大器的示意图;
图3B示出第二形式的放大器的示意图;以及
图4是依照本公开所示出的一种方法的流程图。
符号说明
100:功率放大器
101:输入耦合器
102:输出组合器
110:第一放大器
111:第一主动网络
112:第一谐振槽
120:第二放大器
121:第二主动网络
122:第二谐振槽
130:堆叠放大器对
131:耦合器
VIN:输入电压
VB1:第一偏压
VB2:第二偏压
VC1:第一耦合电压
VC2:第二耦合电压
VDC1:第一直流电压
VDC2:第二直流电压
VDC3:第三直流电压
VCB1:第一叠接电压
VCB2:第二叠接电压
VO1:第一输出电压
VO2:第二输出电压
VOUT:组合输出电压
200:交流耦合网络
211:第一电容器
212:第二电阻器
221:第一电阻器
222:第二电阻器
310:第一形式
311:主动网络
312:谐振槽
313:内部节点
VGN:栅极电压
VCN:叠接电压
VNL:低侧直流电压
VNH:高侧直流电压
VLN:感应电压
CN:旁路电容
LN1:初级电感器
LN2:次级电感器
MCN:晶体管
MN:晶体管
320:第二形式
321:主动网络
322:谐振槽
323:内部节点
VGP:栅极电压
VCP:叠接电压
VPL:低侧直流电压
VPH:高侧直流电压
VLP:感应电压
CP:旁路电容
LP1:初级电感器
LP2:次级电感器
MCP:晶体管
MP:晶体管
400:运行方法
410:步骤
420:步骤
430:步骤
440:步骤
具体实施方式
本公开关于功率放大器。说明书描述了本公开的许多实施例,其考虑了实现本公开的各种合适的模式,应了解的是本公开可以许多方式实现且不被以下所描述的特定例子或方式所限制。在一些其它例子中,被熟知的细节未被显示或描述,以避免本公开内容难以被理解。
本领域技术人员了解本公开内容中所使用的关于微电子的用词以及基本观念,例如:“电压”、“信号”、“单端”、“差分”、“放大器”、“偏压”、“增益”、“电容器”、“电感器”、“变压器”、“电阻器”、“晶体管”、“MOS(金属-氧化物-半导体)”、“PMOS(p-通道金属氧化物半导体)”、“NMOS(n-通道金属氧化物半导体)”、“AC(交流)”、“AC耦合”、“DC(直流)”、“DC耦合”、“源极”、“栅极”、“漏极”、“节点”、“共源极放大器”、“谐振槽”、“串联连接”以及“叠接”。本领域技术人员亦可很快地识别MOS晶体管的符号,以及其相关的“源极”、“栅极”以及“漏极”端。上述这些用词以及基本概念对于本领域技术人员为显而易见的,故于此将不再详细解释。
在本公开内容中,“DC”代表直流,“AC”代表交流。直流节点是具有实质上固定电位能的节点。直流电压是位于直流节点的电压。偏压是直流电压。
依照本公开一实施例的功率放大器100的功能方框图被示出于图1。功率放大器100包含:输入耦合器101,用以接收输入电压VIN且分别依据第一偏压VB1以及第二偏压VB2输出第一耦合电压VC1以及第二耦合电压VC2;堆叠放大器对130,用以接收第一耦合电压VC1以及第二耦合电压VC2且依据第一直流电压VDC1、第二直流电压VDC2以及第三直流电压VDC3输出第一输出电压VO1以及第二输出电压VO2;以及输出组合器102,用以依据第一输出电压VO1以及第二输出电压VO2的组合建立组合输出电压VOUT。在实际的应用中,负载电路(图未示但对本领域技术人员为显而易见的)用以接收组合输出电压VOUT。为简洁,此后的输入电压VIN简要地以VIN称之,第一(第二)偏压VB1(VB2)简要地以VB1(VB2)称之,第一(第二)耦合电压VC1(VC2)简要地以VC1(VC2)称之,第一(第二、第三)直流电压VDC1(VDC2、VDC3)简要地以VDC1(VDC2、VDC3)称之,第一(第二)输出电压VO1(VO2)简要地以VO1(VO2)称之,以及组合输出电压VOUT简要地以VOUT称之。
功率放大器100可以以单端实施例或差分实施例实施。在差分的实施例中,信号、电压或电流被定义为第一成分信号与第二成分信号之间的差。举例而言,电压信号VX被定义为VX≡VX+-VX-。VX+是第一成分电压信号,VX-是第二成分电压信号。一个针对电压信号VX的差分实施例可利用两个单端实施例的组合建构出来,其中一个是针对第一成分电压信号VX+,另一个是针对第二成分电压信号VX-。由于如何利用两个单端实施例的组合建立一个差分实施例对于本领域技术人员为显而易见,为简洁,只有单端实施例在本公开内容中被明确显示。
输入耦合器101用以实现交流(AC)耦合功能,其可以数学方式通过以下两个方程式描述:
Figure BDA0001688007970000061
Figure BDA0001688007970000062
于此,<·>代表在时间轴上的平均,<VIN>是VIN在足够长的时间区间的平均,使得其值实质上为常数。适于实现图1的输入耦合器101的交流耦合网络200的示意图示出于图2。交流耦合网络200包含:第一电容器211,用以耦合VIN至VC1;第二电容器212,用以耦合VIN至VC2;第一电阻器221,用以耦合VB1至VC1;第二电阻器222,用以耦合VB2至VC2。VB1以及VB2两者实质上为固定。VC1以及VC2因此分别通过第一电阻器221以及第二电阻器222直流耦合至VB1以及VB2,但分别通过第一电容器211以及第二电容器212交流耦合至VIN。举例而言但并非用以限制,VIN的目标频率为5.5GHz,第一电阻器221以及第二电阻器222皆为10K Ohm,第一电容器221以及第二电容器212皆为30pF。在取而代之的实施例中,两个电阻器221以及222的其中一者被一电感器(图未示)取代。在另一取而代之的实施例中,第一电容器211以及第一电阻器221被第一变压器(图未示)取代,其用以耦合VIN至VC1。在另一取而代之的实施例中,第二电容器212以及第二电阻器222被第二变压器(图未示)取代,其用以耦合VIN至VC2。变压器可用以提供第一电压与第二电压之间的交流耦合且同时设定第二电压的直流值,为现有技术所熟知,因此于此不再详细描述。
堆叠放大器对130包含位于下侧的第一放大器110以及位于上侧的第二放大器120。第二放大器120堆叠于第一放大器110之上。在一个可选(optional)的实施例中,堆叠放大器对130还包含耦合器131。在一些实施例中,耦合器131为放大器之间(inter-amplifier)的耦合器。第一(第二)放大器110(120)包含第一(第二)主动网络111(121)以及第一(第二)谐振槽112(122)。另外,第一(第二)放大器110(120)接收VC1(VC2),输出VO1(VO2),且被横跨VDC2(VDC3)以及VDC1(VDC2)的电力供电。在一个可选的实施例中,叠接(cascode)装置使用于第一主动网络111,第一放大器110还接收第一叠接电压VCB1。同样地,在一个可选的实施例中,叠接装置使用于第二主动网络121,第二放大器120还接收第二叠接电压VCB2。为简洁,此后述及的第一(第二)叠接电压VCB1(VCB2)简要地以VCB1(VCB2)称之。
适于实现图1的第一放大器100或第二放大器120的第一形式310放大器的示意图示出于图3A。为简洁,此后述及图3A所示出的第一形式310的放大器简要地以第一形式310表示。第一形式310包含:主动网络311,其包含以NMOS晶体管MN实现的增益装置,以及谐振槽312,其包含互耦电感对,互耦电感对包含初级电感器LN1以及次级电感器LN2。在一个可选的实施例中,谐振槽312还包含旁路电容CN。第一形式310接收栅极电压VGN且输出横跨次级电感器LN2的感应电压VLN。于此,“VNH”表示高侧直流电压,“VNL”表示低侧直流电压。第一形式310是本领域技术人员所熟知的共源极射频放大器,故于此不再详细描述。在一个可选的实施例中,主动网络311还包含以另一NMOS晶体管MCN实现的叠接装置,NMOS晶体管MCN插入在NMOS晶体管MN的漏极端与内部节点313之间且被叠接电压VCN施加偏压。将叠接装置导入共源极放大器以增加各式好处(例如:提供更佳的反向隔离)的观念为本领域技术人员所熟知,故于此不再详细描述。当第一形式310被举例以实现第一(第二)放大器110(120),主动网络311实现第一(第二)主动网络111(121),谐振槽312实现第一(第二)谐振槽112(122),VGN实现VC1(VC2),VLN实现VO1(VO2),VNL实现VDC1(VDC2),VNH实现VDC2(VDC3),且VCN实现VCB1(VCB2)。举例而言但并非用以限制,NMOS晶体管MN的宽度以及长度分别为1000微米(μm)以及30纳米(nm),NMOS晶体管MCN的宽度以及长度分别为1000微米(μm)以及30纳米(nm),初级电感器LN1的电感值为400pH,次级电感器LN2的电感值为600pH,LN1与LN2之间的耦合系数为0.9,且旁路电容CN的电容值为100fF。
适于实现图1的第一放大器100或第二放大器120的第二形式320放大器的示意图示出于图3B。为简洁,此后述及图3B所示出的第二形式320的放大器简要地以第二形式320表示。第二形式320包含:主动网络321,其包含以PMOS晶体管MP实现的增益装置,以及谐振槽322,其包含互耦电感对,互耦电感对包含初级电感器LP1以及次级电感器LP2。在一个可选的实施例中,谐振槽322还包含旁路电容CP。第二形式320接收栅极电压VGP且输出横跨次级电感器LP2的感应电压VLP。于此,“VPH”表示高侧直流电压,“VPL”表示低侧直流电压。第二形式320是本领域技术人员所熟知的共源极射频放大器,故于此不再详细描述。在另一实施例中,主动网络321还包含以另一PMOS晶体管MCP实现的叠接装置,PMOS晶体管MCP插入在PMOS晶体管MP的漏极端与内部节点323之间且被叠接电压VCP施加偏压。
当第二形式320被举例以实现第一(第二)放大器110(120),主动网络321实现第一(第二)主动网络111(121),谐振槽322实现第一(第二)谐振槽112(122),VGP实现VC1(VC2),VLP实现VO1(VO2),VPL实现VDC1(VDC2),VPH实现VDC2(VDC3),且VCP实现VCB1(VCB2)。举例而言但并非用以限制,PMOS晶体管MP的宽度以及长度分别为1200微米(μm)以及30纳米(nm),PMOS晶体管MCP的宽度以及长度分别为1200微米(μm)以及30纳米(nm),初级电感器LP1的电感值为400pH,次级电感器LP2的电感值为600pH,LP1与LP2之间的耦合系数为0.9,且旁路电容CP的电容值为50fF。
注意第一形式310以及第二形式320为互补。
请参考图1。第一放大器110可以被第一形式310或第二形式320实施,第二放大器120亦可。在第一实施例中,第一放大器100以及第二放大器120皆以第一形式310实施。然而,在这个例子中,必须了解的是需分开复制两个第一形式310,伴随着两个不同叠接电压(即,图3A中的“VCN”),其中一个第一形式310用以实施第一放大器110且另一个第一形式310用以实施第二放大器120。在第二实施例中,第一放大器110以及第二放大器120分别以第二形式320以及第一形式310实施。在第三实施例中,第一放大器110以及第二放大器120分别以第一形式310以及第二形式320实施。在第二实施例以及第三实施例中,第一放大器110以及第二放大器120以互补形式的放大器实施。在第四实施例中,第一放大器110以及第二放大器120皆以第二形式320实施。然而,在这个例子中,必须了解的是需分开复制两个第二形式320,伴随着两个不同叠接电压(即,图3B中的“VCP”),其中一个第二形式320用以实施第一放大器110且另一个第二形式320用以实施第二放大器120。
当第一放大器110以及第二放大器120以互补形式的放大器实施时,选择性的耦合器131是有益的。在这个例子中,选择性的耦合器131可用以使第一放大器110以及第二放大器120相互补以抵消二次失真(因为PMOS晶体管以及NMOS晶体管具有相反的二次失真)。在一实施例中,耦合器131包含电容器。在一些实施例中,此电容器为放大器之间(inter-amplifier)的电容器,其用以提供第一主动网络111的漏极电压与第二主动网络121的漏极电压之间的电容耦合。当第一形式310用来实现第一(第二)放大器110(120)时,第一(第二)主动网络111(121)的漏极电压为位于图3A的内部节点313的电压。当第二形式320用来实现第一(第二)放大器110(120)时,第一(第二)主动网络111(121)的漏极电压为位于图3B的内部节点323的电压。在取而代之的实施例中,耦合器131并非以具体电路实施,而是在第一谐振槽112以及第二谐振槽122之间故意设计电感性耦合方式来实施。此电感性耦合方式可例如通过将第一谐振槽112的初级电感器以及第二谐振槽122的初级电感器布局成堆叠配置或叉合配置以实现。电感性耦合的观念为本领域技术人员所熟知,故于此不再详细描述。
在一实施例中,输出组合器102以第一谐振槽112的次级电感器以及第二谐振槽122的次级电感器的串联接实施,使得VOUT为VO1以及VO2的总和。在取而代之的实施例中,输出组合器102以第一谐振槽112的次级电感器以及第二谐振槽122的次级电感器的并联接实施,使得VO1与VO2相等,且因此等于VOUT。当功率放大器100需要驱动低阻抗负载时,这个取而代之的实施例可能为有益的。在任一实施例中,第一放大器110的输出功率以及第二放大器120的输出功率可以有效地加总。
功率放大器100可用以操作于高功率模式或低功率模式。当操作于高功率模式时,第一放大器110以及第二放大器120实质上被通电(power on,上电)。当操作于低功率模式时,第一放大器110实质上被通电且第二放大器120实质上被断电。为了实质上对第一放大器110通电,当第一放大器110以第一(第二)形式310(320)实施时,VB1以及VCB1,若被选择使用,必须设定成足够高(低)。同样地,为了实质上对第二放大器120通电,当第二放大器120以第一(第二)形式310(320)实施时,VB2以及VCB2,若被选择使用,必须设定成足够高(低)。在一实施例中,举例而言但并非用以限制:VDC1为0伏特;VDC2为1.5伏特;VDC3为3伏特;第一放大器110通过叠接选择以第二形式320实施;VB1为0.8伏特;VCB1为0.3伏特;第二放大器120通过叠接选择以第一形式310实施;VB2为2.2伏特;VCB2在高功率模式为2.7伏特但在低功率模式为1.7伏特。通过这种方式,功率放大器100用以依据VCB2的设定操作于高功率模式或低功率模式。在另一实施例中:VDC1为0伏特;VDC2为0.8伏特;VDC3为1.6伏特;第一放大器110以非叠接选择的第二形式320实施;VB1为0.2伏特;第二放大器120以非叠接选择的第一形式310实施;VB2在高功率模式为1.4伏特但在低功率模式为0.8伏特。通过这种方式,功率放大器100用以依据第二偏压VB2的设定操作于高功率模式或低功率模式。在任一实施例中,功率放大器100用以依据第二放大器120的偏压状况的设定操作于高功率模式或低功率模式,第二放大器120为堆叠放大器对130的上侧放大器。
在取而代之的实施例中,功率放大器100可用以依据三个直流电压VDC1、VDC2以及VDC3的设定操作于高功率模式或低功率模式。在高功率模式,VDC2设定成显著地高于VDC1,VDC3设定成显著地高于VDC2。在低功率模式,以下两个实施例中的任一者可被使用:(1)VDC2设定成显著地高于VDC1,但VDC3设定成非显著地异于VDC2;(2)VDC3设定成实质上高于VDC2,但VDC2设定成非显著地异于VDC1
在任何例子中,由于利用堆叠放大器对架构,本公开内容的实施例在配置功率放大器100具有高自由度。
在以示出于图4中流程图(运行方法400)所描述的实施例中,运行方法400包含:(步骤410)接收输入电压;(步骤420)分别依据第一偏压以及第二偏压将输入电压耦合成第一耦合电压以及第二耦合电压;(步骤430)分别利用第一放大器以及第二放大器依据第一耦合电压以及第二耦合电压输出第一输出电压以及第二输出电压,其中第一放大器以及第二放大器经配置为一堆叠架构;以及(步骤440)依据第一输出电压以及第二输出电压的组合建立组合输出电压。
虽然本公开已以实施方式公开如上,然其并非用以限定本公开,任何本领域普通技术人员,在不脱离本公开的构思和范围内,当可作各种的变动与润饰,因此本公开的保护范围当视权利要求所界定者为准。

Claims (10)

1.一种射频功率放大器,包含:
一输入耦合器,用以接收一输入电压且分别依据一第一偏压以及一第二偏压输出一第一耦合电压以及一第二耦合电压;
一堆叠放大器对,用以接收该第一耦合电压以及该第二耦合电压且依据一第一直流电压、一第二直流电压以及一第三直流电压输出一第一输出电压以及一第二输出电压;以及
一输出组合器,用以依据该第一输出电压以及该第二输出电压的一组合建立一组合输出电压,其中
该堆叠放大器对包含一第一放大器以及一第二放大器,该第一放大器操作于供应自该第二直流电压至该第一直流电压的一电力,该第二放大器操作于供应自该第三直流电压至该第二直流电压的一电力。
2.如权利要求1所述的射频功率放大器,其中该输入耦合器实施一交流耦合功能,使得当该第一耦合电压的一直流值等于该第一偏压时,该第一耦合电压的一交流值等于该输入电压的一交流值,且当该第二耦合电压的一直流值等于该第二偏压时,该第二耦合电压的一交流值等于该输入电压的一交流值。
3.如权利要求1所述的射频功率放大器,其中该第一放大器包含一第一主动网络以及一第一谐振槽,该第一主动网络包含一以第一NMOS晶体管实现或以第一PMOS晶体管实现的增益装置,该第一谐振槽包含一互耦电感对,该互耦电感对包含一初级电感器以及一次级电感器,该第一NMOS晶体管或该第一PMOS晶体管的漏极端耦接该初级电感器。
4.如权利要求3所述的射频功率放大器,其中该第一主动网络还包含以另一NMOS晶体管实现的叠接装置,该另一NMOS晶体管插入在该第一NMOS晶体管的漏极端与内部节点之间且被叠接电压施加偏压,或包含以另一PMOS晶体管实现的叠接装置,该另一PMOS晶体管插入在该第一PMOS晶体管的漏极端与内部节点之间且被叠接电压施加偏压。
5.如权利要求3所述的射频功率放大器,其中该第二放大器包含一第二主动网络以及一第二谐振槽,该第二主动网络包含一以第二NMOS晶体管实现或以第二PMOS晶体管实现的增益装置,该第二谐振槽包含一互耦电感对,该互耦电感对包含一初级电感器以及一次级电感器,该第二NMOS晶体管或该第二PMOS晶体管的漏极端耦接该初级电感器。
6.如权利要求5所述的射频功率放大器,其中该第二主动网络还包含以另一NMOS晶体管实现的叠接装置,该另一NMOS晶体管插入在该第二NMOS晶体管的漏极端与内部节点之间且被叠接电压施加偏压,或包含以另一PMOS晶体管实现的叠接装置,该另一PMOS晶体管插入在该第二PMOS晶体管的漏极端与内部节点之间且被叠接电压施加偏压。
7.如权利要求6所述的射频功率放大器,其中该堆叠放大器对还包含一耦合器,该耦合器用以使位于该第一谐振槽的该初级电感器的一电压与位于该第二谐振槽的该初级电感器的一电压相等。
8.如权利要求7所述的射频功率放大器,其中该耦合器包含一电容器。
9.如权利要求7所述的射频功率放大器,其中该输出组合器以该第一谐振槽的该次级电感器以及该第二谐振槽的该次级电感器的一串联接实施。
10.如权利要求1所述的射频功率放大器,其中该射频功率放大器用以通过设定一偏压状况对该第二放大器断电而操作于一低功率模式,且通过设定一偏压状况对该第二放大器通电而操作于一高功率模式。
CN201810579768.7A 2017-06-07 2018-06-07 可配置的射频功率放大器 Active CN109004907B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/615,899 US10153734B1 (en) 2017-06-07 2017-06-07 Configurable radio frequency power amplifier and method thereof
US15/615,899 2017-06-07

Publications (2)

Publication Number Publication Date
CN109004907A CN109004907A (zh) 2018-12-14
CN109004907B true CN109004907B (zh) 2022-05-03

Family

ID=64535792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810579768.7A Active CN109004907B (zh) 2017-06-07 2018-06-07 可配置的射频功率放大器

Country Status (3)

Country Link
US (1) US10153734B1 (zh)
CN (1) CN109004907B (zh)
TW (1) TWI666872B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571780A (zh) * 2016-11-17 2017-04-19 锐迪科微电子(上海)有限公司 一种自适应偏置的射频功率放大器
CN106712727A (zh) * 2015-10-27 2017-05-24 湖南格兰德芯微电子有限公司 射频功率放大器功率合成装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538355B2 (en) * 2010-04-19 2013-09-17 Rf Micro Devices, Inc. Quadrature power amplifier architecture
US8319557B2 (en) * 2010-06-18 2012-11-27 Skyworks Solutions, Inc. Integrated linear power detection in an RF power amplifier
US8680924B2 (en) 2010-12-23 2014-03-25 Marvell World Trade Ltd. Differential power amplifiers with push-pull power amplifiers and even-harmonic cancellation
WO2015117217A1 (en) * 2014-02-06 2015-08-13 Ghannouchi Fadhel M High efficiency ultra-wideband amplifier
KR20160031921A (ko) * 2014-09-15 2016-03-23 삼성전기주식회사 스택된 공통 게이트 구조의 인버티드 토폴로지를 갖는 신호 증폭기
US9899970B2 (en) * 2015-06-18 2018-02-20 Eridan Communications, Inc. Current enhanced driver for high-power solid-state radio frequency power amplifiers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712727A (zh) * 2015-10-27 2017-05-24 湖南格兰德芯微电子有限公司 射频功率放大器功率合成装置
CN106571780A (zh) * 2016-11-17 2017-04-19 锐迪科微电子(上海)有限公司 一种自适应偏置的射频功率放大器

Also Published As

Publication number Publication date
TWI666872B (zh) 2019-07-21
US20180358928A1 (en) 2018-12-13
US10153734B1 (en) 2018-12-11
TW201904191A (zh) 2019-01-16
CN109004907A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
US7777570B2 (en) Transformer power combiner having secondary winding conductors magnetically coupled to primary winding conductors and configured in topology including series connection and parallel connection
US8378750B2 (en) Class AB amplifiers
US7372327B2 (en) Input structure for a power amplifier and associated methods
US9935585B2 (en) RF amplifier operational in different power modes
US8493152B2 (en) Power amplifier
US20200014351A1 (en) Stacked power amplifiers using core devices
US20130234798A1 (en) Amplifier and amplification method
CN108696259B (zh) 射频功率放大器
CN109004907B (zh) 可配置的射频功率放大器
US20210344095A1 (en) Directional coupler and semiconductor chip
CN109845096A (zh) 使用核心设备的堆叠功率放大器
JP2024062912A (ja) 主増幅回路及び高周波電力増幅器
CN104796095A (zh) Ab类放大器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant